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THE MATRIX EQUATION AXB =X

D. J. HARTFIEL

This paper considers the solutions of the matrix equation
AXB = X where we specify A and B to be n-square and
doubly stochastic., Solutions are found explicitly and do not
depend on either the Jordan or Rational canonical forms, We
further find all doubly stochastic solutions of this equation, by
noting that J, = (1/n), the n-square doubly stochastic matrix
in which each entry is 1/n, is always a solution and that the
doubly stochastic solutions form a compact convex set. We
solve the equation by characterizing the vertices of this con-
vex set,

Matrices considered in this paper are real matrice unless other-
wise stated. Most of the definitions and notation may be found in
[5], although some will be presented below.

If A, A, ---, A, are square matrices, by 3,2, A, we mean the
direct sum of the A,’s. If s = 2 we may write A, @ A, for this di-

rect sum. We say that a square matrix A is reducible if there exists

a permutation matrix P so that PAP! = (‘;ff g) where X and Z are

square and P’ denotes the transpose of P. If A is not reducible,
then it is said to be irreducible. A square matrix A = (a,;) is doubly
stochastic if a;; =0 and >, a; = S a,; = 1 for all 4,5. It readily
follows that if A is doubly stochastic, then there exists a permuta-
tion matrix P such that PAP!= 3., A, where each A4, is doubly
stochastic and irreducible.

The following two celebrated theorems in matrix theory are used
in the paper.

BIRKHOFF’S THEOREM. The set of all m-square doubly stochastic
matrices, 2,, forms a convex polyhedron with the permutation matrices
as wvertices [5, p. 97].

PERRON-FROBENIUS THEOREM. Let A be an n-square nonnegative
wrreducible matrixz. Then:
(i) A has a real positive characteristic root r which is simple.
If N is any characteristic root of A, then |N| < 7.
(ii) If A has h characteristic roots of modulus

T 7\‘0 =7, 7\'1y °t % >"’h—-!.

then these are h distinct roots of N* — r* = 0, h is called the index of
imprimitivity of A. If h = 1 the matrixz is called primitive.
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(1)  If Moy Ny o0+, Ny_y are all the characteristic roots of A, and
0 = & ™ then N, +++, My_ifl ATE Ny, =+, Ny_y ¥ SOME Order.
(iv) If h> 1, then there exists a permutation matriz P such

that

0A4,0-.-.

00 Ay -
PAP: = :

0 0 O0---

A,, 00---

00

00

0 Ai s
00

where the zero blocks down the main diagonal are square [5, p. 125].

If A is a nonnegative matrix and

@i 50y X sigy Xigigy * Qi 50y Xipiy = Qg

are all positive elements in A, then A is said to have a loop of length
m. If A= (a;;) is such that all a;; are equal, then we say that A4
is flat. If A is partitioned into block matrices 4;;, i.e., A = (4;)),

and each A;; is flat, then a block loop is defined similarly.

1. Preliminary results. First we note that if P and @ are
permutation matrices then AXB = X if and only if

PAP'PXQQ'BQ = PXQ .

Since A and B can each be put into a direct sum of irreducible matrices
by simultaneous row and column permutations we may assume by
the Perron-Frobenius Theorem that

A=A, B=§'Bﬁ
0 A% 0.0 0 B 0--.0
00 Af---0 00 Bf--a0
A, =] eeeennn. , By=|  eeeeeees
0 0 0--- A, 00 0---B,,
A2 00---0 B, 000

where A, is irreducible with index of imprimitivity s,; B; is irreduci-
ble with index of imprimitivity r;,. Further the 0 blocks down the
main diagonal on A, and B, are all square.

Note that the dimension of each Af (k=1,2, ---,s,) is the same
for each fixed a. For fixed B the dimensions of the Bj (k =1, 2,
«+«, 7)) are also equal. Hence



THE MATRIX EQUATION AXB =X 661

C,00---0 D,00---0
0C,0---0 0D,0-.-0
Aba = |  eeees s B;p—_« .....
000-.--0 000---0
000---C,, 000-.--D,

where each C,(k=1,2, ---,s,), D, (k=1,2,---,7,) is a primitive
doubly stochastic matrix. Now let » be a sufficiently large integer
so that A” and B® are direct sums of primitive matrices.

LEmMMA 1.1. If T s a linear operator on a convex set S whose
vertices are X; (1 = 1,2, «++, m), then T(S) is a convex set whese wver-
tices are in {T(X;)|i =1, -+, m}.

THEOREM 1.2. The set of doubly stochastic solutions of the matrix
equation A*XB? = X (p previously defined) is the convex hull of

{lim (AP P(B™)E| P, is a permutation matriz, | = 1,2, «--, n!} .
k—co

Proof. If V is an m X m primitive doubly stochastic matrix,

then lim,... V* = J,, the flat m x m doubly stochastic matrix.
Ilim (A?)* and }cim (B?)*

exist, their limits being direct sums of flat doubly stochastic matrices.
Let L(X) = lim,_.. (A?)*X(B*)*. This is a linear operator defined on
the set of n x m matrices.

By Lemma 1.1, L(2,) is the convex hull of {L(P,))|P, is a permuta-
tion matrix} i.e., of {lim,... (A?)*Py(B*)*| P, is a permutation matrix}.

Now if A*XB? = X, Xe@,, then L(X) =X and by Birkhoff’s
Theorem, X is in the convex hull of the {L(P,)|P, is a permutation
matrix}. Furthermore, if X is in the convex hull of the {L(P)|P, is
a permutation matrix} i.e., X = ¥\ L(P,) where X\, = 0 and X\, =1,
then

X = I0MI(P) = 2\, lkim (AP)*P,(Br)®

- A”[le lim (AP)"—IPI(BP)"*‘]BP — A’XBr,
koo
and X is a solution of the matrix equation.

THEOREM 1.3. YeQ, is a solution of AXB = X if and only if
Y = Szt AAWBEp where WeQ, 1s a solution of APXB? = X.

Proof. 1If Y = >z A*WB*/p, W a solution of A?XB? = X, then
AYB =Y.
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Further if Y is solution of AXB = X then Y is a solution of A?XB? =
X and so Y = 372 A*YB*/p.

Let M(Z) = >3z A*ZB*/p. Then M is a linear operator defined
on the set of n X n matrices.

COROLLARY 1.4. The vertices of the set of doubly stochastic solu-
tions of AXB= X is a subset of {M[L(P)]|P, is a permutation
matrix}.

Proof. The proof follows from Lemma 1.1, Theorem 1.2, and
Theorem 1.3.

COROLLARY 1.5. If one of A or B is primitive, then the only
doubly stochastic solution of the equation AXB = X s J,.

Proof. Either lim,_. (4?)* or lim,..(B?)* is J,. Thus if X is
doubly stochastie, then L(X) = J,.

2. The operator L. Our primary aim here is to investigate the
structure of the convex set L(2,): in particular its vertices.
From §1 we know for P, a permutation matrix

L(P) = lim () P(BY = (S J¢)P(3 J2)

where J# and J? are flat doubly stochastic matrices whose dimensions
correspond to the dimension of the primitive matrices in the direct
sums A? and B? respectively.

Suppose a, X a, is the dimension of J7 and b, X b, is the dimension
of JE. Set C),JHP,(>),JE) = V,. Partition V; into blocks V., of
dimension a, X b,.

LEMmaA 2.1. If X e L(R,) s partitioned into block matrices X,, of
dimension a, X b,, then each X,, is flat.

THEOREM 2.2. If Xe L(2,) is partitioned into block matrices X,
of dimension a, X b,, then X s a vertex of L(2,) if and only if X
does not have a block loop.

Proof. Suppose X has a block loop
X, XTlazy szazy e, X = Xrlol .

71019 ’ Tm%m

Add ¢ > 0 to each element in the 7,0, block. Subtract (b,/b,,)c from
each element in the +v,0, block. All the row sums of the matrix are
now one. Now add (a,b,/a,b,)e to each element in the 7,0, block.
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All the column sums of the matrix are now one. Now subtract

b,,a;b,, .
b,,0;,b,,

from each element in the 7,0, block. All the row sums of the matrix
are now one. Continuing in this manner we see that in the v,0,
block we add (a,, b, , +-*b,/a; b, +-+b,)e=e¢. This is exactly
what is in the v,0, or 7,0, block. Now all rows and columns sum
to one. Call this generated matrix X’. Now considering the same
block loop we generate X" by replacing ¢ by —e in X’. Again all
rows and columns sum to one. Now X = $(X’' + X”), and since X’
and X" e I(2,) for ¢ sufficiently small, X is an interior point.

On the other hand if X e L(2,) and interior to it, there are X’
and X" in L(2,) so that X = (X’ + X”). We may pick X’ and X"
in L(2,) so that they have zero blocks in the block position if and
only if X does. Now if X’ == X" then there is a 7,0, block so that
X/, < X!, where X/, is a block in X', X/, is a block in X” and
the relation is elementwise. Hence there is a X/, > X/, and so on.
This generates a block loop in X.

COROLLARY 2.3. X 1s a wertex of the convex set of doubly stoch-
astic matrices if and only if X does not have a loop.

Proof. Consider the matrix equation IXI = X and apply the
Theorem 2.2.

We are now in a position to find the vertices of L(2,). Partition

each permutation matrix P, into blocks P}, of dimension a, x b,. Let
#,, be the number of ones in the vo block of P,. Then

(s o)e(s )= v

and V,, has all its elements equal to n,/a,b,. We may now use
Theorem 2.2 on this finite set to establish exact vertices.

EXAMPLE.

S
N Nl
S

D= N

SN~————
7~
[STT N

S

N N
~——

T

(ST

(=]

D= N

~————
—
N N

(=]

N N
Ss———

Partitioning the matrices P, we have
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10 | 00 2] 0
01| 00 33
(1) L = , a vertex,
00 | 10 0 |3
00 | 01 33
00 | 10 0 |33
00 | 01 33
(2) L =| , a vertex .
10 | 00 3210
01|00 3

All vertices are of the form L(P,) for some permutation P,. However,
L(P,) is not always a vertex for every !. For example,

10 | 00 3+ | %
00 | 10 31 | +%
(3) L = an interior point .
01 | 00| |3 |4
00 (01 \3%| 4%

We can further note by Theorem 2.2 that 1 and 2 are the only ver-
tices of L(2,).

3. General solutions of A?XB? = X, We already know from
Theorem 1.2 that for each We®,, L(W) is a solution of A?XB” = X.
Actually we have shown that if W is any » X % matrix then L(W)
is a solution of A?XB? = X. Further if W is a solution of the equa-
tion then L(W) = W. i.e., (O, JHWS,,JE) = W. Partition W into
blocks W,, as in §2. Now J:W,J? = W,, implies that W,, is flat.
Also if each W,, of W is flat, then W is a solution. Hence we know
all solutions of the matrix equation A?XB? = X.

4. Orbits in matrices. Let C = (¢;,) be a p X ¢ matrix. Sup-
pose we pick some c¢;;. Then by the orbit of ¢;; we mean the set
of positions (4, — k, 7, + k) [k =0,1, ---] where the row index is
modulo p and the column index is modulo q.

EXAMPLE.
1 3 The numbers in the positions of
4 the orbit of
7 (1) 5 areb5,3,7

(2) 2 are 2,9,4
(a 0) (3) larel,8,6
d f (4) a are a,e,¢,d, b, f.

Consider the group Z/p @ Z/q where Z is the additive group of

® o 00 Ot
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integers. Note that K = {(—% mod p, k mod ¢)|ke Z} is a subgroup
of (Z/p@® Z/q). Hence we can consider orbits as cosets in (Z/p P
Z/q)/K by looking at indices. We now see:

1. The number of elements in each orbit is the same.

2. If two orbits intersect, they are the same.
3. If one orbit contains a row index %k times then all orbits con-

tain that row index % times. The same property holds for columns.
4. Each row index and column index appear at least once in

each orbit.
5. If p and ¢ are relatively prime, then there is only one dis-

tinet orbit.
Finally we note that since orbits are defined by indices, we may

consider block orbits in partitioned matrices.

5. The operator M. Our aim here is to investigate the struc-
ture of the convex set M[L(2,)]: in particular to find its vertices.
Let X e L(2,). Partition X into blocks X,, of dimension @, xb,, then

—1

S

Mx)=1S axpr =15 5
pk:o pk:Oa
0 A% 00---0\F 0 BP0 0---0\F
00 A4 0---0|x 100 B 0---0
...... 7 cescee
AT 00040 BL 0000

and since the blocks X,, of X are flat we may write

0 J* 00---0\* 0 J° 00.--0\*
p—1
MEz%;ZOOﬁOWOX;OOﬂOWO
=0« | Lieee 1 Bl ceeee
Ji 000-+-0 Ji,000---0

where Ji(k=1,2,---,s,) and Ji(k=1,2,---,7,) are flat doubly
stochastic matrices whose dimensions are the same as those of A and
Bg, respectively. Suppose the irreducible blocks A4, of >, ,A. have
dimension p, x p, and the irreducible blocks B; of >, ; B, have the
dimension ¢; X g;. Partition X into blocks X, of dimension p, X ¢;.
We call these blocks the major blocks of X. Now since X is already
partitioned into blocks of dimension a, x b,, we see that the major
blocks are partitioned into the X,, blocks in the first partitioning.
We call each block in the original partition a minor block. Note that
inside each major block, all minor blocks are of the same dimension.

Now suppose X/; is a major block of X. Then we see the sequence
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0Jr 0 0 0J7 0 0

wiy |00 JFeer 01X 0 0 JEeeeOFf oen,
J?a. () . .O. .. . Jfﬂ. .O. .0. .. .
0 J: 0+--0\»" (0 J? 0--0 0\
00 Jg 0]X0 0 Ji---0
ng()() . Jﬂ..o..O.:. .

is such that each minor block in X/, moves through its orbit in X,
at least once.

By the definition of M and the remarks made above we see that
M(X), X e L(2,), is found as follows. Let X be partitioned into major
and minor blocks. Consider the orbit of the minor blocks in each
major block. Sum the blocks in each orbit with sufficiently many
copies in order that there are p blocks. Then divide the sum by p
and replace each block in the orbit by this block. From this we see
that X e M[L(2,)] if and only if

1. XeL(Q,).

2. If X, and X,,, are in the same major block and in the same
orbit in the major block, then they are equal.

We now find necessary and sufficient conditions for X to be a
vertex of M[L(2,)].

DEFINITION. If X, ,, Xo,, *++, Xu 5, = Xop, are major blocks of
X, Xe M[L(2,)] and each X, (k=1,2,++-,m), Xop5,,, (k=1,2, -
m — 1) has exactly one positive minor block orbit, then
Xalﬁly Xalﬂgv ) Xa

mPm

is an orbital block loop in X.

THEOREM 5.1. Xe M[L(£2,)] is a vertex if and only if

1. there do mot exist two different positive minor block orbits in
any major block of X, and

2. there does mot exist an orbital block loop in X.

Proof. First suppose X € M[L(£2,)] and X has two positive block
orbits in a major block X, of X. Then we add ¢ > 0 to each ele-
ment in each block of one of these orbits and subtract ¢ from each
element of each block in the other orbit. Call this matrix X’. To
generate the matrix X" replace ¢ by —e¢ in X’. Now for ¢ sufficiently
small, X’ and X” e M[L(2,)]. Since X = 3(X’' + X”), X is interior
and therefore if X is a vertex it must satisfy 1.

Now suppose X e M[L(2,)] satisfies 1 but not 2. This means X
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has an orbital block loop, say X.;, Xus, *++, Xa 5, = Xu5. Bach of
these major blocks has a positive orbit by definition. Flatten each
major block; i.e., if X,; is a block in the orbital block loop and has
s different orbits, divide the element ¢ in the positive orbit by s and
replace all elements in the major block by ¢/s. If we call this matrix
X' then X' e M[L(2,)]. We may now use the scheme of Theorem 2.2
to alternately add and subtract ¢>0 from this major block loop, the-
reby generating X/ and X, e M[L(2,)] and X' = (X + X;). Now
absorb the flat major blocks back into the original orbits, i.e., if X,
is a major block in the orbital block loop with s different orbits then
replace each element ¢ in each block of the original positive orbit by
sec. Put zero blocks in all other orbits in this major block. Doing
this to X’, X/, and X, we generate X, X, and X,, respectively. Note
X, X, e M[1(2,)]. Further X = }(X, + X,). Hence X is interior.

Finally suppose X satisfies 1 and 2. Suppose that there exist
X, X, e M[L(2,)] so that X = (X, + X,). We may suppose X, and
X, have the same zero pattern as X. If X, # X, and X, X, satisfy
1 we can see by an argument similar to Theorem 2.2, that X has an
orbital block loop. This contradicts X having property 2. Hence we
see that X is a vertex.

Using this theorem and the remarks preceeding this theorem we
see that we have characterized the vertices of M[L(2,)].

010 010
0 0 1) X (O 0 1)
1 00 1 00

There are three orbits for X given in the following diagram.

EXAMPLE.

3 21
2 1 3
1 3 2

They are the positions occupied by 1, 2 and 3 respectively. Consider
the vertices of L(2,). Using 1 of Theorem 5.1 we see

010
(a) 0 0 1
100

has a one in each orbit; hence
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o 1 0 1/3 1/3 1/3
M||0 O 1) =11/3 1/3 1/3)
1 0 0 1/3 1/3 1/38)
which is interior.
1 0 0
(b) 0 0 1)
0 1 0
has 3 ones in the same orbit, hence
10 0\1 1 0 0
M0 O 1} =[0 O 1)
010 01 0

which is a vertex. The other vertices are

01 0 0 0 1
( 1 00 and (0 1 0
0 0 1 1 0 0

6. General solutions of AXB = X. Partition X into the major
and minor blocks. Since AXB = X would imply A?XB? = X we see
that each minor block of X must be flat. If we add the further
condition that minor blocks on the same orbit are all equal then we
see from §5 that X is a solution and all solutions are of this form.

7. General remarks. It is interesting to note that in order to
obtain solutions of AXB = X it is only necessary to know the block
form of 4 and B, i.e., if A, is doubly stochastic and has the same
block form as A and B, is doubly stochastic and has the same block
form as B then AXB = X if and only if A, XB, = X.

From §4, property 5, we see that if A and B are irreducible,
where the index of imprimitivity of A and the index of imprimitivity
of B are relatively prime, then J, is the only doubly stochastic solu-
tion. The only general solution is flat. This follows since there is
only one orbit in X. Kach block in the orbit is flat and all blocks
in the orbit are equal.

Finally we point out that our result can be extended to a more
general setting by considering the following result due to Sinkhorn

(7):

THEOREM. Let D be the set of all n X n matrices with row and
colummn sums equal to 1, M,_, the set of (n — 1) x (n — 1) matrices.



THE MATRIX EQUATION AXB = X 669

Let R=1@ M, .. Then there is a monsingular matric P so that
PDP~ = R.

From this we know that if 4, and 4, are (n — 1) X (n — 1)
matrices then there are nonsingular matrices P and @ so that P7'(1 @
AP and Q1 @ A)Q" have row and column sums equal to 1. If
P16 A,)P and Q1 @ A)Q" are nonnegative and real and hence
doubly stochastie, then since

A XA, =X
if and only if

1QA(IDX)(1D4)=1DX
if and only if
QLS A)Q™QLE X)PPT(1D 4)P = Q1S X) P,
we can also find the solutions to the matrix equation

AXA, =X.
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