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TWO UNIFORM BOUNDEDNESS THEOREMS

JaMES D. STEIN JR.

A geodesically convex space is a metric space in which
each two points can be connected by a unique segment (a
path of minimal length). An affine transformation between
two geodesically convex spaces is a map which takes segments
into segments, It is shown that, if the domain is complete,
a pointwise-bounded family of continuous affine transforma-
tions is uniformly bounded. Under a mild additional hypo-
thesis, the following stronger theorem holds: if

F ={T.,|Ac A}

is a pointwise-bounded family of affine transformatons and 7,
is continuous on a closed geodesically convex S, with

nsa¢®y

Aea

then Jay, -+, a, such that 7~ is uniformly bounded on
n
(1 Sey -
k=1

Let (X, d), (Y, d') be metric spaces, and & = {T,|aec A} a collec-
tion of maps from X to Y. We say & is pointwise-bounded if, for
fixed x, ye X, sup{d'(T,x, T.y)|xe A} is finite. If z,e SE X, we say
& is uniformly bounded on S if sup{d(T.x, T., z,)|xe S, ac A} is
finite. A uniform boundedness theorem is one in which uniform bou-
ndedness (for some family &) is deduced from pointwise-boundedness.

Let v:[0, 1] — X be continuous, 0 = ¢, < «++ < ¢, =1 a partition
P of [0, 1], define #(v, P) = > 1=, d(v(t:), 7(t—y)), and define ~(v) to be
the supremum over all partitions P of the (v, P). For z, yec X,
define d,(x,y) = inf{#(v)|7: [0, 1] — X, v(0) = &, v(1) = y}; this is the
geodesic or intrinsic distance between x and y. d, is a generalized
metric, and v is said to be a segment from x to y if

70 =z, 71) =y,
and #(v) = d (z, y) < co.

DEFINITION 1. X is said to be geodesically convex if for any
z,y in X there is a unique segment from x to y. We denote by
O,(x,y,t) the intrinsic parametrization of this segment (if 0 <t <
s<1,d,(0,(z,¥,t), Dz, y,s) = (s — )d,(x, y); Tis said to be an affine
map between geodesically convex spaces if T(?,(x, y, t)) = @,(Tx, Ty, t).

A term often used for a geodesically convex space is a space with
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unique segments. Throughout this paper we assume d = d,.
Our first theorem is a generalization to geodesically convex spaces
of the classical Banach-Steinhaus Theorem.

THEOREM 1. Let (X, d) be a geodesically convex complete metric
space and let (Y, d") be geodesically convex. Let # = {T,|ac A} bea
pointwise-bounded family of geodesically affine maps from X to Y,
each of which is continuous. Then for each x,€ X,

sup {d' (T, T.a,) e A, d(z, x,) < 1}

18 finite.
We shall need the following lemma.

LEMMA 1. For each ac A, z,€ X and p > 0,
(@, 2, p) = sup {d'(T.x, Tozo) |d(, 2)) = D}

18 fimite.

Proof. By continuity of T, at 2, 36 > 0 such that
Az, 2,) < 0=d' (T, T,2,) <1;

we can clearly assume § < p. If x€ X, d(z, 2,) < p, letz = @,(z,, x, 6/2p),
then d(z,, 2) = 6/2pd(z,, x) < 0, s0 d'(T.z, T.2) < 1. But

Ta(q)y(zoy ./I}, 5/2p)) = (Dg(TazO, Taxr 5/21)) ’
and so d'(T.z,, Tx2) = 6/2pd (T2, Tox) < 1, 80 d'(T,2,, T.x) < 2p/0.

For purposes of simplicity, we prove the following lemma.

LEMMA 2. Assume the conclusion of the theorem 1s false. Let
M>02,+,2,€X and T, «-+, T, € F be given, with d(x, x,) <
11k n). Then 3z, € X, Ty € F with d(x,, ©,,) <1, d(@®,, 2,.,) <
120+ @(T i Zpes, Toray) > M, and

d’(Tkxn’ Tkxn+1) < 1/27”-l

for 1<k < n.

Proof. For ze X, let S(x) = sup {d'(T.x, T.x,)|ac A}). Let
Q= 1/3 min (2—%—-1,},.(1, Loy 2)_17 M) 2~”~17‘(na Ly 2)—19 2—-%—-1’ 1- d(xm .’X?o)) ’

then a > 0. If the theorem is false, then for any K > 0 there is a
ze X with d(#,, 2) < 1land a Te . &# with K < d'(Tx,, Tz), consequently
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K < d(Tx,, Tz) < d'(Tx,, Tx,) + d'(Tx,, Tz) < S(x,) + d'(Tx,, Tz).
This means that we can always find a z€ X and Te.& with
d(z,, 2) < 1

and d'(Tx,, Tz) arbitrarily large. Having defined «, choose ye X,
T(=T,.)e. with d(y, z) <1, ad(Tz,, Ty) — S(x,) > M, and let
Ty = DOy2,, ¥, ). Then d(x,, ,.) = ad(z,, y) =27 Forl <k < n,
we have
d,(Tkxny Tkxn-i—l) = d,(TkQQ(xTH ’!/, O)y Tk@g(xm :L/'y a))
= d’(Qg(Tkxm Tlcyy O)y Q)g(Tkmm Tkya C())
= ad'(Tw,, Ty = ar(k, ©,, 2) <277,

We also have

Aoy Bsr) = A2y ) + D@0y Trr)
= d(o, @) + AP, (2., ¥, 0), (2, ¥, )
= d(x,, 2,) + ad(x,, y) < d(x,, ©,) + 2a
< d(wy, ®,) + 1 — d(x,, ®,)
=1.
Finally,

ad' (Tx,, Ty) = d'(Tx,, T,
< d'(Tx,, Tx)) + d(Tx,, Tx,.,)
< S(z,) + d'(Txy, Twpey) = d' (T2 Tuyy)
= ad(Tx,, Ty) — S(z,) > M,

completing the proof.
We return to the proof of the theorem. Assume the theorem is
false. Then 3x,¢ X, T, ¢ & with
d(xy, x) < 1, d'(Tywy, Tix) > 2.
Having chosen %, +++,2,¢ X, T, -+, T, € & with
Ay, ) <1A £k < m),

by Lemma 2 choose %,., € X, T,.. € .7 with d(z,, z,.) < 1, d(,, Z,,) <
27 AT oy Trorir) > 1+ 2 and (T, Tp,r) <2t forl <k < n.
Since d(z,, T,.,) < 27, the sequence {z,|n=1,2, ...} is Cauchy
n < m=dx,, £, < >r=t27%"); by completeness z, — x ¢ X. By con-
tinuity of T, we have lim,_..d(T,x, T,%,..) = 0, so
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d'(T,x Tx,) < d'(Tx, T.2) + d(Tox, Tyx,) < «--
é d'(TnxOy Tnx) + i d’(Tnxk! Tnxk+1) + d,(T'nxi Tnxm+1) ;

k=mn

letting m — ~ we obtain
ATy, Tor) < d'(Togy Ty) + S, d'(To,, Toipss)
k=mn

< ATy, Tow) + S 275 < d'(Toay, Too) + 1,

k=mn

since k = n — A (T Toxrey) < 2=+, So
n+ 1< d(Ty, Ty = d{Toy, To) + 1 —d/(Tua, To2) > m

contradicting the pointwise-boundedness of &,

We now make an additional hypothesis, which will enable us to
prove a stronger version of this theorem. Let @ = @,.
DEFINITION 2. If 0 < @ < 1, define
M(a) = sup {d(P(z, ¥, o), C(x, 2, @)/d(y, )|z, ¥, 2€ X, ¥y # 2z},
and define M'(«) similarly in Y. Note that, if M(a) < oo, then
2, Y, 2€ X = d(D(z, y, ), O(z, 2, o)) = M{a)yd(y, z) .

For the remainder of this paper we shall make the following ass-
umption: Ja € (0, 1) such that both M(«) and M'(a) are finite. This
a will be fixed from now on.

DEFINITION 3. Let {z,|/n=1,2, ---.} £ X, and let z,€ X. Define
2" = @(x,, ©, ), and for 2 < k < n define 2" = O(Xpr, s, 247, ). Now
define y, = 2* for n =1,2, «--.

If X were a Banach space and 2z, = 0, then we would have

In general, however, we have y, = @(x,, @(,, - -+, O(,, T @), +++, Q),
which will henceforth be abbreviated @(x, ---, O(x,, x, @), «--, ).
LEMMA 3. Given
{ﬂ/%i/n: 1, 2’ "'}gX,

2 € X, define {y,|n=1,2, ---} as wn Definition 3. Then
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d(ym yn—l) é M(a)n—l(l - a)d(xm xo)

if n=2.

Proof. Clearly, we have

Y Yn1)

APy =y D(Xyy oy @),y +ooy @)y D(yy + vy DTy, Tpy @), =+ 2, Q)
M)A D (x5, ++ =y O(2y, Ty, )y =+ vy @), D(Xgy ==y D(Xpy, Ty, Q), +++, X))
coo £ M(a) "D (20, D20y oy @), @), D(Xp_yy Toy @)

= M(a)" ' d(D (., oy @), )

= (1 — a)M(a)" " d(x,, x,) .

Il

AN A

LeEmMMA 4. Let S be a convex subset of X, p >0, and let x,€ S,
F = {T,|ne 4} a collection of affine functions on X. If F 1is not
uniformly bounded on S N S(x, p), then giwen M >0, ¢ >0, we can
find a Te & and an xe SN S(x, p) such that d(xz, x) < e and

d'(Tx, Tx,) > M .
Proof. We can assume without loss of generality that ¢ < p.

Choose Te &, ye SN S(x,, p) such that d'(Ty, Tx,) > Mp/e. Let x =
@(x,, ¥, €/p); €S by the convexity of S. Now

d(z, x,) = (¢/p)d{y, x,) < ¢,
and

d(Te, Te,)

i

d'(TO(xy, y, &/p), T,
= d'(@(Tx,, Ty, ¢/p), Ta,)
= ¢/pd' (T, Ty) > M,

completing the proof.
The next lemma will be critical in proving the desired theorem.

LEMMA 5. Let {S,|n =1,2, ---} be a collection of closed convex
subsets of X, and let {T,|n =1,2, ---} be a collection of affine func-
tions on X such that T,|S, is continuous forn = 1,2,, «+-. Assume
that ©,., € Ni-. S for m=1,2, --+, and that d(z,, x,) is sufficiently
small to make {y,|n = 1,2, ---} (as defined in Definition 2) a Cauchy
sequence (we do this by requiring >, M(a)"7'd(x,, x,) to converge).
By completeness of X, let y = lim, .y,. Then for each integer N,
Tyvy = lim, e TyY.,.
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Proof. Observe first that, if lim,..w, =% (in either X or Y),
then lim,_.. &(v, %,, @) = ®(v, u, ), as
(@, %, @), D(v, u, a)) < M(a)d(%,, u) —0 .

If w> N, let 2z, = @(xyyy, +--, O(x,, o, @), +++, @). As in Lemma

1, we can show that d(z,, z._) < (1 — @) M(a)~~**d(zx,, %,), and since

e M(a)~'d(z,, x,) converges, we can define z = lim,_..#2,. Note that

n>N=2,€8y, a8 Xyiy +++, 2, €8y and S, is convex. Since Sy is

closed, z¢ Sy, and so T,z,— Tyz by the continuity of T|S,. If
n > N, we have

TNyn = TNd)(xl, LN dj(xNy Zns C(), see, a)
= @(Tlea ° @(TN-/X/'N, TNZ,,L, a), ooy, a{) ,

and so

lim Tyy, = (D(Tle, coo, Him O(Tyyy, TyRny C)y =y a>

n—co n—co

= @(Tle, cee, @(TNwN, lim Tz, a), cee, a>
= O(Tyw, «+, O(Tyxy, Tyz, @), -, @) .

Since Yu = @(xly ) q)(xN’ 2 CY), ety CY) and

n—>co

y = limy, = (D<x1, coe, lim @(xy, 2, a))
- Q(xu tt @(er 2, a)v cc ey a) ’

we see that T,y = O(Tyx, -+, O(Tyy, Thz, @), «--, &) = lim,_. Ty¥,.

It is now necessary to perform some calculations. Assume
{waln=1,2,---}c X,
z,€ X, and {y,|n = 1, 2, ---} is defined as in Definition 3. Now define
2= DXy » oy D(Xny Toy @)y » vy &) = O(Byy Z4ry, O)

(for the purpose of these calculations, » will be assumed to be fixed)
for k<n -1, z,= 90, 2, @). We now have d(x, O, %, @) =
Ao, 2,) < d(@oy Y) + 321 (d(R4y 2411), as clearly z, = y,. Observe fur-
ther that

A2y 2er) = AD(Xy, 2y Q) Zpry)
= (1 — a)d(x, 2it1)
§ (1 - a)[d(xk’ 930) + d(xoy zk+1)]

for k<n— 1.
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We now prove some computational lemmas.

LEMMA 6. If k< n— 2,
A @y Zhry) = (1 + a)A(@ysyy @) + ad(@g, 24rs) -
Proof.
Aoy Zht1) = ARpryy Tpr) + A(@prsy, o)
= A(P(Fps1y Rprar @)y Tpry) + A(Xpy, o)
= ad(Xp11, Zpr) + A(Tpps, To)
=< ald(@pry o) + Aoy Rr2)] + A(@psyy To)
= (1 + &)d(@ps1y o) + (X, Z4ss) -
LEMMA 7. If k< n — 2, then
n—k—2
(@, 210) = (1 + @) 2 W@y Tpr14g) + (L — @) 'd(wy, @)

Proof. If j <n — k — 2, we shall verify the inequality
(o, L) = (1 4 Q) ; aid(xm Lpr1i) + M d(&oy Zprjre) -

If 5 = 0, this inequality is the conclusion of Lemma 4. Inductively,
assume it is true for ;. By Lemma 6, we have

A d(Xgy Zhsgre) = AV 4 VA (Xoy Bpsjio) + AA(Woy Zhtjrs)] 5

adding this term to the j* inequality yields the inequality for j + 1.
When j = n — k — 2, we therefore have

n—k—2 .
Ay zi) = 3 (1 + Q@d(@o, Tiris) + @@y 2,)
n—k—
=1+ a) S Wd@y Bss) + 1 — Qad(w, @) -

A consequence of Lemma 7 and a previous observation is that
A@e 2ee1) = (1 — )d(@y, 20) + (@) 2e41)]
= (1= (o, 2) + 1+ @)Y @d(wy 540.s)
+ 1 — a)ar ' d(,, x,)] -

Now let 1 <k <mn—1. We make the following definition for
E<j<mn.
PP =1—a ifj==Fk
=1 — )+ ifk<j<mn
= (1 — aytanr= itj=mn.
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Then d(z, 2z14,) = 07— ¢ d(x;, @), and so
(1 - a’)d(.’L‘o, xn) = d(xOy @(mm Loy C())

< d(xy, Ya) + g A2k Zit1)

n—1

< da ) + 3 (3 10 d(w, w)

n—1

k ) n—1 3
= da 1) + 3 (3 0 )@ ) + 5 (e, @) -

Hfl=sk=n-—1,let g =235 4", and let
l@n:ngl Jd-1-a.

Obviously B, >0 if 1<k <n — 1, and also
S = (- aps e
=1 =1

=1 - ap gaf
=1 - o[l —a)/1 - a)]
=l-agl -—a)<l-a,

and so B, < 0. Since this calculation has been performed for the
integer n, we shall relabel the constants just obtained g™, ---, B\
The last inequality proved shows that

0 § d(x()y yn) + kg‘; ,Bl(an)d(xoa xk) il

which implies that d(x,, ¥.) = (—B™)d(x, ) — S22t BMd(xy, 2). A
reexamination of the work done subsequent to Lemma 3 shows that,
if T: X— Y is affine, then

n—1

d'(Tx,, Ty,) = (—B)A (T, Tx,) — >, BV d (T, Tay) .

k=1

We have therefore proved the following:

LEMMA 8. Let & = {T)|xe€ 4} be a pointwise-bounded family of
affine functions from X into Y, and let {x,|n =1, 2, ---} be given in
X, {yulmn=1,2, «++} as in Definition 2. If

S(x) = supd' (T, Tx))|Te &},
then d'(Tx, Ty,) = (—B")d (T, Tx,) — D32t B S(wy) for any Te F.

Proof. Immediate from previous work and the fact that
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d' (T, Tx) < S(xy)
for all Te &,

We come now to the desired theorem.

THEOREM 2. Let (X, d), (Y,d') be spaces with unique segments,
let X be complete, and assume there is an « < (0,1) such that M(x),
M' (o) are finite. Let & = {T;|x€ A} be a pointwise-bounded family of
affine maps from X into Y, and let S, be a closed convex subset of X
such that M. S; = @ and T,|S; is continuous for each e A. Then
ANy, v eo, M€ 4 such that 7 is wniformly bounded on [\i-,S;,.

Proof. Let ®,€[):e4S; » >0, and assume that .& is not uni-
formly bounded on the intersection of S(x,, ») and any finite intersec-
tion of the {S;|ne4}. We assert that we can prove the following:
given x,, ++-,2,¢ X, T, ++-, T, € & with T,|S, continuous, 1<k <n
and 2,e NlS; for 2<k=<mn, and given M >0, let y, -+, y, be
derived from z, --., %, as in Definition 3. Then we can find %, €
N#-. Sy and T,.,€.&# such that, if we let y,., be derived from
2y, *°+, Loy, as In Definition 3,

d(xO’ yn+l) < p; d(ym yn-i—l) < 1/2n+1’ dl(T +1yn+19 Tn+1x0) > M y

and d(T ., Tins) < 1/277 for 1 < Kk < n.
Since x,€ M-, S;, choose §, (1 £k < n) such that ze S,

d(x, x,) < 0, = d' (T, Tpxy) < 1/2"7(1 — a)M' () ;

then if we define y = @(z,, - - -, O(z,, ¢z, %, @), @), --+, @), by Lemma 3
we have xe S, d(z, x,) < 0, = d'(Tw., Twy) < 1/2"*. Now let

Y =27"min (p, 6y, ¢+ +,0,, (0 — d(@, ¥.))/(1 — @) M(c)", 1/(1 — c) M{c)"2"+) .

Finally, by Lemma 4 choose z,.,€ ;. S, and T(=T,.,)e & with
A(Xoy Tpir) < v and (— B (T, Try) > M -+ Si, 87V S(2;). Define
Ynir = (@}, =+ o) D(Lpyy, Toy @), +++, ®). We have already observed that
1=k n=d (T, TWW.:) < 1/2"". Now by Lemma 3
AYns Ynsr) = (1 — @) M(@)"d(w, ©,+,) < 1/27F,
and also
d(xm yn+1) é d(xl)! yn) + d(ym yn-H)
= d(@o Ya) + (1 — @) M()"d(@0y Tprs)
< d(xoy yn) + (p - d(xoy yn))
ot p .

By Lemma 8 we see that
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A (TY i1y Ta) = (=B (T50, Tpi) — é‘, BiS(wy) > M .

Construct {y,|n =1, 2, ---} by this procedure to insure that
d(xm Q/M 1) < py d<yn9 y'rb+1) < 1/2%_H

and choose {T,|n=1,2, ---} =7 with d'(T,+Yns1, Ths ) >n+2 and
AT Yy Ty < /20 for 1 < k < %. Now {y,|n =1, 2, --.} is Cauchy,
so let y = lim,_..y,. By Lemma 5, for each integer n we have

Tny - lim Tnyk ’

MN—00
and so far any # we have lim,_.d (79, T, Yn+) = 0. So

d,(Tnin Tnyn) S d,(Tnxoy Tny) + d/(Tny, Tny'n) é e

é d,(Tnxoy Tny) + k;‘Ld,(Tnyk’ Tnyk+1) + d’(Tﬂ.yy Tnym-!-l) )
as m-— oo we obtain

dl(Tnmm Tnyn) é d,(Tnxm Tny) + kg d,(Tnyky Tny/H—l)

< ATy, Toy) + 3, 274

k==

< d’(Tnxw Tny) + 1 y
Since k z "= d,(Tnykv Tnyk-i‘l) < 1/2k+1- SO
o+ 1< d(Tao Tor) < d(Toxo, Toy) + 1= d'(Toxe, Toy) > 5,

contradicting the pointwise-boundedness of & and completing the
proof.

In conclusion, although spaces such that M(«) is infinite for every
ae(0,1) are highly pathological, it would be nice to know whether
or not the restriction that some M(a) and M'(a) be finite can be
removed.
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