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INTEGRATION ON TOPOLOGICAL SEMIFIELDS

HOWARD ANTON AND W. J. PERVIN

T. A. Sarymsakov and H. A. Sarymsakov have considered
measures on topological semifields. An integration theory for
topological semifields could be based on these measures or,
alternatively, on a Daniell approach. In this paper an in-
tegration theory for topological semifields will be developed
using an analog of the Daniell method.

In the Daniell method of integration for functions on a set Ωr

the linear, topological, and lattice structures of R° are all used. A
topological vector lattice thus has all the essential structure for
generalizing the Daniell method. To obtain a measure on subsets of
Ω, the ring structure plays a role by relating subsets of Ω to idem-
potents of RΩ. It will be shown that a topological semifield can be
viewed as a topological vector lattice and thus provides a natural
setting for generalizing the Daniell method and recovering a measure.

The basic properties of topological semifields were introduced by
Antonovskii, Boltyanskii, and Sarymsakov [1, 2, 3]. The reader is
referred to these works and to [4] for details; however, for complete-
ness we will summarize some of the essential results needed here.

A topological semifield is an ordered triple (E, ^ 7 K) where E
is a commutative ring with at least two elements, ^ is Hausdorff
topology on E with respect to which E is a topological ring, K is a
subring of E such that (i) K + K c K, where K is the topological
closure of K; (ii) K Π -K = {0}; (iii) K - K = E; (iv) ax = b has a
solution in K for every a, be K; and the following axioms are satisfied:

1. If M czE is bounded above with respect to the partial order
defined by x ^ y if and only if y — x e K, then M has a supremum (\JM).

2. If MdV (the set of idempotents of E) and AM = 0, then
for each neighborhood U of 0 there exist eL, •••, ek in M such that
AL.e.eU.

3. If U is a neighborhood of 0 in E, then there exists a neigh-
borhood Γ of 0 in the relative topology of V such that EΓ c U.

4. If U is a neighborhood of 0 in E, then there exists a neigh-
borhood V of 0 such that VaU and V is saturated (i.e., xV(Z V
when \x\ <̂  1).

It follows from the axioms that there is a unique multiplicative
identity, 1, satisfying 1 > 0. Further, the minimal subsemifield con-
taining 1 is semifield isomorphic to R and is called the axis of E.
If R is identified with the axis, E becomes a vector lattice and an
ordered vector space over R with positive cone K. A nonzero idem-
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potent e is called minimal (or irreducible) if given any idempotent
e' satisfying 0 ^ e' < e, it follows that e' = 0 or e' = e.

It should be noted that the above definition of a topological semi-
field is the one given in [3]. The original notion of a semifield given
in [1] is a special case and is now called a semifield of the first kind
or a "Tychonoff" semifield. Semifields of the first kind are isomorphic
to subsemifields of the topological semifield Rά, where Δ is the set
of minimal idempotents, and are characterized by the property that
\J Δ = 1.

It is possible that there are no minimal idempotents; e.g., if E is
the set of equivalence classes of measurable functions on [0, 1] with
the usual coset operations, J7~ is the topology of convergence in
measure, and K consists of those classes whose representatives are
almost everywhere positive. The idempotents are the cosets repre-
sented by characteristic functions of measurable sets, and clearly no
minimal idempotents exist. If there are no minimal idempotents, the
semifield is said to be of the second kind. Every semifield which is
not of the first or second kind is representable as a direct sum
EΣ@En where Ez is a topological semifield of the first kind and En

is a topological semifield of the second kind.

2* Elementary integrals on integration lattices* Much of the
following integration theory will be developed for ordered topological
vector spaces and topological vector lattices (see [6] for definitions).
As previously noted, every topological semifield is an ordered topolo-
gical vector space over its axis. We will now show that it is also a
topological vector lattice.

Recall that if A is a subset of an ordered topological vector space
E, the full hull, [A], of A is defined by

[A] = {z G E: x <ί z ^ y for some x, y e A} .

If A — [A], then A is said to be full.

THEOREM 2.1. Every topological semifield is a topological vector
lattice over its axis.

Proof. By Proposition 4.7, page 104 of [6], a topological vector
space which is a vector lattice is a topological vector lattice if and only
if the positive cone is normal (i.e., there is a neighborhood basis at 0
consisting of full sets) and the lattice operations are continuous. It
follows from Theorem 19.4 of [3] that the lattice operations of a
topological semifield are continuous. Let W be any neighborhood of
0. It follows from Axiom 4 that there exists a saturated neighbor-
hood V of 0 such that V + VczW. Choose a saturated neighborhood
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U of 0 such that U + UaV. We will show that [U] is the desired
full neighborhood of 0 in W. Let ze [£/]. There exist x, ye U such
that x ^ z ^ y. Thus O ^ s - a ^ s z - a e t f - U ^ 17+ UczV. Since
F is saturated, z - xeV (see Theorem 19.2 of [3]). Thus ze x + F c
F + 7 c if so that there is a neighborhood basis at 0 consisting of
full sets.

A nonempty subset L of an ordered topological vector space E is
called an integration lattice if (i) L is a vector lattice and (ii) for
every xe E there exists an element xeL such that x ^ x. For ex-
ample, in the semifield of equivalence classes of essentially bounded
measurable functions on [0, 1], the simple functions form an integra-
tion lattice.

In the classical Daniell approach to integration, extended real
valued functions are considered in order to assure the existence of
limits of increasing sequences. In the present abstract setting, it is
desirable to avoid adjoining ideal elements. Condition (ii) insures that
the original lattice is sufficiently large so that no such adjunction
will be necessary.

If L is an integration lattice, a strictly positive linear functional
/: L —> R is called an elementary integral if I{xn) —• 0 whenever {xn}
is a sequence in E such that xn j 0; i.e., xn+1 g xn and xn—>0 in the
vector space topology.

We will assume, now, that L is a fixed integration lattice in a
topological vector lattice E, and that I is an elementary integral on
L. A point x e E will be called an upper element if there exists a
sequence {xn} in L such that xn ] x. The class of all upper elements
will be denoted by U.

LEMMA 2.2. U contains L and is closed under addition, multi-
plication by nonnegative reals, and the lattice operations.

Proof. This result follows from the continuity of the linear and
lattice operations.

LEMMA 2.3. If xn\ x and yn \ x τvhere {xn} and {yn} are sequences
in L, then l im^^ I(xn) = lim^^ I(yn).

Proof. It suffices to show that lim^^ I(yk) ^ lim^oo I(xn). Since
yk ίg x for each fixed k, x A yk = Vic Now xn A yk ^ %n so that

I(Xn Λ yk) £ I{xn) .

Further, by the continuity of Λ, xn A yk ΐ » Λ yk = Vk as n —• oo.
Therefore, yk — (xn A yk) I 0 as n —• co. From the definition of an
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elementary integral we have I(yk) — I(xn A yk) ~> 0 as n —* oo. Thus
7(24) = lim^oβ /(»» Λ yk) ̂  lim^oo/fe). Since this holds for each fixed
k, we have l i m ^ I(yk) ^ lining I(xn).

Following the usual Daniell approach, we extend 7 from L to U
by defining I(x) = lim^oo I(xn) where {xn} is any sequence in L such
that xn\ x. From the previous Lemma, ί is a well-defined function
which extends the original integral. It follows from property (ii) of
integration lattices that 7 is finite valued. It is also easy to see that
I(x + y) — I(x) + I(y) and I(cx) for c ̂  0 and x, y in U.

LEMMA 2.4. / is monotone and strictly positive on U.

Proof. Suppose xn f x, yn f 2/, and x ^ y with sc, 7/ in U and {£„},
{ί/n} in L. Then xk^y for all ft, and so ?/ Λ xk = xk- Now yn A xk^ yn

so that 7(i/n Λ xk) ^ /(?/«) since 7 was given to be a positive linear
functional on L. By the continuity of A, yn A xk] y A xk — xk as
w, —> co. Thus I(yn A xk) \ I{xk) as n —> 00. Hence

I(xk) = lim 7(i/Λ Λ xk) ^ lim % „ ) = I(y)

and, taking limits as k~^ 00^ we have 7(&) ^ /(1/). Further, if 0 ^
α; G U with 7(«) = 0, there exists a sequence {xw} in L such that a?n } x.
Then 0 ^ xn V 0 j ^ so that 0 ^ 7(a;Λ V 0) \ I{x) = 0. Thus, since 7 is
strictly positive on L, x, V 0 = 0 for all n, so that # = 0.

LEMMA 2.5. 7/ {x%} is a sequence in U such that xn ] x, then
x e U and I(xn) —-> 7(α;).

Proof. For each index m there is a sequence {?/W)m} in L such
that i/Λ,w | ί ϋ m a s ) i ^ c o . Let yn = 2/Λ>1 V 2/Wf2 V V 2/WfW e L. Since
1/W>TO ^ xm ^ xn for all m ^ n, we have i/n = VίUi l/»,m ^ ^ for all w.
Also ί/n ^ yn+1 since

% % π 4-1

Vn = V 2/n m ^ V 2/n + l,m ^ V l/n + l,m = ^ + 1
m = l m = l m —1

We will show that yn } x. Let W be a full neighborhood of E. There
exists an index N = N(W) such that xne W for all n ^ N. Since
2/π,Λr ί ,̂v> there exists an integer i — i(N(W)) such that yitNe W. Fur-
ther, we may choose i ^ N so that ^ e TF. Thus, since yitN <^ y{ <^
Xi ^ x and TΓ is full, we have yke W for each k ^ i. Thus a? G U
and I(yn)->I(x).

Since I{yn,m) ^ /(2/n) ^ /(»?«) ι by taking limits as w—> co W e have
I(xm) ^ I(x) ̂  lim^co /(»»). Finally, letting m—> oo, the lemma follows.

Define — Ϊ7 by — Ϊ7 = {XG £7: — xe U). It is easy to show that
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Lemma 2.2 holds for — U and that x e — U if and only if there exists
a sequence {xn} in L such that xn [ x. If x e — U, we define 7(x) by
I(x) = _ / ( _ # ) . This definition extends 7 as a monotone and strictly
positive function from U to U U — U and for x, y e —U and c ^ 0 we
have 7(β + y) = I(x) + 7(2/) and I(cx) = cl(x). Further, if xn e — U and
xn I x, then xe —U and 7(cc%)—>7(x) which is analogous to Lemma 2.5.

3* Summable elements and the monotone convergence theo-
rem* An element x in the topological vector lattice E is said to be
I-summable if given any ε > 0 there exists a pair of elements ye—U
and z e U such that y ^ x <Ξ 2 with 7(z) — 7(2/) < ε. The class of I-
summable elements will be denoted by Lι(I).

It is clear that if xeLι(I) then I(x) = sup {I(y): y e — U, y ^ x}
and T(x) = inf {7(JS): ^ e Z7, a; g 2;} are equal. We define I{x) to be this
common (finite) value. We note that if x e U U — Z7, then a; e L1(7) and
the new definition of I agrees with the old. In particular, LaU{I).

THEOREM 3.1. Lι(I) is an integration lattice and I is a strictly
positive linear functional on Lι(I).

Proof. Arguments analogous to those used in the classical Daniel!
development will show that 1/(7) is a linear subspace of E and 7 is a
strictly positive linear functional. To show that 7/(7) is closed under
the lattice operations, let x, ye 7/(7) and suppose ε > 0 is given. Choose
xl9 yγ in — U and x2, y2 in U such that xv ^ x <̂  x2, yι ^ y g y2 and so
that I(x2) — I{x,) < ε/2, I(y2) — I(y^ < ε/2. By Lemma 2.2 it follows
that xL V 2/i and xL Λ yL are in — U and that x2 V y2 and x2 A y2 are
in U. Since (a?t V ^ ) + (Xi A yt) = xt + yι for i = 1, 2, we have

/(a?i V 2/0 + 7(^ Λ y,) - 7(^) + 7(^) > I(x) + 7(τ/) - ε

and

7(x2 V 2/2) + Ifa Λ 2/2) = 7(x2) + 7(2/2) < 7(») + I(y) + ε .

Now

%ι v 2/1 ̂  x V 2/ ^ χ2 v y2

and

so that, by the above inequalities,

ϊ(x V y) + 7(α Λ 2/) ^ ί(a?) + (̂2/) + ε

and

7(a? V 1/) + 7(α; Λ 2/) ^ Φ ) + 7(2/) - ε .

Since ε is arbitrary, we have
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ϊ(x v y) + I(x Λy)^ I(x) + I(y) ^ I(x V y) + Z(<c Λ 2/) .

This implies that 7(x V y) = 7(# V 2/) and 7(# A y) = I(x A y). Thus
ΛJ V 2/ and a; Λ 2/ are in L^J). Finally, since LdLι{I), property (ii)
of integration lattices holds.

A topological vector lattice is said to have the monotone conver-
gence property if every monotone increasing sequence which is bounded
above converges.

THEOREM 3.2. (Monotone Convergence) If E is a topological
vector lattice with the monotone convergence property, and if {xn} is
a sequence in Lι{I) such that xn\ x, then xeU(I) and I(xn)

Proof. Let ε > 0 be given. We may suppose, by subtracting x0

if necessary, that x0 = 0. We have xn — xn^ e Lι(I) so there exists
an element yn in U such that xn — xn_γ ^ yn and

( * ) I{V«) S I(xn - Xn-d + e/2" .

By property (ii) of integration lattices, there is an element x in L
such that x <ί x. Let

n

Zn = X A Σ Vi

Then {zn} is an increasing sequence in U bounded above by x. From
the monotone convergence property, there is an element z such that
zn t z. By Lemma 2.5, z e U. Now

n n

Xn = X A Xn = ^ Λ Σ O&i ~ ^i-l) ^ ^ Λ Σ 2/i = %n

so that x ^ z. From inequality (*),

i) £ I(xn) + e

Since zn\ z, we have

) ^ lim l(± yλ - lim Σ I(y<) ̂  Mm

By a similar argument, there is an element y in — U such that y ^ x
and 7(2/) ^ lim^^ 7(.τn) — ε, so that x is I-summable.

COROLLARY 3.3. If E is a topological vector lattice with the
monotone convergence property, and if {xn} is a sequence in Lι(I)
such that xn-^x, then xeU(I) and I(xn) —+ I(x).

This corollary is the abstract analog of the Dominated Convergence
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Theorem of Lebesgue. Although the usual domination property does
not explicitly appear, it is satisfied as a consequence of condition (ii)
of integration lattices.

From Theorem 2.1, the Monotone Convergence Theorem holds for
topological semifields which have the monotone convergence property.
We note that every topological semifield of the first kind has the
monotone convergence property. Since almost everywhere convergence
implies convergence in measure for finite measure spaces, the topologi-
cal semifield S of measurable functions on [0,1] also has the monotone
convergence property. It follows that the direct sum of a semifield
of the first kind with S also has the monotone convergence property.
It is a consequence of an unpublished result of D. A. Vladimirov [4,
p. 187] that there exist semifields which are not of this form. An
open problem is to characterize those topological semifields which have
the monotone convergence property.

4* The confinal of measurable idempotents. It is shown in
[3] that the set V of all idempotents in a topological semifield forms
a (topological) Boolean algebra. We define a Boolean ring of idem-
potents to be a set Ξ of idempotents which is closed under finite
suprema and proper differences (i.e., if x, ye Ξ, then x — (x A y) e Ξ).
It should be noted that a Boolean ring is closed under finite infima
and is itself a Boolean algebra if and only if le Ξ.

As an immediate consequence of Theorem 3.1 we have the following.

THEOREM 4.1. The set J — V n Lι(I) of all I-summable idempotents
in a topological semifield forms a Boolean ring. Further, if 1 e L,
then J is a Boolean algebra.

In [5], T. A. Sarymsakov and H. A. Sarymsakov define a subset
K of V to be a eon final if it is closed under finite infima, suprema, and
complementation. It is evident that a confinal is a Boolean algebra.
They give the following definition. A nonnegative, continuous func-
tion m defined on a confinal K, admitting finite or infinite values,
finitely additive for disjoint elements of the confinal K, and equal to
zero only on the idempotent 0 is called a measure.

Let e e Δ. If there exist sup {m(a): a ^ e, ae K) = m*(e) and
inf {m(a): a ^ e, ae K) = m*(e), and they are equal, then the element
e is called measurable and m(e) — m*(e) = m*(β) is its measure. The
set of all measurable elements in V, denoted Kn is called a maximal
confinal.

THEOREM 4.2. In a topological semifield with the monotone conver-
gence property, m(e) = I(e) defines a finite measure on J. Further,



574 HOWARD ANTON AND W. J. PERVIN

J = Jp is a maximal con final with respect to this measure.

Proof. The continuity of m follows immediately from Theorem
3.2. Since JaJn to show that J is maximal, it suffices to show that
JF c Lι(I). If e G Jn then from the definition of an integration lattice,
there is an element e in I/(J) such that e <ί e. Thus m*(e) = m*(e) =
sup {m(a): a <£ β, α e J } ^ J(e) < +00. It follows that there exist e19

e2eJ and ze U, ye —U such that 2 / ^ β ! ^ β ^ e 2 ^ « and J(e2) — /(ej <
ε/2, J(z) < I(e2) + ε/4, % ) > I(β l) - ε/4. So that β e L 1 ^ ) .

In [5] an element xeE is called measurable if its carrier ex (see
[3], p. 68) is in Kv and V{e: #e < λe} e ϋΓΓ for every real number λ.
The relationship between these measurable elements and the J-sum-
mable elements obtained in the above Daniell approach will not be
considered here.
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