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FUNCTIONALLY COMPACT SPACES, C-COMPACT
SPACES AND MAPPINGS OF MINIMAL

HAUSDORFF SPACES

S. W. WILLARD

Our interest in this paper is in the mapping properties
of minimal Hausdorff spaces; some of the results will provide
new characterizations of the classes of functionally compact
and C-compact spaces. Of more than secondary interest,
it may be the primary message of the paper, is the point of
view adopted (and outlined in §2) in studying the "divisibility"
of the highly nondivisible class of minimal Hausdorff spaces.

!• Introduction* Let X be a Hausdorff space. Then X is
absolutely dosed (AC) iff whenever X is embedded in a Hausdorff space
Y, X is closed in Y. We call X minimal Hausdorff (MH) iff X admits
no one-to-one continuous map to a Hausdorff space which is not a
homeomorphism. X is functionally compact (FC) iff every continuous
map on X to a Hausdorff space is a closed map. Finally, Velicko [13]
has defined a set A in a space X to be an H-set iff for each family
of sets open in X and covering A, there is a finite subfamily whose
closures in X cover A. Porter and Thomas [11; Thm. 2.5] have observed
that in Hausdorff spaces iί-sets are closed, and Viglino [14] has defined
a Hausdorff space to be C-compact (CC) iff every closed set is an ίZ-set.

Some of the basic results we will need concerning the classes of
spaces defined above are given in the following theorem.

THEOREM 1.1. Let X be a Hausdorff space. Then
( a ) ([4]) X is AC iff every open filter on X has a cluster

point,
(b) ([4]) X is MH iff every open filter on X with a unique

cluster point converges (necessarily to that point),
( c) ([5]) X is FC iff whenever fS is an open filter base on X

such that f){U\Ue%S} = Γ\{U\ Ue^}, then <U is a base for the
neighborhoods of Π {U\Ue^}.

(d) ([15]) X is CC iff every open filter base ̂  on X is a base
for the nhoods of f]{U\Ue ^ } .

Each of the characteristic properties above can be applied to
non-Hausdorff spaces. For example, a (not necessarily Hausdorff)
space X is generalized minimal Hausdorff (GMH) iff every open filter
with a unique cluster point converges. Similar definitions can be
given for generalized absolutely closed (GAC), generalized functionally
compact (GFC) and generalized C-compact (GCC) spaces.
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The following theorem displays the relationships between the
properties introduced so far.

THEOREM 1.2. Compact => CC => FC => MH => AC and none of these
implications can, in general, be reversed.

The proof, as well as the necessary counterexamples can be found
divided between [14], [5], [7], [12] and [4].

2* Mappings of minimal Hausdorίϊ spaces* Products and
continuous images of compact spaces are compact; it has been a
continuing object of interest in investigations concerning the weaker
versions of compactness introduced above to discover the extent to
which these properties are similarly productive and divisible. It will
be convenient to introduce, at this point, the term Hausdorff divisible,
which will designate those properties of topological spaces which are
preserved by quotient maps with Hausdorff range. Our investigation
will center on the study of Hausdorff divisibility in the class of MH
spaces.

This class is not Hausdorff divisible. In fact, the stock example
of a non-MH AC space is a perfect (= closed, continuous with compact
point-inverses) image of the stock example of a non-compact MH
space (see [3]). Whenever, as here, a class & of topological spaces
is badly treated by a class £^ of maps, a great deal of information
can be derived by considering two related classes:

R&(&*): the class of spaces whose every ^-image lies in ^ , and
Pje(0*)\ the class of spaces which are ^-images of spaces from

class &>.

Note that these classes are, respectively, the largest class smaller
than & which is closed under ^-maps and the smallest class larger
than & which is closed under =S^-maps, assuming that the class ^
includes all identity maps. These facts make R , (0*) and P.y>(0*)
natural objects for study whenever the class & is not itself closed
under ^-maps.

Arhangelskii [1] specifically identified P,( .^) as an object of
concern, but failed to mention Rj?{&). In this section, we will
determine R,{0^) for the class & of MH spaces and the class £f
of continuous maps whose domain and range are Hausdorff (Theorem
2.1), use this to prove a rather curious corollary (2.3) and, along the
way, provide new characterizations of the class of FC spaces (2.1).

THEOREM 2.1. The following are equivalent, for a Hausdorff
space X:
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( a ) X is PC,
(b) every continuous map of X onto a Hausdorff space is a

quotient map,
(c ) every continuous Hausdorff image of X is MH,
( d ) every Hausdorff quotient of X is MH,
( e ) every closed continuous Hausdorff image of X is MH.

Proof, (a) ==> (b) and (c) => (d) ==> (e) are obvious.
( b ) = > ( c ) : Suppose X has the property of (b) and / is a

continuous map of X onto a Hausdorff space Y. If Y is not minimal
Hausdorff, let Y* be the set Y with a strictly weaker Hausdorff
topology. Then / defines a map / * : X—» Y* which is continuous but
cannot be a quotient mapping, a contradiction.

( e ) = > ( a ) : Suppose X is not FC. Then, by Theorem 1.1, for
some open filter base ^ on I , Π {U\ Ue ^} = Π {U\ Ue ^} = A,
while ^/ is not a neighborhood base at A. Now if A is empty, X itself
is not MH, which is impossible. On the other hand, if A is nonempty,
then the quotient Z obtained from X by identifying the points of A
is Hausdorff, but not minimal Hausdorff. For it can be retopologized
as a Hausdorff space with a strictly smaller neighborhood base at A.
Since the quotient map of X onto Z is closed, we are done.

Part (b) of the last theorem makes it clear that the study of
the class of FC spaces is the study of what, at first glance, would
seem to be a wider and more natural class of spaces, i.e., those
spaces X with the property that, if / is a continuous map from X
to a Hausdorff space Y, then / is a quotient map.

Theorem 2.1 also has an obvious, but rather curious, consequence
(Theorem 2.3), for which we require the following result.

THEOREM 2.2. Let X be a topological space. If the projection
X x Y —> Y is closed for each compact Hausdorff space Y, then X is
compact.

Proof. Let n be an infinite cardinal, Ωn the least ordinal of
cardinal n. According to a result of Noble [10; Thm. 2.2], if Y
contains a point y such that

( a ) n is the smallest cardinal of a neighborhood base at y, and
( b ) there is a family {Sa | a e Ωn) of closed subsets of Y such

that y is in the closure of \JaeΏnSa, but not in the closure of \Ja<aQSa

for any aQ e Ωn,
then for the projection ^ : l x 7 - ^ 7 to be closed, it is necessary
that every open cover of X of cardinarity n has a subcover of
cardinality < n.

Since compact Hausdorff spaces Y can be found satisfying con-
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ditions (a) and (b) above for any infinite cardinal n (for example,
Y = the one-point compactification of Ωn), we conclude that every-
infinite open cover of X has a subcover of strictly smaller cardinality,
whence (easily) X is compact.

THEOREM 2.3. (a) If a class &> of spaces contained in the class
of FC spaces and containing the class of compact Hausdorff spaces is
productive, then 0> is the class of compact Hausdorff spaces.

(b) If a class & of spaces contained in the class of MH spaces
and containing the class of compact Hausdorff spaces is productive
and Hausdorff divisible, then .^ is the class of compact Hausdorff
spaces.

( c ) If a noncompact space X is FC or CC, then there is a compact
Hausdorff space Y such that Xx Y is not FC.

Proof, ( a ) and ( c ) follow directly from Lemma 2.2; (b) follows
from 2.1 and ( a ) .

Thus "nice" properties between compactness and the MH property
are confined to one, compactness itself. This use of Theorem 2.1 is
a good example of the utility of the concepts R^>{3^) and P ^ ( ^ )
for nondivisible classes.

The problem of determining P^(^) for the class & of MH spaces
and the class Sf of maps with Hausdorff range remains open. The
following is an attractive conjecture:

Conjecture. A Hausdorff space X is AC iff it is the continuous
image of some MH space.

3* C-compact Spaces* By relaxing the separation axiom in 2.1
(c), (d), and (e), one obtains a characterization of C-compact spaces
and determines RSΛ^) f ° r the class & of GMH spaces and the class
^ of continuous maps with Hausdorff domain and Tx range. To
introduce this, we give a preliminary characterization of GCC spaces.
We will use the following terminology: an open filter base ^ on a
topological space X converges to a set A ϋ X iff every nhood V of A
contains an element of ^ , and an open filter base <ZS meets a set
B s X iff U Π B Φ 0 for each Ue ^/.

LEMMA 3.1. The following are equivalent for a space X:
( a ) X is GCC,
( b ) every closed set in X is an H-set,
(c) the continuous image of X is GCC, and
( d ) if A is closed in X and Ήf is an open filter base which

meets A, then ^ has a cluster point in A.
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Proof. The proof is straightforward.

THEOREM 3.2. The following are equivalent for a Hausdorff
space X:

(a) X is C-compact,
(b) every continuous Tλ image of X is GMH,
(c) every T1 quotient of X is GMH, and
(d) every closed continuous T\ image of X is GMH.

Proof. Clearly (b) implies (c) and (c) implies (d). That (a) implies
(b) follows immediately from 3.1 and 1.1. To prove (d) implies (a),
suppose X is not C-compact. Then, say, ^ is an open filter base in
X with C = f){U\Ue <%r}, while <%S does not converge to C, by 3.1.
Obtain a quotient Z of X by identifying the points of C; call the
quotient map h. Then Z is Tt and h is a closed continuous map of
X onto Z, but Z is not GMH. For, by an easy rearrangement, we
may assume C has no interior and U Π C = 0 for each Ue%f. Now
if UeiZS, then h(U) is open in Z and each nhood of h(C) = p meets
h(U), so pe h(U). Moreover, if q Φ p in Z, then some nhood of q
fails to meet some h(U) [else hrι(q) be a point in Π Ό which is not
in C], so n h{U) — {p}. But if V is a nhood of C in X which con-
tains no Ue^, then h(V) is a nhood of p which contains no h(U).
Thus we have an open filter base {h(U)\Ue%S} in Z with a unique
cluster point p which does not converge to p. So Z is not GMH.
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