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ON A PROBLEM OF DANZER

R. P. BAMBAH AND A. C. WooDs

By a Danzer set S we shall mean a subset of the n-dimen-
sional Euclidean space R, which has the property that every
closed convex body of volume one in R, contains a point of
S. L. Danzer has asked if for n = 2 there exist such sets S
with a finite density., The answer to this question is still
unknown, In this note our object is to prove two theorems
about Danzer sets,

If 4 is a n-dimensional lattice, any translate I'= A4+ p
of A4 will be called a grid I"; A will be called the lattice of I”
and the determinant d(A) of 4 will be called the determinant
of I" and will be denoted by d(I), In §2 we prove

THEOREM 1, For n = 2, a Danzer set cannot be the union
of a finite number of grids.

Let S be a Danzer set and X > 0 a positive real num-
ber. Let N(S, X) be the number of points of S in the box
maXi<i<. | %:| = X. Let D(S,X)= N(S, X)/(2X)". In §3 we
prove

THEOREM 2, There exist Danzer sets S with D(S, X) =
{(log X)»™*) ag X — oo,

The case n = 2 of the theorem is known, although no proof seems
to have been published. The referee has pointed out that a lower
bound of 2 can easily be established for the density of a Danzer
set in » = 2, but the authors are unaware of any further results in
this direction.

2. Proof of Theorem 1. We shall assume throughout that
n = 2. It is obvious that if S is a Danzer set and T is a volume
preserving affine transformation of R, onto itself, then TS) is also
a Danzer set.

Let S, S,, -+ be a sequence of sets in R,. Let S be the set of
points X such that there exists a subsequence S;, S;, «-+ of {S,} and
points X; € S;, such that X; — X as r— . We write

S=1lmS,=1lmS§S,.

700

LEMMA 1. Let {S,} be a seyuence of Danzer sets in R,. Then
S =1lim S, is also a Danzer set.

Proof. Let K be a closed convex body of Volume 1. Then for

295



296 R. P. BAMBAH AND A. C. WOODS

each r, K N S, # ¢, so that for each », there exists X,e KN S,. Since
K is compact, {X,} has a convergent subsequence {X; } converging to
a point X in K N S.

LEMMA 2. Let SY =lim,..SY,5=1, -+, k. Then

k k
U s@ = lim (U 5¢) .
j=1 roee \j=1

Proof. Xe USY = XeSY% for some j, say j = j,— there exist
a subsequence {S{’} of {SP”} and points X; € S{” such that X; —
X=X; eUs; and X; — X= Xelim, (U}, S¥). Thus USY C
lim (Y%, S¥). Let Xelim(UL,S!). Then there exists a sequence {i,}
of natural numbers and X; e U;-, S such that X; — X. Since k is
finite, there exists a 7 = j, say, and an infinite subsequence k, of 7, such
that X, e€Sj??. Then X, — X and Xe S, so that Xe U S“Y’ and
lim, .. (U%-, Si7) < U SY.

This completes the proof of the lemma.

LemMMA 3. Let I'), I, --- be a sequence of grids in R, with equal
determinants d(I',) = 4. Then {I',} has a subsequence {I'; }, such that
lim,_.. I";, is either a grid or is contained in o hyperplane.

Proof. If lim,..I. = ¢, there is nothing to prove. Assume,
therefore, that 7" = lim,_ .1, # ¢. Let XeI'. Then there exists a
subsequence {i,} of natural numbers and points X; €/";, such that
X;,—X. Then 4, =1I';, — X;_ is a sequence of homogeneous lattices
and lim I";, = X + lim 4; . Therefore, it is enough to prove the the-
orem for lattices.

Let {4,} be a sequence of lattices with determinants d(4,) = 4,
independent of r. Let p(4,), ---, tt.(4,) be the successive minima of
the Euclidean distance with respect to 4,, i.e., p;(4,) = inf p: such
that | X| < ¢ has 4 linearly independent points of 4,.

Suppose, first, that there exists ¢ > 0, such that pg(4,) = o for
infinitely many ». Then a subsequence satisfies the conditions of
Mahler’s compactness theorem and has a subsequence convergent in
the sense of Mahler (see, e.g., Cassels [2]). The last subsequence
converges to the limiting lattice in our sense also.

We may, therefore, assume ,(4,) — 0 as r— <. Since

2r 1

l.Ar"' n/-lrg'_"
t(4,) « -+ p(4,) S

’

where J, is the volume of the sphere | X| < 1, (see, e.g., Cassels [2]),
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and since n = 2, it follows that f,(4,) — o as r— co. For each r,
let P,, .-+, P, be points such that |P, | = (t;(4,). Let x, be the plane
through 0, p,, «++, »,,_,. It is easily seen that there exists a subse-
quence {/; } of {4,} such that the sequence {7;} converges to a plane
w. We assert that lim,..{4;}c=z. For, let Xelim,..4;. Then
X =lim X, , where k, is a subsequence of 7, and X, €4, . There
exists M independent of k,, such that | X, | < M for all k,. Also

Xy, = 9rnPrp + o0+ 90uPrpny 905 TeRD,

and if ¢,,# 0 then |[X, | = p.(4,). Since f,(4,)— = as r— oo,
d,.. = 0 for all large » and Xen. This proves the lemma

LEMMA 4. Let {m;} be a sequence of hyperplanes. Then {m;} has
a subsequence {r;,} whose limit lies in a hyperplane.

Proof. If # = lim, . 7w, = ¢ then there is nothing to prove. As-
sume, therefore, Xem. Then there is a subsequence {k,} of natural
numbers and points X, em, such that X, — X. The planes &, =
m,, — X, pass through 0 and have a subsequence #; which converges
to a plane # say. Then lim,_.7; =& 4 X. This proves the lemma.

Proof of Theorem 1. We shall prove more, namely, a Danzer set
cannot be the union of a finite number of hyperplanes and a finite
number of grids.

Let S = Ui, m; Ui, I"; be a Danzer set, such that m; are hyper-
planes and /7; are grids. Let ¢t =1. Let X+ Y, X, YeI',. For each
positive integer £, let T, be a volume preserving affine transformation
such that T,(X) =X and |T(Y) — X|=k|Y — X|. Since n =2,
such transformations exist. For each k&, T,(S) is a Danzer set, and
by Lemma 1, so is the limit of every subsequence of {7,.(S)}. By
Lemmas 3 and 4 we can choose a subsequence {7} } of {T,} such that
each lim,.. T} (7;) lies in a hyperplane, while each lim,... T, (I";) is
either a grid or lies in a hyperplane. Since

lim 7, (S) = U lim T, (w) U lim T, (I")

and lim T, (I") is in a hyperplane, the Danzer set lim T, (S) lies in
the union of a finite number of hyperplanes and ¢, < ¢ grids, so that
we have (by increasing T, (S) if necessary) a Danzer set consisting of
a finite number of hyperplanes and ¢, < ¢ grids. Repeating this process
a number of times we obtain a Danzer set that is the union of a finite
number of hyperplanes. This can easily be seen to lead to a contra-
diction which proves the theorem.
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3. Proof of Theorem 2. Let K be a closed convex body in R,.
The set S c R, is said to be a covering set for K if R, C [J s (K + A).
The set S contains a point of each translate of K if and only if Sis a
covering set for — K. Clearly a set S is a Danzer set if and only if it is
a covering set for each closed convex body of volume one. Therefore, in
order to prove a given set S is a Danzer set, it is enough to prove that
for every closed convex body K of volume one, S contains a covering
set for K.

If I is a grid with lattice 4, then it is easy to see that I" is a
covering set for K if and only if 4 is.

Let 7= be a parallelepiped. Let A, be one of its vertices and
A, -+, A, be the n vertices joined to A, by edges of 7. Let 4 be
the lattice generated by A4, — A4,, ---, A, — A,. By the grid generated
by 7= we shall mean the grid 4 + A,. It is easily seen that if a closed
convex body K contains a parallelepiped which generates a grid 77, then
I" is a covering set for K.

A lattice 4 will be called rectangular if it consists of points
(@, + -+, @, u,), Where a; are fixed positive real numbers and u; take
integral values. A grid I will be called rectangular if its lattice is
rectangular.

Let «, -+, «, be positive real numbers. Let 7', be the grid
generated by the parallelepiped |z;] < a;. Let B be a box |z;| =< 8
where B, = a; for 1 =1, --+,n. Then I", is clearly a covering set
for B.

Let K be a closed convex body of volume one. Let K, be the
steiner symmetrical of K with respect to the plane x, = 0. Let K,
be the steiner symmetrical of K, with respect to x, = 0 and so on.
Then K, is symmetrical about all the coordinate planes and has volume
one. We next have

LEMMA 5. If a rectangular lattice A 1is a covering set for K,,
then it is a covering set for K also.

(The lemma and its proof are easy adaptions of Lemma 2 of
Sawyer (3). For completeness, we give the proof below).

Proof. Let 4 be the rectangular lattice consisting of points
(v, ++-, a,u,), a; >0 fixed real numbers and %; running over the
set of integers. It is enough to prove that if 4 is a covering set
for K,, then it is a covering set for K also.

Let 4, = subset of 4 in the plane #, = 0. The sets K, + 4 cover
R,. We assert each line x, =q,, +++, %, = a, meets K, + P is a seg-
ment of length at least a, for some Pc 4,. Such a line meets only
a finite number of translates K, + P,, P,c 4,, each of them in a seg-
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ment |2, < b, and hence meets K, + 4, in the segment |z, | <0b =
max b,. If b < ia, then K, + 4 meets the line in segments |z, —
ma, | < b < ta,, where m takes integral values. This leaves part of
the line uncovered by sets K, + 4, contrary to the fact that 4 is a
covering set for K,. Thus b = la,, i.e., b, = i, for some s. There-
fore, the line meets K, + P, and hence K + P, in a segment of length
at least «,, and is therefore, covered by the sets K + 4. Since this

is true for all such lines, 4 is a covering set for K.

COROLLARY. A rectangular grid I which is a covering set for
K, is also a covering set for K.

Because of the corollary, in oder to prove that a given set S isa
Danzer set, it is enough to prove that for every given closed convex
body K of volume one, which is symmetrical about all the coordinate
planes, S contains a rectangular grid /7 which is a covering set for K.

Let K be a closed convex body of volume one, which is symmetrical
about the coordinate planes. Then K contains a point (a,, +--, a,),
a; > 0, such that 2"a, --- a, = n!/n". (See, e.g., Sawyer [3]). Then
K contains a box B |x;| < B, B: =< a; with volume 2”8, -+ 3, = n!l/n".
A covering rectangular grid of B, is automatically a covering set for
K. Therefore, S is a Danzer set if for all closed boxes B; of volume
n!/n", S contains a rectangular grid I', generated by |x;| < «; with
a; = By

We now construct a set A of points a = («, - -+, @,), &; > 0, such
that for each set (8, «++, 8., B: > 0,8, ++ B, = nl/(2n)" = k, say, there
exists an ac A, such that a; < 8;,. Then the grid I, will provide a
convering by B, and the set S = U... . Will be a Danzer set.

Let H be the set of point « such that «,---2, =k, 2, > 0. Divide
the part ©, >0, ---,2,_, > 0 of the plane z, = 0 into n — 1 dimensional
parallelepipeds ;. defined by

i<, et i =1, n—1,(k, 0, k,)EZ™,

kg

when Z is the set of rational integers. Let H, .., , = {x:xe H and
(901, ey, xn_l) € ﬂkl"""‘n-l}' Then .H - U(kl,...,kn_l)esn-—l Hkl"”’kn—l' If XG
Hy,..,_, then v, = ¢ 7=1,..-,n —1 and
r, = k = k .
Lyoee Ly, ghitethy—rtn—1
Let
— = k LN ) k - .——k
A= Qp et = <6 i , €fn—1, P )

Then I, is a grid of determinant 2"k/e"~'. Let
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A={ay,...p, (b, ~oe, ko) 2™}

For each 8= (B, +++,Bs) € Hyppoooyiy s Ay b, €A has the property
that I, is a covering set for B;. Therefore S = .., ", is a Danzer
set. To prove Theorem 2, it will be enough to prove D(S, X) =
O((log X)*), as X — oo.

Let B(X) be the box [x;] £ X. Since N(S, X), N(I",, X) denote
the number of points of S and I7,, respectively, in B(X), it follows
that

(+) N(S, X) £ 3, Ny, X) -

If « =a,..,., €A, then the points of I, have coordinates

n—L

k k2 eeo. gFn—1 _______k_____..__
<6 Mgy €750, y €7 Uy, PR - u’”)

= ("u,, €Uy, -+, €U, ke'u,) ,
say, where u; are odd integers. If I', N B(X) # ¢, then

<X, eee, et < X ke £ X,

so that for
. . k gt 1
] e e — k’/ > . ¢ —
1=1,2,¢0c,m—1,¢"% = o gt X
> Kk 1
- en—l X'n—-l
Therefore,

I'eNB(X) #¢= <eéi< X, fori=1+-+,n—1

_k
(eX)
=loghk—(nm—1DA +logX) <k, <logX

for i =1,+e,m —1.

Therefore, the number v(X) of a for which I", N B(X) = ¢, satisfies

(ws) v(X) < (n(l + log X) — log k)"
kK
= O(log X) .
If ', N B(X) +#+ ¢, then the number N(I",, X) of points of I, in
B(X) is the number of points (u,, +-+, %,) € Z", u; odd, with
—X<uei<X,1=1,0,n~—1
and

—-X=zu, k X.
= U

pheet kg tn—1

fiA
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Writing [£] for the largest integer <&, we have

Nz X) = (T2 (2 + 1)) +( Xe"‘+"':"‘l+”_‘ +1)]
(%) < 2@ e)k( ) Xe’”1+"'1];’°n-1+n—1

= @X)e/k .

Combining (x), (x=) and (xxx), we get
D(S, X) = N(S, X)/(2X)* = O((log X)*) .

Thus S is a Danzer set which provides an example for Theorem 2.
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