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STRUCTURE OF NOETHER LATTICES WITH
JOIN-PRINCIPAL MAXIMAL ELEMENTS

E. W. JOHNSON AND J. P. LEDIAEV

In this paper we explore the structure of Noether lattices
with join-principal maximal elements,

Results which completely specify the structure of certain special
classes of Noether lattices, and relate them to lattices of ideals of
Noetherian rings, have been obtained in [1], [2], [3], [4], [7], and [8].
For example, in [7] we showed that if every maximal element of a
Noether lattice .&¥ is meet-principal, then & is distributive and can
be represented as the lattice of ideals of a Noetherian ring. Moreover,
for distributive Noether lattices, the condition that every maximal
element is meet-principal is equivalent to representability. In a more
recent paper [8], we began considering the complementary case of a
Noether lattice in which every maximal element is join-principal in
order to determine the extent of the relationship between the two
situations. There we showed that if 0 is prime in < (and every
maximal element is join-principal), then .&# is distributive and repre-
sentable. Hence, if 0 is prime, the assumptions that every maximal
element is meet-principal and that every maximal element is join-
principal are equivalent, and either implies representability.

In this paper, we continue the investigation begun in [8]. Our
results extend the class of Noether lattices for which embedding and
structure theorems are known, and also introduce a construction process
for Noether lattices which leads to new examples.

In §1, we show that in a local Noether lattice (&%, M) in which
M is join-principal and not a prime of 0, the maximal element M has
a minimal base E,, ---, E, of independent principal elements (i.e.,
E;N(E N+« VE NV -+ \VVE)=0fori=1,--+,k). And we use this
result to show that if M is join-principal and not a prime of 0, then
&7 is distributive. In §2, we obtain structure and embedding
theorems for distributive local Noether lattices with join-principal
maximal elements. In §3, we investigate some of the consequences
of our results outside of the local case.

We adopt the terminology of [5].

1. Let (&%, M) be a local Noether lattice and let Be <2 The
quotient B/MB is a finite dimensional complemented modular lattice

and the number of elements in any minimal set of principal elements
with join B is the dimension of the quotient B/MB ([4], [6]). Hence
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if K, ---, K, is any set of principal elements with the property that
the elements FE;\ MB are independent in B/MB, then E,, ---, E, can
be extended to a minimal base for B. We will have occasion to use
these observations in what follows.

In this section we show that if (&, M) is a local Noether lattice
in which M is join-principal and not a prime of 0, then & is
distributive.

We begin with a lemma.

LEMmA 1.1. Let (&7, M) be a local Nocther lattice im which M
is join-principal and not a prime of 0. Let E,, -+, E, be a minimal
base for M and, for each i =1, +++,k, set C; = E,\/ «++ \V E;\/ +++ \/ E,.
Then each of the elements C,(1 = 1, -+, k) is prime.

Proof. Since M is principal in <7/C; (t =1, -+-, k), each of the
elements C; is either prime or M-primary [7]. Assume that C, is
M-primary. And let n be the least positive integer such that £ < C,.
Then E**' < MC,. For, if not, there exist principal elements F',, - -+, F,
among E,, -, E,, -++, E, such that E** F,, ---, F, is a minimal base
for C.. But then E,, F,, ---, F, is a minimal base for M = E, v C,.
Since C,, by definition, has fewer elements in a minimal base than M,
this is a contradiction. Hence E**"* < MC,, as claimed. Consequently,
M~ < MC,, and therefore

Er<MvO:M)=M*""M=MC.,:M=C,\v0:M)=C,,

since M is join-principal and not a prime of 0. Since £ £ C,, this
leads to a contradiction. Hence, each of the elements C; is prime.

LEMMA 1.2. Let (&£, M) be a local Noether lattice in which M
is join-principal and mot a prime of 0. Then, in the notation of
Lemma 1.1, C, A <+« NC, = 0.

Proof. Let E, ---, E, and C,, ---, C, be as in Lemma 1.1. We
first show that for 1 <»r <s<k E,E,=0. Hence, suppose that
E.E, + 0, and let » be a positive integer such that E,.E, < M™ and
E.E, £ M**. Then E.E, can be used in a minimal base for M.
Now, since M is join-principal and not a prime of 0, it follows from
the relation M"*+" = M"*(E" \/ --- \/ E) that the elements E7?, ---, EF
form a minimal base for M". Hence, for some ¢, 1 < ¢ <k M" =
E.E N E*\ «-+\VE*\V «--\/ Er. But then M" < C;, which contra-
dicts Lemma 1.1. It now follows that, foreachs (1 £s< k), C, A E, =
(C,: E)E, = C,E, = 0, since C, is prime and E, £ C,. Hence by modu-
larity CA - - ANC;=E .., \/ -+- \V E, fors<k,sothat CA --- ANC,=0.
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We are now in a position to establish the main result of the
section.

THEOREM 1.3. Let (<, M) be a local Noether lattice in which M
s a join-principal and not a prime of 0. Then <&~ 1is distributive.

Proof. Let E, ---E, and C, --+,C, be as in Lemma 1.1. A
simple inductive argument using modularity proves that

(\/ EZ(%)) /\ (\/ E’IL{c(i)) — v Eimax(j(i),k(i))

with the convention that E;> means 0. Thus it suffices to show that
the only principal elements in &~ are 0, I and the powers E! of the
elements F, ---, E,. If k=1, the result is immediate, so assume
k>=2. Let E be any principal element of &~ different from 0 and
I. We assume that the elements £, ---, £, are arranged so that
EZC;, for i>r and E£LC; for i<r. Set C=C, A --+- AC, and
consider ~~/C. Since M is principal in each of the local Noether
lattices «~/C; (i =1, ---, k), it follows by Lemmas 1.1 and 1.2 that
the primes of <#/C are just M and C,, ---, C,. Hence, by the choice
of E, the element E \/ C is M-primary in .~/C, and therefore also in
<. Let m be a positive integer such that M"" < EVv C and
M* £ E\/ C, then, by modularity,

M\ C=CV (M C)A E)
= CV (M~ C): E)E.

Hence, either M™"' < CV ME or (M~ C):E=1. In the first
case, however,

M <M+ M<(CVME):M=(C:M)vVE=CVE,

which contradicts the choice of %. Hence (M""\V C):E =1 and
E < M\ C. Then EV C = M""\ C, so by the join-irreducibility
of principal elements in a local Noether lattice, it follows that
EN C=EfO ..« Ef®\/ C, for some nonnegative integers ¢(1), - - -, p(k).
On the other hand, £, < Cfori > rand £ £ C, so @(1) = 0 for 7 > r.
Now, if 15 and 157, then E,Vv C<C;. It follows that
r <1, and hence that < C, A\ --- AC,. Then by the proof of
Lemma 1.2, C, A --- AC, = E, and ME" = E*, for all n. Hence,
there exists a positive integer w such that £ < E* and F £ ME" =
Er'. Since E, is principal, it is now immediate that £ = E*.

We note that if (&, M) is a local Noether lattice in which M? = 0,
then M is join-principal. Since such a Noether lattice need not be
distributive, the statement of Theorem 1.3 need not be valid without
the assumption that M is not a prime of 0. On the other hand, if &~
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is an arbitrary Noether lattice in which every maximal element is
join-principal, then the number of maximal primes associated with 0
is finite. Hence, at most finitely many of the localizations <%, (M
maximal) are nondistributive.

2. Let (&7, M) and (<5, M,) be local Noether lattices, and let
={A, B e X, P~ A=1Iif and only if B = I}. Itis clear that
% is a sub-multiplicative-lattice of &£ @ &5. Moreover, if E, and
E, are principal elements of &4 and &5, respectively, with E, = I
and E, =+ I, then the elements (F, 0) and (0, E,) are principal in <~
Hence .&~ is a local Noether lattice with maximal element (M,, M,). We
refer to &~ as the local direct sum of & and <. An alternative
characterization is given by <~ = (M, |0 M,| 0) U{(Z, I)}.

In this section we continue our investigation of a local Noether
lattice (<, M) with join-principal maximal element. However, we
drop the hypothesis that M is not a prime of 0 and consider, instead,
the general distributive case. Our main result is that a distributive
local Noether lattice (&, M), in which M is join-principal, is the
local direct sum of local Noether lattices with principal maximal ele-
ments. We begin with an extension of Lemma 1.2.

LEMMA 2.1. Let (&£, M) be a distributive local Noether lattice
wn which M is join-principal. Let E, ---, E, be a minimal base for
M. Then E; N\ E; =0 for all ©+ 7.

Proof. Foreachi =1, -+ k set C;=E, \V «++ VE;\/ +++ \V E,.

Then
M=M:M=MC,VE):M=C;\V (E;: M)
and

E; vV (Ei:M)=(ME;V E):M=ME,:M=E,\(0:M),
so because
(B::M)=(E:>M)N(E;VO0:M)=0:MYV (E;: M) \ E)
by modularity, we have that
M=CNVO:M)V(E::MyNE)=C, VvV (0:M)\V (E;: ME)E;,

¢=1, ---, k. Since principal elements are join-irreducible in a local
Noether lattice, since & is distributive, and since E; £ C,, it follows
that either E; < 0: M or E; < (E:: ME)E;,i =1, --+ k.

Assume that E, < (E?: ME,)E,.. Then E}: ME, = I, so ME, = E?.
Hence M = ME,.: E, = E!:E, = E,\/(0: E,). It follows that E, <
E, Vv (0: E,) for all 4, and that E; < 0: E, for ¢+ r since & is dis-
tributive and E; is join-irreducible. Therefore C;E; =0(: =1, .-, k).
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Now, assume that 1 <1 < j <k and let E be a principal element
such that £ < E; A E;. Suppose that E = 0 and choose integers u
and v such that E < E* A\ E?, E £ E}" and E £ E}*'. Then E < EY
and £ £ ME}, so E = E*. Similarly £ = E?, so E = E = E}. Then
#>1and v > 1, so MEr = ME?. It follows that E Vv (0: M) =
E v (0: M), so that either Ey~' < E' or EY” < 0: M. In either
case, £ = 0. Hence £ =0 and E; \ E; = 0.

THEOREM 2.2. Let (£, M) be a distributive local Noether lattice.
Then M is join-principal if, and only if, <~ 1is the (finite) local
direct sum of local Noether lattices with principal maximal elements.

Proof. Assume that (&£, M) is a distributive local Noether lattice
in which M is join-principal. Let E, ---, E, be a minimal base for
M. And for each ¢ =1, ---, k, let (4, M;) be a local Noether lattice
such that M, is principal and M = 0 if, and only if, E? = 0. Since
-~ is distributive, it follows by Lemma 2.1 and [2] that every ele-
ment A€ .% has a unique minimal basis consisting of powers of the
elements E,, -+, E,. If we set £ =0 and E! = I, then it is clear
that the map Em\/ ...\ Er — (MM, ---, M%) is a multiplicative
lattice isomorphism of .&© onto the local direct sum of &, «--, 4.

The converse is clear.

COROLLARY 2.3. Let (£, M) be a distributive local Noether lattice
wn which M is join-principal. Then < s Noether-lattice-embeddable
wm the lattice of ideals of a homomorphic image of a regular local
ring.

Proof. By Corollary 2.2, & is the local direct sum of local
Noether lattices (<4, M,), ---, (<5, M,), where, for each 14, M; is
principal in &4. If M; is nilpotent in &7, let n; be the least positive
integer such that M = 0; otherwise, let %, = «. Let RL, be the
regular local Noether lattice introduced in [1], and let X, .-, X, be
the minimal base for the maximal element of RL,. Let A be the
join of the elements X,X; and X/ (where X =0). Then &~ is
clearly isomorphic to RL,/A. Since RL, is Noether-lattice-embeddable
in the lattice of ideals of a regular local ring, [1], it follows that
RL,/A and & are embeddable in the lattice of ideals of a homo-
morphic image of a regular local ring.

3. In this section we interpret some of the implications of the
results of §81 and 2 outside of the local case.

We begin with a new characterization of the representable dis-
tributive Noether lattices.
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THEOREM 3.1. Let <~ be a Noether lattice. Then & 1is distri-
butive and representable as the lattice of ideals of a Noetherian ring
of, and only if, for each maximal element M of <, M is join-principal
and O, 1is meet-irreducible.

Proof. If <&~ is distributive and representable, then each maximal
element M is principal [7]. Consequently, <&, is a quotient of a
regular local Noether lattice of altitude 1, and O,, is meet-irreducible.

Now, assume that &~ is a Noether lattice such that, for every
maximal element M, M is join-principal and O, is meet-irreducible.
Fix M and consider <,. If {M} is not a prime of 0 in &7, then
by Lemma 2.1, O,, is meet-irreducible if, and only if, {M} is principal.
On the other hand, if {M} is a prime of 0 in &, then {M} is the
only prime of 0. In this case, let E be any principal element such
that £ < 0:{M}. Then {M}E =0, so E is a point in <%,. Since the
meet of any two points is 0 and O, is irreducible by assumption, it
follows that 0:{M} is itself a point and that 0:{M} < A, for every
A=+ 0. Now, assume that {M} == 0:{M}, and let F be a principal
element such that F < {M}, F £ {M} and {M}F # 0. Then F is {M}-
primary, so there is a nonnegative integer » such that {M}* £ F' and
{M}"* < F. Hence {M}"*' = {M}*"* AN F = ({M}**: F)F, and therefore
either {M}**': F = I or {M}"*' < {M}F. In the first case, {M}"*' = F,
so {M} = F by the choice of F. In the second case,

(M = My A{M} = {MYF :{M} = F v (0:{}M}) = F,

a contradiction. Hence {M} is principal in <7,. It now follows by
[7] that &~ is distributive and representable.

Recall that a Noether lattice &~ satisfies the weak union condition
if, given elements A, B and C such that A £ B and A £ C, it follows
that there exists a principal element £ < A such that £ £ B and
E £ C. This concept was used in [7] to characterize the distributive
Noether lattices which are representable. It is easy to see that if <&~
is a Noether lattice which satisfies the weak union condition, then
every localization <%, has the (weaker) property that, given primes
P, ..., P, and an element A such that AL P; (¢t=1, ---, k), there
exists a principal element F < A such that E£LP;, (i =1, ---, k).
We say that a Noether lattice with this latter property satisfies the
uNLon condition on primes.

TAEOREM 3.2. Let 2~ be a distributive Noethsr lattice such that,
for every maximal element M, <& satisfies the wunior. condition on
primes. If 0 has no embedded primes and if every maximal element
is join-principal, them ¥ is Noether-lattice-embeddable in the lattice
of 1deals of a Noetherian ring.
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Proof. Let 0 =@, A -+ A Q, be a normal decomposition in which
Q; is P;-primary. And let M be a maximal element of ¥ If M is
a prime of 0, then M is a minimal prime. On the other hand, by
Lemma 1.1, if M is not a prime of 0, then 0 is prime in <%,. Hence,
if we assume that P, ..., P, are nonmaximal primes and that
P, +-+, P, are maximal primes, we have that

=L@ BLP.OL)unD - DL/

Then each of the summands </P; (i =1, --., s) is isomorphic to the
lattice of ideals of some Noetherian ring [8], and each of the sum-
mands /Q; (1 =s+ 1, ---, k} is Noether-lattice-embeddable in the
lattice of ideals of a Noetherian ring (Corollary 2.3). The conclusion
is now immediate.

By the results of [9], it is easy to see that any Noether lattice
of the type described in Theorem 3.2 has the property that every
element has a unique normal decomposition. On the other hand, a
Noether lattice with this latter property is the direct sum of local
Noether lattices with nilpotent maximal elements and one-dimensional
Noether lattices in which 0 is prime [9]. These observations lead to
the following, the proof of which is similar to the proof of Theorem 3.2:

THEOREM 3.3. Let &7 be a Nosther lattice in which each maximal

element 1s join-principal. Then the following are equivalent:

(i) FEach element has a unique wormal decomposition.

(ii) 7 satisfies the union condition on primes and 0 has 1o
embedded primes.

(iii) &7 4s the (finite) direct sum of Noether lattices with prin-
cipal maximal elements and local Nesther lattices with
nilpotent maximal elements.

If, in addition, .27 1is distributive, then each of the above implies

that <~ 1s Nocther-lattice-embeddable in the lattice of ideals of a
Noetherian ring.
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