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TRANSLATION PLANES CONSTRUCTED
FROM SEMIFIELD PLANES

NorMAN L. JOHNSON

Let = be an affine plane of order ¢? that is coordinatized
by a ‘‘derivable’”’ semifield &~ = (&, +, ). If (&, +4) is a
right vector space over F' = GF(q) then a plane =’ may be
constructed from = using Ostrom’s method of ‘‘derivation.”

The purpose of this article is to examine the planes =’
and their coordinate structures (S, +, x). It is shown, in
particular, that (57, +, *) is a (right) quasifield which is
neither a nearfield nor a semifield. Furthermore, it is shown
that =’ is always of Lenz-Barlotti class IVa, 1.

The automorphism groups of semifields of square order
are also briefly investigated.

1. The Construction of Quasifields from Derivable Semifields.
We will assume that the reader is familiar with the concept of “deri-
vation.” For background material the reader is referred to [2], [4],
[6], and [7].

DEFINITION 1.1. A semifield & = (% +, +) of order ¢* g = 9", p
a prime, will be said to be derivable if and only if (&4 +) is a vector
space over GF(q) = F where FF& & and ¢+« = 2a (or a « & = ax)
is scalar product.

If a semifield & is derivable then either & or dual & (i.e.,
right multiplication becomes left multiplication, and conversely) is a
right vector space over GF(q) and hence either the affine plane 7 co-
ordinatized by .&” or an affine restriction of the dual of the projective
extension of m is derivable (see sections 3 and 4, [7]).

A projective plane is a semifield plane if and only if it can be
coordinatized by a semifield or if and only if the plane is (P, )-
transitive V points Pel, and (Q, [)-transitive V lines [e @ and Qel.

If @, are chosen to be (o) and l., respectively, then the coor-
dinate structure obtained is a semifield. In dualizing the semifield
plane 7 we shall let ()<« {. and then delete l. to obtain an affine
plane coordinatized by a semifield dual to a semifield which coordi-
natizes 7.

DEFINITION 1.2. Let & = (% +,:) be a derivable semifield.
& is subcommutative if and only if aa = aa for all a€.&” and for
all « e GF(q).

DEeFINITION 1.3. A semifield & of order ¢* containing GF(q) is
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a weak nucleus semifield (wn-semifield) if and only if (ab)e = a(be)
whenever any two of a, b, ¢ are in GF(q).

Note that a wn-semifield of order ¢* is derivable and a derivable
subcommutative semifield is a wn-semifield.

Let & be a derivable semifield which is a right 2-dimensional
vector space over GF(g). Let {1,t},te. % — GF(q) be a basis for .&¥
over GF(q).

Then let g(ta) = th(B, a) + k(B, @) and (ta)(tB) = tf(a, B) + 9(«a, B)
for a, 3 € GF(q) where h, k, f, g are bilinear functions: GF(q) x GF(q) —
GF(g) which introduce no zero divisors into the multiplication.

Then multiplication in the semifield is given by:

(ta + 0)(tB + ) = t(fle, B) + h(d, B) + av)
+ (9(a, B) + k(d, B) + 07) .

Thus, if .&” is any derivable semifield then either the multiplica-
tion of & or dual .&¥ is of the above form.

THEOREM 1.4. Let & = (%] +, +) be a derivable semifield which
is a right wvector space of dimension 2 over F = GF(q),q = 2", p a
prime. Let the multiplication in &7 be given by:

(ta + 9) - (¢8 + ) = t(fle, B) + (3, B) + av)
+ (9(a, B) + k@6, B) + oN) YV, B, 0, v e F

where f, h, g, k are bilinear functions: F X F — F.
Define a system .&9* = (% +, x) when the x-multiplication is
given by

txa =ta, (ta+ B)xv =tlay)+ By and if § =0

(ta + B) * (t0 + v) = to + X where
(1) R, ) =1,
(2) k(B, #1) + 5#2 =7,
(3) f(a9 #1)+h(10: #1)""“/"2::8’
(4) g(a, #1) + k(py ﬂl) + o, = X
Ve, 8,0 # 0, ve F where p, ¢, and thus o, X € F are determined

from the above equations.
Then &7* = (& +, *) is a (right) quasifield.

Proof. The affine plane 7 coordinatized by .&” is derivable (see
[2],[6], [7]). Ostrom [6] has shown that the plane =’ derived from
7w is a translation plane and may be coordinatized by a system

(& +,")sta=txa, (ta+ B)«(td + 7) =to+ X
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if and only if (ta + o), + ) = t@ + X where o(ty, + ) =t + v
for 0 = 0, and (ta + B)* v = (ta + B)7 for all a, B, 9, v€e GF(q). Our
equations are obtained by merely equating vector components.

We shall now specialize (1.4) to the case where & is a wn-semi-
field.

Knuth [4] has shown that if & is a wn-semifield then a basis
{1, t} can be chosen so that at = ta’Va € GF(q) where ¢ is some auto-
morphism of GF(g). In this case, h(d, 8B) = ¢°8 and k(d, 8) = 0 for
all 0, Be GF(qg).

Thus A(0, ) = 0°¢, =1 implies g, =0 and k(0, ) + ot = v
implies that g, = 0=y for ¢ = 0. Thus fla, ) + Mo, 1) + at, = 8
implies that f(a, 67°) + 00~ = ad~'y = B. Hence

o= (B —fla,d") —ai™)d)" = (B — fla,67) — ad~v)""d .
Also, g(a, tt) + k(o, tt,) + oy, = X implies that g(«, 67°) + po~v = X.

Thus, we have the following theorem.

THEOREM 1.5. If &7 = (% +, *) is a weak nucleus semifield of
order q°> multiplication in &7 is given by

(ta + 0)(tB + 7) = t(fa, B) + 0°B + av) + (49(a, B) + 07) .

Define a system .&“* = (<& +, *x) by defining a *-multiplication
as follows:

txa = ta, (ta+ 0) * (IR + 7) = 80 — fla, B7) — aB™ ) 'R
+9(a, B7) + (0 — fla, B7) — ag™v) M
for 6 # 0 and ¢ an automorphism of GF(q), and
(ta + 90) x v = (ta + d)7Va, B, 0, vy € GF(q) .
Then .&#* is a (right) quasifield.

REMARKS 1.6. Under the assumptions of (1.5)

(i) a*a=axa"'VaeGF(q) and Vae.& — GF(q),

(ii) (axb)*c =ax(bxc) whenever any two of a,b, ¢ are in
GF(q).

Proof. The proof of (1.6) is routine and is left to the reader.

2. Automorphisms of derivable semifields which fix GF(q)
elementwise. The semifields of order 16 have been tabulated, [3],
and are all isotopic (Sec. 3, [4]) to one of two weak nucleus semi-
fields, each of which admits a group of automorphisms of order 3
which fixes GF(q) elementwise (see [4]). The multiplications for the
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two systems are given by (ta)(t0) = ta®* + a®o, Bt = t5*Va, o, B GF(4)
and (ta)(t0) = wa®, Bt = t8* where @ is a primitive root of GF(4).

The semifields of order 16 are exceptions among derivable semi-
fields of order ¢ in that no derivable semifield of order ¢2, ¢ > 4 can
admit such automorphism groups.

THEOREM 2.1 Let (& +, +) be a derivable proper semifield of
order q>. Then & is of order 16 if and only if a derivable isotopic
wmage of &F admits a group of automorphisms of order q — 1 which
fizes GF(q) elementwise.

Proof. Suppose the indicated automorphisms 7, that the form
tto =tovVoe GF(q) — {0}. (Note: This would be true by (2.2) if .&*
is a wn-semifield and ¢ # 1, but we are not necessarily assuming this
property.) If &7 is a left vector space over GF(q), consider dual .&4
Let {1, t} be a basis for & or dual &£

(ta)(#B))7e = (tf(a, B) + 9(t, B))°» Where f, g are bilinear functions:
GF(q) x GF(q¢) — GF(q). Thus,

(tH(oa))(t(0B)) = t(of(a, B)) + 9(a, B)

which implies that of(e, B) = flea, pB) and g(«, B) = g(p, pB). Since
we have ¢ — 1 automorphisms 7, these previous equations are true for
all o, B, 0 € GF(q) — {0}. If characteristic F’ + 2 then g(20, 20) = 9(2, 2).
But ¢ is bilinear so ¢(2, 2) = 4¢(1,1). Also g(a, ) = g(1,1) so that
49(1,1) = ¢g(1,1). Moreover g¢(1,1) = 0 since t* = #f(1,1) + 9(1,1) and
multiplication of nonzero elements is a loop.

Hence 4 = 1 so that characteristic F' = 3.

Since g(oa, pB) = g(a, B)¥a, B, 0 € GF(q) — {0} then

91, (@+ 1) =gla+71) =9al)+9(v, 1)

for ¢ + v # 0.

Thus, ¢(1, (@ + 7)) — (9(, 1) + g(7, 1)) = 0, which implies that
91, (@ + )™ + 2(9(e, 1) + 9(7, 1)) = 0.

Clearly, 29(8, 1) = 9(28, 1)VB € GF(g), and 9(28, 1) = 9(1, 287), so

91, (@ + 7)) + 9(2a, 1) + 9(27, 1)
=91, (¢ + 7)™ + 9(1, 2a7) + 9(1, 2v7)
=g1, (@ + 7)™+ 2a7" + 2v7)
=g, (@ + )" — (@t + 7).

If (@ +7v)7"=a*+ 7, then

Bt + 7)™ — (@ + 7)) = L, (@ + V) = (@ +77™)
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which cannot be the case. Hence (o + ¥)™' = a™ + v, It is easy
to see that in this situation GF(q) = GF(3).

But then .&¥ would be a field ([4], p. 208) contrary to our as-
sumption.

Hence, characteristic /= 2. Then, using the bilinearity of g we
may argue as before (except that —1 = +1) to obtain (a + 7)™ =
a™t + v from which it follows that GF(q) = GF(4).

To complete the proof of (2.1) we must show that the automor-
phisms 7, have the form "o = tp.

Let @ be the affine plane coordinatized by . and let 7, be the
subplane of 7 coordinatized by GF(qg).

The automorphism group of . induces a collineation group of
7 which fixes 7, pointwise. In the derived plane there is a collinea-
tion group of order ¢ — 1 fixing the line {(x, y)|x = 0} pointwise.
(The validity of this last statement may be seen by choosing coordi-
nates for the derived plane so that z, in 7 is the point set {(z, y)|x = 0}
in the derived plane. See e.g. [6], Theorem 10.)

Thus, the derived plane z’ admits a (P, 2 = 0)-homology group of
order ¢ — 1 (see [2], remarks following (2.6)). Moreover, this group
must fix the set points of 7 on the line at infinity of the derived
plane where 7 is the line © = 0 in 7 (see [6], Theorem 7). Hence,
P = (a) where « € GF(q). If a =0 we can rechoose ¢t in .&” so that
P is represented by (0).

Now {(t0 + ad, t8 + aB)} in & is the same as {(td + B, tad + aB)} in
7’ ([6], Theorem 10). If we let ¢ = ¢ + « then {(¢9, tB)} is {(td + B, 0)}
in 7’. Hence, we have relabeled {(z, ¥)|y = xa} in ' by {(z, y)|y = 0}.
Thus, P = («) is relabeled by (0).

Now a group of ((0), x = 0)-collineations which fix z; induce auto-
morphisms of the form 7,3 (ta + B)T, = t(pa) + B in & (see [2],
(2.10), and the proof of (3.10)).

Henece (2.1) is proved.

ProposITION 2.2. Let (&% +, +) be a wn-semifield of order q° with
multiplication defined by (ta)(tB) = tf(a, B) + 9(a, B), 0t = td°, 0 an
automorphism of GF(q), V&, B,0€GF(q). If o+ 1, and if T is any
automorphism of (&, +, +) fizing GF(q) elementwise then (ta + B)° =
t(oa) + B for some p e GF(q).

Proof. (at)® = a't® = at*. Let ¢ = tp + 0 for some p, 0 € GF(q).
Then at® = ta’p + af and (at)” = (ta’), t'a’ = tpa® + 6a°. Hence,
af = 6a° which implies 6 = 0.

THEOREM 2.3. If a derivable semifield &¥ = (&, +, +) of order
Q% 9 > 2 admits a montrivial automorphism group <& which fixes
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GF(q) = F elementwise and |<||q then & is an elementary abelian
2-group whose order is strictly less than q.

Proof. Without loss of generality, suppose that (&, +) is a right
vector space over F. Then it follows directly from [5], Theorem 1,
that if 7e < and {1, t} is a basis for (& +) over F' then t" =t + v
for some ve F.

Let o(¢B8) = th(d, B) + K(9, B),

(ta)tp) = tfla, B) + 9(a, BVa, B, 6 € GF(q)

where f, g, h, k are bilinear functions: GF(q) x GF(q) — GF(qg).
Then, (ta)(tB) = (tfla, B) + g(a, B))° if and only if

(ta)tB) + th(va, B) + avp)
+ k(ve, B) + vap = (ta)ts) + fle, B) -

Equating vector components:

(1) h(va, B) = —avBYa, 8 and

(2) k(va, B) + v'ag = fla, B)-

If «=~"1in (1), then #(1,R8) = —Q. But, 11,8 =8. .. F is
of characteristic 2. Thus, & is an elementary abelian 2-group.

Now assume |Z| = ¢q. Then, by (2), k(1, 8) + v8 = v (v, B) =
Y8 so that f(v™*, B8) = @ for all ye F. But

AN+ 78 =AA4""8) +f(vB) =0
since f is bilinear and F is of characteristic 2.

Henece, (2.3) is proved.

COROLLARY 2.4. If & = (% +, +) is a wn-semifield of order ¢*
which admits a nontrivial auwtomorphism group T such that |Z||q
then |Z| = 2.

Proof. By (2.3)(2), k(va, B) + Y*aB = vf(a, B).

We may choose te ¥ — Fak(va, 8) =0Va, B, Y F so vag =
e, B) = vaR = fla, B). Clearly |&”| =2 for otherwise it would
follow that vap = #"ap for v + 4#"Va, e F.

COROLLARY 2.5. If . &¥ = (< +, ) is a wn-semifield which admits
a group & of (2.4) then there is @ te ¥ — F such that

(ta + 0)(tB + ) = Hasf + o8 + av) + (9(a, B) + 97)

where g 1s a bilinear function F X F— F and f is a nonzero con-
stant in F.
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Proof. 3te ¥ — Faat =ta’Vae F, 0 an automorphism of F. By
(2.2),0=1. By (2.4), || =2and if te st =t + ffla, B) = aBf.

COROLLARY 2.6. Let (&4 +, ») satisfy the hypothesis of (2.3) and
(&, +, *) the quastifield of (1.4). Consider the following distributive
law:

cx(@-+b)y=cxa+cxb

for all ¢, be . and for some ae F.

Then

(1) if char F' = 2 this distributive law cannot hold for any non-
zero e F,

(ii) if char F = 2 and (&4 +, +) is a wn-semifield then the dis-
tributive law holds for at most a single nonzero element of F,

(iii) if char F' = 2 this distributive law cannot hold for all o e F.

Thus, in particular, (.4 +, *) is not a semifield.

Proof. The given distributive law induces a ((«), = 0, x,)-col-
lineation in the affine plane coordinatized by (%4 +, =) and hence
([2], see the proof of (3.10)) an automorphism group in (& +, -) as
in (2.3).

We have seen that (&4 4+, x), if &7 is a wn-semifield, admits
some associative properties ((1.6) (ii)). In general, however, we note
that (&% +=) cannot be associative.

THEOREM 2.7. If & = (% +, +) is a derivable semifield > (<4 +)
15 a right vector space over GF(q) then (&, +, =) is meither associative
nor distributive.

Proof. The affine plane coordinatizing (&4 +, +) is ((«0), z = 0,
7,)-transitive ([2], [6]) and thus (& 4+, *) admits a group of auto-
morphisms of order ¢ which fix GF(q) elementwise. But regular
nearfields clearly cannot admit such automorphisms. The irregular
nearfields all have order p* where p is a prime. If & has order p?
then & is a fleld ([4]) in which case (% +, %) is a quasifield which
coordinatizes a Hall plane.

3. The Knuth multiplication. Let (& +) = (GF(¢*), +). Let
te ¥ — GF(g) and define at = ta® where ¢ is an automorphism of
GF(q). The functions fla, B) = a”B*, 9(a, B) = a*B’g where _+; X, 0,0
are automorphisms of GF(q), «, B€ GF(q), f, g constants in GF(q) are
bilinear functions: GF(q) x GF(q) — GF(q).

at = ta?, (ta)(t) = ta” B + a8’y
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will define multiplication of a semifield .&¥ = (& +, -) provided no
zero divisors are introduced by the choices of o, #; X, p,d,f and g.
If no zero divisors occur, we shall say that the semifield so defined
is a Knuth Semifield.

THEOREM 3.1. (Kwnuth [4]). Let

& = (A +,)3(H +) = GF(Q)
and
(ta + O)(tB + ) = tla” B + ay + 6°8]
+ [a*B’9 + 07]Ve, B, 0, v € GF(q)

where A, X, a, 0,0 are automorphisms of GF(q) and f, g elements of
GF(q).

(a) If f=0 and g is a nonsquare in GF(q) then the above mul-
tiplication defines a Knuth Semifield for an arbitrary choice of auto-
morphisms a, o, 0.

That s, at = ta°, (ta)(tB) = arB’g for arbitrary automorphisms
0,0 of GF(q) and g a monsquare in GF(q) define a semifield.

(o) If f+ 0 and o, f, g are chosen so that y°** + fy — g = 0 has
no solutions in GF(q) and (A4;X,0,0) = (o,07, 0,07, (0,1, 0,1),
1,07, 07 07% or (1,1, 07 1) then the above multiplication defines a
Knuth Semifield. That is, each of the following multiplications define
a class of semifields:

I. at = ta’, (ta)(tR) = ta’S" f + a’8 g

II. at = tas, (ta)(tB) = ta’Bf + a’By

III. at = ta®, (ta)(tp) = tap” 'f + a’”'p" g

IV. at = ta’, ta)(tB) = tagf + a’ 'By.

Furthermore, Knuth [4] has characterized types II, IIT and IV in
terms of the nuclei.

DEFINITION 3.2. Let (Q, +, <) be a ternary system. Let

{xeQ|(ab)r = a(bx)Va, beQ} = A0 ,
{xeQ|(ax)b = a(xb)Va,beQ} = A4 ,q ,
{x e Q|(xa)b = x(ab)Va,beQ} = A,

AN oy N gy N g Will be called the right, middle, and left ‘nucleus
of @, respectively.

THEOREM 3.3. (Knuth [4]). Let (& +, +) be a Knuth Semifield
of order ¢*. Then GF(q) = V%o = N 4o if and only if &7 is of
type II. GF(Q) = N0 = N .0 if and only of & s of type III,
and GFQ) = AN .o = N, if and only if &7 of type IV.
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By applying (1.4) to (3.1), we obtain the following result:

THEOREM 3.4. Each of the following multiplications = (with field
addition) defines a (right) quasifield which is meither a semifield or
nearfield. If g =0,

(1) (ta + 6) * (1B + v) = t(6 — @B~ ) B + (6 — aB™ )" 'y
+ a”B7°g, g a nonsequare in F

(2) (ta 4 8) = (tB + ) = (0 — a’B7f — ap™v)"'B
+ @ —aBf—ag™) Y+ a0~ 1, f~0

(3) (ta + 0) = (¢8 + 7) = (0 — a’8™f — aB™)" B
+ (0 —aBf —af™) Y+ a8 g, 0%1, f+#0

(4) (ta + 8) « (tB + 7) = t(0 — aB™f — aB™)"'B
+ @ —aff—af™ ) v+ a8 g, 0% 1, f~0

(5) (ta + 8) = (tB + 7) = t(0 — ap~f — aB™)" B

+ (@ —aBf—aBg™ )Y v+ a8 g, 0 = 1, f # 0.

Also, (ta + 0) v = t(ay) + 97 where o is an automorphism of F and
i cases (2) through (5) y°*' + fy — 9 = OVy e GF(q) and 47, X auto-
morphisms of F in case (1).

Proof. See (1.4), (2.7) and (3.1).

4. The planes coordinatized by the (& +, %) quasifields. A
plane Y is of Lenz-Barlotti Class IV.a.2 or IV.a.3 if 5 can be coordi-
natized by a (right) nearfield, and of Class V.1 if ¥ can be coordi-
natized by a semifield. Y is of Class IV.a.l if ¥ is coordinatized by
(right) quasifield but no coordinate system for ¥ is a (right) nearfield
or semifield.

The planes coordinatized by the (& +, =) quasifields are there-
fore of L-B Classes IV.a.1,a.2,a.3, or V.

THEOREM 4.1. Let & = (S +, ) be a dertvable semifield > (&, +)
18 a right vector space over GF(q). Let m be the semifield plane co-
ordinatized by & 7 is derivable, so let ' be the plane derived from
7. Then 7' is of Lenz-Barlotti Class IV.a.l.

Proof. We must show that #’ cannot be of type 1V.a.2, a.3, or
V.1.

Suppose 7’ is of type V.1, then 7’ is ((m), l)-transitive for all lines [
incident with (m) where mll... By (2.7), (m) # () since . *=(S, +, *)
is not a semifield. Clearly (m) is fixed by the full collineation group
of ' (otherwise 7’ is Desarguesian and every coordinatizing structure
is a field). Recall (see proof of (2.7)), &* admits an automorphism
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group of order ¢ fixing F pointwise such that t—¢ + « for all ac F
(see (2.3) and (2.7)). Hence, me F if ©’ is ((m), I)-transitive.
We consider two cases:

(1) (m)=(0), (2) m=(0).

Case (1). If (m) = (0), consider changing coordinates as follows
in &7 (in 7):
coordinate

change ¢

— (tw, + @, LY, + Y)YV, Ty Yy, Y€ F .

(tw, + @, ty, + )

S0 is a derivable semifield (see [2], the proofs of (3.6) and (3.7)).
The coordinate change appears as (x,y) — (y, x) in 7’ (see [2],
(3.7)) and thus induces a Hall coordinate system .5%* 37 is ((o=), x =
0)-transitive. .. .&%* is a (derivable) semifield. However, .%* is con-
structed from &7, = .&”? in the same manner that .&°* is constructed
from &~ .. we have a contradiction by (2.7).
(2) (m)== EO).
Choose t =t + m (recall me F') in (&, +, ). Then in z’

(y = aom) = {(x, y)|o = ta + B, y = t(am) + (Bm)}

is the same as {(ta + am, t8 + Bm) = (ta, tB)} =y = 0 in n’. Hence,
by case (1) we have a contradiction.

Assume that 7’ is of type IV.a.2 or a.3. Then 7’ is ((P), (Q))-
transitive for some pair of points (P), (Q), P = Q.

Moreover, every collineation of 7’ must fix {(P), (Q)}. Therefore,
since .&“* admits an automorphism group of order ¢ it must be that
P,QeF or P,Q = oo,

Now if we can change coordinates so that .%%* is a nearfield and
S~ admits an automorphism group of order ¢, then we have a con-
tradiction since the order of an automorphism group of a nearfield of
order ¢* (g = p", r > 1) is never this large.

Let (P) = (o) and (@) = (B), @, Be F or a, B = co.

Case (1). (@) = (). Since .&°* is not a nearfield (see (2.7)),
(B) #= (0). We can rechoose ¢ in & (in 7) so that y =28 is y =0
in 7’ (i.e., if t =¢ + B) and () in 7’ is left fixed. .. .&* with the
basis {1, 7} is a nearfield and admits ¢ automorphisms.

Case (2). (a) # (0), (B) # (), (@) = (0). We can move (0) to
(o) by the (x, y) — (y, x) coordinate change of .&“* of the previous
argument. Therefore, 7’ is ((co), (7))-transitive for (v) # (0). Then,
we may rechoose t in &% so that (v) is (0) in .&%* (or in #’). Since
% is a (derivable) semifield, .%* admits an automorphism group of
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order ¢ which is a contradiction.

Case (8). (), (B) # (o) or (0). First rechoose ¢ in & so that
() is (0), then repeat Case 2.

REMARKS. If (& +, -) is a derivable subcommutative semifield
then a “derivable chain” (see [1]) can be constructed based on the
affine plane coordinatized by (<& +, -).

(& +, ) actually need not be finite to construct (.4, +, ). That
is, Ostrom’s “derivation process” extends for infinite translation planes.
We shall explore this in a later paper.
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