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THE p-PARTS OF CHARACTER DEGREES IN
p-SOLVABLE GROUPS

I. M. Isaacs

Let G be a finite group and Irr(G) the set of irreducible
complex characters of G. Fix a prime integer p and let ¢(G)
be the largest integer such that p¢¢ divides x(1) for some
2 € Irr(G). The purpose of this paper is to obtain informa-
tion about the structure of G, and in particular about a Sylow
p-subgroup of G, from a knowledge of ¢(G). If G is solvable,
we obtain the bound 2¢(G)+1 for the derived length of an
S, subgroup of G. We also obtain some information about
the normal structure of G in terms of ¢(@).

When ¢(G) = 0, our result is equivalent to the theorem of N. Ito
which asserts that G has a normal abelian Sylow p-subgroup. Actually,
Ito’s result, [7], holds for p-solvable groups. This may readily be
proved by induction on the group order, as follows. The hypothesis
¢(G) = 0 is inherited by factor groups and by normal subgroups and
it follows easily that a minimal counterexample, G, has a normal
p-complement, H. Now let yelIrr(G). It follows from Clifford’s
theorem that t|y(1), where ¢ is the index in G of the inertia group
of an irreducible constituent of the restriction y,. Since ¢ is a power
of p, we have ¢t =1, and every irreducible constituent of y, is
invariant in G. It follows by Frobenius reciprocity that every
irreducible character of H is invariant in G. Now Lemma 2.1 of [4]
applies to yield the result.

Although it might be conjectured that our present bounds hold
for all p-solvable groups when ¢(G) >0, the proofs given here fail
even when ¢(G) = 1. However in this case, we do obtain a result
which is valid for p-solvable G with p >3, and shows that ~,(G) is
either abelian or else is a Sylow subgroup of G.

1. The following lemma is well known and will be used repeatedly.
Since its proof is quite short, we present it here.

LemMaA 1.1. Let N < G and y € Irr(G). Suppose 0 is an irreducible
constituent of ¥y. Let T = _7%(0), the imertia group of 6. Then
there exists a unique irreducible constituent +» of ¥, such that 0 is a
constituent of ~ry. Furthermore y = % and [yy, 0] = [y, 0].

Proof. Choose any irreducible constituent +» of ¥, such that 0 is a
constituent of +ry. By Clifford’s theorem, y, = a >t §; where 6§, = 6
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and (1) = atf(1). We have t = |G: T| and +, = a, 0, a, < a. Now
% is a constituent of ¢ and so

(1) = $(1) = ty(1) = ta,0(1) < tad(l) = 1(1) -

We have equality throughout, so that y(1) = +%1) and @ = «,. Thus
yx =% and [yy, 0] = @ = a, = [y, 0]. The uniqueness of + also
follows from a = a,.

If ¢G) =e and N< G, let 0elrr(N) and T = _#(6). Suppose
that |G: T|, = p", where n, denotes the p-part of the integer n. Let
4 be any irreducible constituent of ¢, and let y be an irreducible
constituent of +°. Then by Frobenius reciprocity and Lemma 1.1, it
follows that y = +“ and hence (1), < p*~". It does not follow, however,
that ¢(T) < e — r. We wish to prove our results by induction in a
manner similar to this and hence we define a quantity which “inducts”
properly.

DEFINITION 1.2. Let N <| G and 6 € Irr(IN). Suppose 6 is invariant
in G. Then ¢(G, N, ) = e is the largest integer such that »*|(y3(1)/6(1))
for some irreducible constituent y of 6%

Note that ¢(G, 1, 1) = ¢(G) and that if N & H <] G, then
e(H, N, 0) < e(G, N, 0) .

The following is immediate.

COROLLARY 1.3. Suppose e(G, N, 0) =e and NS M <|G. Let
be an irreducible constituent of 60" and let p’ = (v(1)/6(1)),. Set
T = _7y) and p" = |G: T|,. Then T, M,y)<e— f— r.

It would suffice for our purposes to show that if N <]G, G/N is
solvable and ¢(G, N, 6) = e for some 6 € Irr(N), then the derived length
of an S, subgroup of G/N is bounded by a function of e. We in fact
will prove this for certain special characters ¢ and also for certain
groups G/N. In order to prove results like these, it is necessary to
be able to produce irreducible characters of degrees divisible by
“large” powers of p. This is done using the following result of
Gallagher ([1], Theorem 2).

PRrROPOSITION 1.4. Let N <| G and suppose y € Irr(G) and
Av =0elrr(N) .

Then the irreducible constituents of 0° are wuniquely of the form By
where Be Irr(G/N) is viewed as a character of G. For all such j,
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By 1s wrreducible.

LEMMA 1.5. Let NG, NS H{G with G/H a p-group. Let
0 e Irr(N) be invariant in G. If ¢G, N, 6) = e(H, N, 0), then G/H 1s
abelion. If e(G, N, 0) > e(H, N, ), then there exists L <| G with H < L,
G/L abelian and e(L, N, 6) < e(G, N, 0).

Proof. Let K <] G, K 2 H be minimal such that
e(K, N,0) =eG,N,0)=¢e.

Let + be an irreducible constituent of 0 with p°(y(1)/6(1)). Let x
be any irreducible constituent of ¢ Then p°* J(y(1)/6(1)) and
therefore pt(x(1)/4(1)). Since G/K is a p-group, x(1)/4(1) is a power
of p and thus y(1) = 4(1) and yx = ¥ € Irr(K). Let 8 be an arbitrary
irreducible character of G/K. By Proposition 1.4, gy is an irreducible
constituent of +“ and we may apply the above reasoning to By in
place of . Hence (8x)(1) = (1) = (1) and B(1) = 1. Thus G/K is
abelian. If ¢(G, N, 0) = e(H, N, 6) then H = K and the first statement
is proved.

Otherwise K> H and we may choose L<]G with HE L<K
and |K: L| = p. By the choice of K, e(L, N, ) <e and hence +, is
reducible. Therefore yx, =+, is a sum of p distinct irreducible
characters, conjugate in K. Let ¢ be one of these characters and
put 7= _Z(®) so |G: T| =p. Thus T<]{G and G'= T. We also
have G’ S K and KNT = L so that G/L is abelian and the result
follows.

LEMMA 1.6. Let N <G and suppose that G/N is p-solvable with
p'-length < 1. Suppose 0 € Irr(N) and is invariant in G with

e(G, N, 0) =e.

Then the derived length of an S, subgroup of G/N is < e + 2. If G/N
is a p-group, d.1.(G/N) < e+ 1.

Proof. Let K/N = ?(G/N), the minimum normal subgroup with
factor group a p-group. By hypothesis, K/N has the normal S,
subgroup P/N. Suppose ¢(K, N, 6) <e. Then by Lemma 1.5, there
exists L <] G, K < L with G/L abelian and e¢(L, N, 6) < e. Both state-
ments now follow by induction on |G: N|. Suppose then ¢(K, N, 6) = e.
Then G/K is abelian by Lemma 1.5. If K = N, then d.L.(G/N)<e + 1
is trivial. Suppose, then, K> N. Then P< K and ¢(P, N, 6) < e so
by induction, d.1.(P/N) < e+ 1. Since G/K is abelian, the derived
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length of an S, subgroup of G/N is < e + 2. However, since K > N,
G/N 1is not a p-group and the proof is complete.

2. Suppose N <] G and e Irr(N) and is invariant in G. It will
occasionally be necessary in what follows to be able to extend 6 to
an irreducible character of G. This is, of course, not always possible.
We discuss some sufficient conditions below.

Given any character y of a finite group G, we define the deter-
minant det ¥ = A to be the linear character of G given by

Mg) = det X(g) ,

where X is ar{y representation affording y. Let o(y) denote the order
of X as an element of the group of linear characters of G. Clearly
o(x) = o(\) = |G: ker \|. Gallagher [1] has shown that if 6 e Irr(N),
N G, 6§ is invariant G and (6(1), |G: N|) = 1, then 6 is extendible
to G if and only if det 6 is extendible to G. Furthermore, Gallagher
proved that if » = det 6 and g is an extension of A, then there is a
unique extension y of ¢ with det y = ¢ Since ¢ is invariant in G,
so is A and it follows that ker A <] G and N/ker » & Z(G/ker \). If
(0(0),|G: N|) = 1, then N/ker \ is a direct factor of G/ker A and hence
there is a unique extension £ of A to G with o(#) = o(\). Summarizing
these results, we obtain the following.

PropoSITION 2.1. Let N <] G and let 6 € Irr(N) with 0 invariant
m G. Suppose o(f) and 6(1) are both relatively prime to |G: N|. Then
there exists a unique extension, 0, of 0 to G with o) = o(0).

DEFINITION 2.2. Let y e Irr(G). Then y is a p-character of G if
x(1) and o(y) are powers of p.

LeMMA 2.3. Let N<]G and suppose 6 € Irr(N) is a p-character
which is invariant in G. Suppose G/N has a normal p-complement
K/N and that <,(G/IN) = 1. Then d.1.(G/K) < ¢(G, N, 6) = e.

Proof. Use induction on |G: N|. Suppose ¢e>0. If ¢(K, N, 6) = e,
then by Lemma 1.5, G/K is abelian and we are done. Otherwise,
e(L, N,0)<e for some L<]|G with K< L and G/L abelian. By
induction, d.1.(L/K) < ¢ — 1 and the result follows. The only remain-
ing case is where ¢ = 0. Here we must show that K = G.

Since 4 is a p-character of N, there is an extension & of 6 to K.
Let X be any irreducible constituent of #°. Then X(1)/6(1) is a power
of p and # is a constituent of X, so X(1) = (1) since ¢(G, N, 6) = 0.
Thus if g is any irreducible character of G/N, gX e Irr(G) and since
0 is a constituent of (8X)y, it follows that ptB(1). Hence ¢(G/N) = 0
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and therefore G/N has a normal S, subgroup. Since Z(G/N) = 1,
pt|G: N| and thus K = G and the proof is complete.

The following lemma will be used to prove that a given character
is a p-character.

LEMMA 2.4. Let N<]G and suppose that G/N has no proper
normal subgroup of p'-index. Let X elrr(G) and suppose 6 is an
wrreducible constituent of X, and o(0) is a power of p. Then o(X) is
a power of p.

Proof. Let N =detX, and let K ={gecG|\Mg)” =1 for some
¢ = 0}. It suffices to show that K = G. Clearly, K <| G is a subgroup,
and pt|G: K|. The result will follow if we show N & K. Now
Xy = a2f; by Clifford’s theorem, where the 4, are all conjugate to 4.
Let p; = det 4; so that ), = (/Iy;)*. Each py; has order equal to o(f)
which is a power of p. Therefore, for suitable e, and for xe N, we
have p;(x) is a p°-th root of 1. It follows that N € K and the proof
is complete.

3. We define functions u, v as follows.

DEFINITION 3.1. Let u, v be functions from the set of nonnegative
integers into the same set with < adjoined, where u(¢) = maximum
derived length of an S, subgroup of G/N where G is a finite group,
N <G, G/N is solvable and there exists a p-character, ¢, of N,
invariant in G and such that ¢(G, N, 6) < e. Set u(e) = o if there is
no maximum. Define v(e) similarly, except that only those situations
are considered where ~7,(G/N) = 1.

LEMMA 3.2. Let P be a p-group and suppose that P, & P with
|P: Pl =p". Then d.1.(P) £ r + d.1L(P).

Proof. Use induction on 7. The result is trivial if » = 0.
Otherwise P,< P and hence P,P’ < P since P’ < @(P), the Frattini
subgroup of P. By induction, d.1.(P,P’) < (r — 1) + d.1.(P,). However,
P,P' <] P and P/P,P’ is abelian.’ The result follows.

LEMMA 3.3. Let N < H be normal subgroups of L. Assume
(|{H: N|, |L: H) = 1. Let 0 eIrr(N) and suppose 0 is extendible to H.
If 6 is wmvariant in L, then some extension of 6 to H is also invariant
wm L.

Proof. Let & be the set of extensions of 4 to H, and let U be
the group of linear characters of H/N. Then U acts on the set .&¥
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by multiplication and by Proposition 1.4, this action is transitive.
Set A= L/H. We have U = H/H'N and thus (|4, |U]) = 1. Clearly,
A acts on .&” and on the group U and if X € &% » € U, then (X\)* = X*\*
for all ae A. Therefore Glauberman’s Lemma (Theorem 4 of [2])
applies and hence A fixes some X € .9% Thus X is invariant in L.
Before going on to our main result, we digress briefly to give an
application of some of the lemmas we have already accumulated.

COROLLARY 3.4. Let N <| G with G/N p-solvable. Suppose 8 is a
p-character of N which is invariant in G and that e(G, N, 6) = 0.
Then 0 is extendible to G and G/N has a normal abelian S, subgroup.

Proof. If 6 is extendible to G, then it follows from Proposition
1.4 that ¢(G/N) = 0 and hence G/N has a normal abelian S, subgroup.
We prove extendibility by induction on |G: N|. Let M/N = £*(G/N).
If M <G, then 0 is extendible to v € Irr(M). Let X be any irreducible
constituent of ¢ Since G/M is a p-group, it follows that X(1)/v(1)
is a power of p. Since ¢(G, N, 6) = 0, X(1) = ++(1) and the result follows.

Suppose then M = G and let V/IN = <&?(G/N). Then V<G and
6 is extendible to V. Let W/N = (V/N)'. Then V/W is a p-group.
Now if xe @, then +~° is an extension of & so " = Ay for some
linear character » of G/N (Proposition 1.4). Then A, = 1 and % = .
Hence +, is invariant in G and by Lemma 3.3 we may assume that
4 ig invariant in G. By Lemma 2.4, + is a p-character of V and thus
is extendible to G. The proof is complete.

THEOREM 3.5. The functions w and v are finite valued, v(0) = 0,.
uw(0) = 1 and

v(e) < g/asx (f + ule — f)) for e>0 and
u(e)gl—i-gl%( (f+ u(e — f)) for e>0.

Proof. If w ever takes on the value oo, choose ¢ = 0 minimal
with #(¢) = . Otherwise pick e arbitrarily. Choose a group G, N<]G,
0 a p-character of N, invariant in G with e(G, N, 0) <e. Let P/N
be an S, subgroup of G/N. If e¢>0, write b = max {f + u(e — f)]
0<f<e. If e=0, set b=0. We claim that (a) if Z,(G/N) =1,
then d.l.(P/N) < b and in any case (b) d.1.(P/N) < b+ 1. The proof
will be complete when these claims are established. In particular,
the inequality involving w(e) will follow when (a) is proved. Note
that when e¢ = 0, the result follows from Corollary 3.4, however this
case also follows from the general argument and we do not appeal to
the previous result. We shall prove (a) and (b) by induction on |G: N|,
for the fixed value of e chosen above.
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Case 1. ,(G/IN)>1. Let K/N be a minimal normal p'-
subgroup of G/N so that K/N is an elementary abelian g¢-group
for some q # p. Let # be the unique extension of # to K with
o(0) = o(0). Because of the uniqueness, # is invariant in G and by
definition, 0 is a p-character. Clearly (G, K,0) <e and thus
d.1.(PK/K) < b + 1 by induction. Since PK/K = P/N, (b) follows in
this case. If ~(G/K) = 1, then d.1.(PK/K) < b and (a) follows.

Assume that «7,(G/N) = 1 but that «,(G/K) = H/K > 1. Let +
be an irreducible constituent of 0” with (y+(1)/6(1)), = »/ as large as
possible. Let ¢ be an irreducible constituent of -+, which is a
constituent of 6*. Since K/N is abelian, it follows from Proposition
1.4 that @ = d\ for a linear character » of K/N. Thus @(1) = 0(1)
is a power of p. Since H/K is a p-group, (1)/»(1) is a power of p
and hence (1) is a power of p. We claim that -+ is a p-character
of H. This will follow from Lemma 2.4 when we establish that H/N
has no nontrivial p’-factor group.

Now H'NN K <] G and by the minimality of K, we have either
H'NNK = N or HHNN K = K. In the first situation, K/N S Z(H/N)
and it follows that ,(H/N)= H/K > 1, a contradiction. Thus
H'NNK = K. Since any p’-factor group of H/N 1is abelian, this
shows that only the trivial one exists.

Let T = _Z(y) and set p" = |G: T|,. By Corollary 1.3,

T, Hy)=e—f—r.

Let P,/H be an S, subgroup of T/H and assume that P, & PK since
PK/H is an S, subgroup of G/H. Now d.l.(P,/H) < u{e — f — 7) and
|PK: P)| = p" so that d.1.(PK/H) < r + u(e — f — #) by Lemma 3.2. We
have e¢(H, N, 6) = fand ~7,(H/N) = 1 and hence 0 < d.1.(H/K) < f<e
by Lemma 2.3. It follows that d.1.(PK/K)<r +f+ule—f—7r)<b
and the proof of Case 1 is complete. In particular, since only Case
1 can occur when #,(G/N) = 1, we have shown that v(e) <b.

Case 2. ¢,(G/N) =1. Let H/N = 7,(G/N) > 1 and let
f=elH, N, 0.

Since H/N is a p-group, we can pick + € Irr(H) with v, = p’0. Also
v is a p-character by Lemma 2.4. Let 7 = .7%(y) and p" = |G: T|,.
Reasoning exactly as before, we get

d1(P/N)=<r+ wle—f—r)+ d1(H/N).
By Lemma 1.6, d.l.(H/N) < f + 1, and thus
dI(PNYS1+f+7r+ule—f—7r.
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If f4+ r> 0, then ¢ > 0 and we obtain d.1.(P/N) < b + 1 and we are
done in this case.

Assume then that f= 0 = » for all irreducible constituents +» of
6”. From f = 0, it follows that & is extendible to H and by Lemma
3.3, we may choose an extension -+ which is invariant in L where
L/H = &,(G/H). Now let T'= _%(y). Since r = 0, we may assume
PSS T. Also L T. We claim that U/H = ~°(T/H) = 1. We have
[L, U] < H and hence by Lemma 1.2.3 of [3], it follows that U = H.
Therefore, d.l.(P/H) < v(e) since e(T, H,+) <e. By Lemma 1.6,
d.I.(H/N) <1 and thus d.1.(P/N) <1 + v(¢). Since we have already
shown that »(e) < b, the result follows.

COROLLARY 3.6. w(e) < 2¢, u(e) < 2¢ + 1 for all e = 0.

Proof. Use induction on e. The Corollary is immediate if
e=0. For ¢e>0 we have ve)=max {f+ule—f)|0<fZe =
max {f + 2(e — f) + 1}. This maximum occurs when f = 1 and yields
v(e) < 2¢. Similarly u(e) < 2e¢ + 1.

4, Some improvement on the bounds of Theorem 3.5 can be:
obtained, especially for ¢ < p — 1. We shall use Theorem B of Hall
and Higman [3] and also the following result of Passman (Corollary
2.4 (i) of [8]).

ProrosiTION 4.1. Let P be a p-group which acts faithfully on a.
solvable p'-group A. Suppose that every element of A lies in an orbit
of stze < p° < p? under the action of P. Then some element of A lies
m a vegular orbit and hence |P| < p°.

LEMMA 4.2. Let N < H be normal subgroups of L. Suppose
H/N is solvable and that (|L: H|, |H: N|) = 1. Let 0elrr(N) and
suppose 7 (0) covers L over H. Then some irreducible constituent
of 0" is imvariant in L.

Proof. We use induction on |H: N|. The result is trivial if
N=H. Let M<]L, M< H be maximal such. By the Schur-
Zassenhaus Theorem, applied to the group .7 (6)/N which has the
normal Hall subgroup, .7(0)/N, we can find a subgroup S & L with
SNH=N, SH=L and S& .#4(f). By induction applied to the
situation N <] M <] SM, there exists an irreducible constituent @ of
0" which is invariant under S. Since H/M is an elementary abelian
chief factor of L, Proposition 3, Part 2 of [5] applies and we conclude
that there are only three cases to consider. They are (a) @" =+ is
irreducible, (b) ®” = ay where +- is irreducible or (¢) ® is extendible:
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to H. In either of cases (a) or (b), 4 is invariant under S and since
L = HS, we are done. In the remaining case, @ is invariant in L
and the result follows from Lemma 3.3.

We state below the special case of Theorem B of Hall and Higman
which will be needed in what follows.

PROPOSITION 4.3. Let G be a p-solvable group which acts faithfully
and irreducibly on an elementary abelian p-group U. Suppose
[U| <p**. Then p}I|G|.

THEOREM 4.4. Let e<p— 1. Then u(e) <e+ 2 and v(e) < e.
If e(G, N, 6) <p — 1, where 6 is p-character and G/N 1is solvable, then

G/N = ﬁp:o’:np’(G/N)'

Proof. The first statement follows from the second by Lemmas
1.6 and 2.8 since in calculating u(e) and v(e), it is sufficient to consider
only cases where G/N = ~?(G/N). We proceed to prove the second
statement.

Let N ]G, 6 an invariant p-character of N and

eG,N,0) =e<p—1.

It suffices to show that ~7?#???(G/N) = 1 and this is done by induction
on |G: N|. If ~#*(G/N)= L/N and L < G, then since

e(L, N, 0) < eG, N, §6),
the result follows by induction. Thus we may assume that
o?(GIN) = GIN

and similarly, £???*?(G/N)=1. Let H/N = &****'(G/N) and
U/N = 2?»»'?(G/N) so that U/N has the normal S, subgroup H/N.
We may assume U > N. Let V/N = &**(G/N) so that V/U is a
p-group. Suppose US Y < V with Y<{G and |V: Y| < p*'. Let
Y be a maximal such subgroup. Then V/Y is an elementary abelian
p-group which is an irreducible G/V module. Let C/V = C;(V/Y)
so V/Y is a faithful irreducible G/C module. By Proposition 4.3, G/C
is a p'-group and since G/N = &*(G/N), we have C = G. It follows
that V/Y is a direct factor of M/Y where M/N = ~?(G/N). Since
V/Y > 1, this contradicts <?(M/N) = M/N and therefore no such Y
exists.

Now let U/H = (U/H)’ and let Y/U = Cy;;,(U/U,). Then Y <] G.
Now U/U, & Z(Y/U,) and U/U, is a nontrivial S, subgroup of Y/U,
since U> H and U/H is a solvable p’-group. It follows that
cg"(Y/U,) < Y/U, Since &*(V/N) = V/N, it must be that Y < V.
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We will have the desired contradiction when we show |V: Y| < »* < p*".

By Lemma 4.2, there exists an irreducible constituent «+ of 8~
such that + is invariant in U. Since H/N is a p-group, it follows
from Lemma 2.4 that + is a p-character of H and hence there exists
a unique extension + of  to U with o(y) = o(y). It follows from
the uniqueness that _7(y) = _%(y). Now let X be any linear character
of U/H. Then Ny elIrr(U). Let T = _7%0\y) and put |G: T| = p".
By Corollary 1.8, (T, U, M) < e — » and thus » <e. Letaxe 7. We
have

M= W) = N

Restricting this to H, we obtain + = +® since \, = 1 and +,; = .
Thus z €. 7 () = # (). Therefore N\ = A"y and it follows from
Proposition 1.4 that » = \*. Thus T < .%(\). Since |G: T|, = p" and
V/U is a normal p-subgroup of G/U, it follows that |V: T N V| < p.
Thus |V: A0\ < p" < p° < p*. Therefore, in the action of the
p-group V/U on the group of linear characters of U/H, all orbits
have size < p°. The kernel of this action is Y/U and thus by pro-
position 4.1, |V/Y| < p* which yields the desired contradiction and
the proof is complete.

COROLLARY 4.5. Ife=p—1, ule) <2e— p+ 4 and
v(ie) < 2 —p-+3.
Proof.
ulp—1) = max {u(p—-1-f)+ f}+1

0<fsp—t

< max {p—1—-—f+2+ f1+1=p+2

0<f=p—1

and similarly v(p — 1) < p + 1. Thus the desired inequalities hold
when ¢ = p — 1. For ¢ > p — 1, apply induction.

5. In this section we consider the case ¢ =1 in more detail.
From Theorem 4.4 we have (1) < 3 and »(1) <1 when »p = 3. For
» = 2, Corollary 3.6 yields u(1) <3 and »(1) < 2. An example (see
6.1) shows that u(1) = 3 for p = 3.

THEOREM 5.1. For all primes, v(l) = 1.

Proof. That v(1) =1 is clear. Let ¢(G, N,0) =1 with G/N
solvable and ¢ an invariant p-character. Suppose ~7(G/N) = 1. We
must show that an S, subgroup, P/N, of G/N is abelian. Let K/N
be a minimal normal subgroup of G/N so that K/N is an elementary
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abelian g-group for some prime g==p. Let & be the unique extension
of 0 to K with o(f) = o(d). Then # is an invariant p-character of K.
If Z(G/K) =1, then the result follows by induction on |[G: N]|.
Assume then that H/K = #,(G/K) > 1. Let \ be any linear character
of H/K. Then _#%(\) = .%(\) and thus p*}|G: _%(\)|. It follows
that \ lies in an orbit of size 1 or » under the action of H/K on the
group of linear characters of K/N. Since &7,(G/N) =1, Cyx(K/N) =1
and thus H/K acts faithfully on the linear characters of K/N. By
Proposition 4.1, |H/K| = p.
Now choose N as above in an orbit of size p. Then

D) = e Irr(H)

and + is a p-character of H by Lemma 2.4 (using the minimality of
K). Let T = _7(y) and T, = _%(\0) so that HT, < T and T,N H = K.
By the usual argument, p*f|G: T,] and hence p}|G: HT, and we may
assume that P = HT,. Then PK/K = (H/K)(P,/K) where P, = PKN T,.
Now ¢(T, H, ) =0 by Corollary 1.3 and since %(0) =1, we have
PK/H is abelian. But PK/H = P,/K and H/K < Z(PK/K) and thus
PK/K = P/N is abelian. The proof is complete.

We now prove a result which is valid for p-solvable groups with
p > 3. It will enable us to conclude for solvable groups that (1) < 2

with respect to these primes.

THEOREM 5.2. Let N <| G with G/N p-solvable and p > 3. Suppose
8 1is a p-character of N which is invariant in G and that e(G, N, 0) = 1.
Let PIN = 7,(G/N) and suppose that P/N is not abelian. Then P/N
18 an S, subgroup of G/N.

Proof. Use induction on |G: N| and assume that P/N ¢ Syl,(G/N).
Then P/N is a Sylow subgroup of every proper normal subgroup
of G/N which containg it. It follows that «*(G/N) = G/N. Also
M|P = ~?(G/P) < G/P and |G: M| = p. By Lemma 4.2, there exists
an irreducible constituent » of ¢ which is invariant in M. Now 7
is a p-character of P by Lemma 2.4 and thus there exists a unique
extension 7 of 7 to M with o(y) = o()). We have either 7(1) = 6(1)
or (1) = p6(1). In the latter case, it is clear that 7 must be invariant
in G and hence it is extendible to X € Irr(G). Now G/P does not have
a normal S, subgroup and thus has some irreducible character g8 of
degree divisible by p. Since X, is irreducible, gX € Irr(G) and this
contradicts e(G, N, 0) = 1. Therefore we must have 7(1) = 6(1).

We claim now that ¢(G/N) =1. Let @elrr(M/N) with p|p(1).
It suffices to show that p*y®(1) and that @ is invariant in G. Now
e e Irr(M) and p*(1)y(#He)(1). Thus p*te1). Also (J@)¢ is not
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irreducible so that #» is invariant in G. Now let xeG. Then
¢ = (JP)* = §*p*. Since 7)* and 7} are both extensions of 6 to M, there
exists a linear character A of M/N with 7° = A%. Substituting in
the above, we obtain 7 = \M)®°. Since 7 is an extension of 6 and
® and A@® are irreducible characters of H/N, it follows by Proposition
1.4 that @ = A@®. Applying this to the complex conjugate character
@, we obtain @ = A@*, and thus @ = A@®. This yields Ap® = A@® and
)\ng)a: = @,

Now o(7) = o()*). We have det(7*) = det(\]) = N det()) where
f=171) is a power of p. It follows that o(\) is a power of p,
and since p > 2, A is a power of A% Since @* = \M@®, we obtain
P = Ap® = @. Since e G was arbitrary, @ is invariant in G and
we have thus shown that ¢(G/N) = 1.

We may now assume without loss that N = 1. In the notation
of [6], P has r.x.1 and by Theorem C of that paper, either P has an
abelian subgroup of index p or else |P:Z(P)| =p'. It follows
that either P has a characteristic abelian subgroup of index p or
|P: Z(P)| < p°. We claim that there exists A<]G, A< P with
[P: Al = p and A abelian. If this is not the case then [P:Z(P)| < p°.
Let S be an S, subgroup of M. Then U =[P, S]<]{G since for
9e@G, 8 = S* for some xe¢ P. We claim that U < Z(P). Otherwise
V = UZ(P) > Z(P) and we choose Y <|G, maximal such that
Z(P) S Y< V. Let C/Y=Cg(V/Y). Then V/Y is a faithful
irreducible G/C module. Now |V/Y| < »* and p =5 and hence it
follows from Proposition 4.3 that p}|G/C|. Since ~?'(G) = G, it follows
that G = C and thus [V, G] & Y. In particular [U,S] S Y NU< U.
Since U = [P, S] = [P, S, S], this is a contradiction and thus U < Z(P).
It follows that Z(P) 2 P N &7(G).

Since P is not abelian, P/Z(P) is not cyclic and thus G/277(G) is
not cyclic. It follows that there exists a subgroup M, <]G, with
M = M, and |G: M| = p. Now Z,(M,) = M,N P is not an S, subgroup
of M,. By induection, M,N P is abelian. Since |P: M,N P| = p and
M,N P <] G, the claim is established and A exists.

Suppose A\ is a linear character of A which is not invariant in
P. Let T=.%X ). Then, PNT=A and  hence 9||G:T|. By
Corollary 1.3, it follows that e(T, A,\) =0 and p*}|G: T|. Since )
is obviously a p-character, it follows from Corollary 3.4 that 7T/A
has a normal S, subgroup, of order exactly p. Let U be the group
of linear characters of A. Then G/A acts on U and we let Z = Cy(P/A).
The above argument shows that if we U — Z, then C; (%) has a
normal S, subgroup of order p.

Let P/A =<x) and let W =[U, «x]. Then the map fiu — [u, ]
defines a homomorphism from U onto Wand ker f = Z. Set Y = G/A
and P, = P/IA<]Y. Now Cy(P,) has index dividing p — 1. However
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o?(Y) = Y and it follows that P, < Z(Y). Therefore, for ye Y and
we U, we have f(u*) = f(u)" and f is a homomorphism of Y-modules.
Also, from P, < Z(Y), it follows that Y has a normal p-complement
and thus so does every subgroup.

Since P is not abelian, A & Z(P) and it follows that x acts
nontrivially on U. Therefore W > 1 and hence V.= W N Z > 1. Now
choose we V, w# 1. Let K be the normal p-complement of C.(w).
Then K fixes the inverse image of w under f, which is a coset of Z.
It follows (by Theorem 1 of [2] for instance), that K fixes some
element w e U with f(u) = w. In particular, v ¢ Z so Cy(u) has the
normal S, subgroup, P,, of order p. Now K is a full p-complement
for C,(u) since Cy(u) = Cy(w). Hence C;(u) = K x P, and

Cy(w) = K x P,x P, .

Now, Cy(V) < Cy(w) and thus has a normal S, subgroup. Since
oY) =P, P,is a full S, subgroup of C,(V).

Now suppose ve V with P, & C(v). Let P, be the subgroup of
order p in Cy(vu). Then P, P, and P, P,. Furthermore, since
f(vu) = w, P, € Cy(vu) & Cy(w) and thus P, & P,P,. We may therefore
choose y € P, with vy e P,. Then uv = (uv)* = u*%v’ = u*?. However,
w = f(u) = w'u® and v* = ww. Hence uv = uwv* and [y, v] = v™%v = w.
Since wy = yw, it follows that 1 = [y?, v] = w” and w has order p.
Since we V was arbitrary, V is elementary abelian. Also from
[y, v] = w, it follows that [P, v] = {w). Since ve V was arbitrary,
not centralized by P,, it follows that [P, V] = <w). Therefore C,(P,)
has codimension 1 in V. Now choose w*eC,(P,) with w* = 1.
Repeating the above reasoning with w* in place of w, we conclude
that [PF, V] = {(w*>, where Pj x P, is a normal S, subgroup of
Cy(w*). By the choice of w*, P, & Cy(w*) and thus P, & P} x P,.
Since [P, V] =1, {w)y =[P, V] < [P}, V] =<w*>. It follows that
Cy(P,) = {w) and hence |V| = p’. Given any basis {v, w} for V, the
above argument shows that there exists ye Y with [y, v] = w and
thus Y acts irreducibly on V. Since p > 3, Proposition 4.3 applies
and pt|Y:Cy(V)|. It follows that Y centralizes V which is a contradic-
tion. The proof is complete.

COROLLARY 5.3 If p > 3, then u(l) = 2.

Proof. It suffices to show u(l) < 2. Let e(G, N, 6) =1 with 0 a
p-character and G/N solvable. If #,(G/N) = H/N is an S, subgroup
of G/N, then by Lemma 1.6, d.1.(H/N) < 2 and nothing remains to
be shown. Otherwise H/N is abelian. Choose an irreducible con-
stituent ¢ of ¢” which is invariant in U, where U/H = £,(G/N).
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(Lemma 4.2). Let T = .#(y). Then «,(T/H) =1 and e(T, H, v) < 1.
If e(T, H, ) = 0 then since v(0) =0, pt|T:H| and p*t|G:T| by Corollary
1.3. Thus p*/|G: H| and the result follows. If e(T, H, +) = 1 then
pt|G: T| and the result follows from (1) = 1.

6. The assumption p > 3 was used twice in the proof of Theorem
5.2. In this section we give examples to show that both uses were
essential.

ExaMPLE 6.1. Let P be the group of matrices of the form

1 2 ]
0 1 2 = Mz, vy)
0 0 1

where x, y ¢ GF(27). Then |P| = 3° and
P = Z(P) = {M(0, y)ly e GF (27)} .

Let X e GF(27) have order 13. Then the map M(x, y)— M(xx, y\*) is
an automorphism of P of order 13. Denote this automorphism by o,
and let M be the split extension P <{o,»>. Now GF(27) has an
automorphism ¢ of order 3 and we let ¢ act on M in the natural
manner, with (¢,)° = 0,~. Let G = M {(r). We claim that ¢G) =1,
but (@) = P is not abelian.

It suffices to check that every irreducible character of P is stabiliz-
ed by some element of order 3 in G/P. Now 7 fixes the two linear
characters of P whose kernel is [P, z]. It is not hard to show that
P (z)/[P’, 7] has center of index 3° so all of its irreducible nonlinear
characters have degree 3. It follows that ¢ fixes all six nonlinear
irreducible characters of P with kernel containing [P’, t]. Since ¢
acts transitively on hyperplanes of P/P’ and of P’, it follows that
every irreducible character of P is conjugate in M to a character
fixed by ¢ and this proves the claim. Note that G contains no normal
abelian subgroup A of index 3 in P. Also, d.1.(P (7)) = 3.

ExamMpPLE 6.2. Let A =<, ., ¥, ¥) be elementary abelian of
order 3'. Let Y = {o)»x S where o has order 3 and S=SL(2, 3). Let
Y act on A so that S acts in its natural manner on <z, 2,> and on
Yy, Yoy with 2, —y, and z,— 1y, defining an S-isomorphism. Let
a2 =a;y; and y! = y;. Let G be the split extension AY. Now
Z(G) = A {o) is not abelian.

To show that e(G) =1, it suffices to show that every linear
character of A is fixed by some element of Y of order 3. Let U be
the group of linear characters of A and let V= U be those whose
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kernels contain <{y,, .. The unique element of order 2 of Y fixes
no nonidentity element of U and hence for 1+ uc U, C.(u) is a
3-group. Now the 3-subgroups of Y, either contain ¢ or else have
order 3. Since C,(0) = V, it follows that if we U — V, then |C,(u)| < 3.

Each subgroup of order 3 of Y must centralize a subgroup of
order at least 9 in U since U is elementary abelian of order 3%
Since C,(V) = (o), it follows that each of the 12 subgroups of Y of
order 3, different from (o), centralize at least six elements of U-V.
Since these sets are disjoint, this accounts for all 72 elements of
U — V and the result follows.

In example 6.2, even though the normal abelian subgroup A does
exist, the conclusion of Theorem 5.2 does not hold. Therefore, the
second assumption that p > 3 was essential. Note that Example 6.1
shows that «(3) = 3.
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