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FATOU'S LEMMA IN NORMED LINEAR SPACES

STEPHEN SCHEINBERG

This note presents a generalization of Fatou's lemma to
arbitrary normed linear spaces. Several examples illustrate
the situations in which this notion is meaningful. The main
theorem gives an abstract characterization of the Fatou
property. In particular this resolves the case of any reflexive
space. An example shows that Fatou's lemma may fail even
for uniform convergence in a normed algebra of continuous
functions.

Frequently in analysis one obtains a function by a limit-
ing process which is weaker (less demanding) than con-
vergence in the norm. For example, a continuous function
may be obtained as the point-wise, but not necessary uni-
form, limit of other continuous functions. Έven though the
limit is not a norm limit, one may still need to know that the
norm of the limit function is no greater than the norms of
the approximating functions. The classical case is, of course,

Fatou's lemma: if fn —> f pointwise, then

j | / | ^ l i m i n f j l / . l .

Another common situation is this. A subspace A <Ξ C (X) is
given which has a norm, | | / | | ^ sup|/ | . If /»-»/ pointwise
(or uniformly), does it follow that | | / | | ^ lim inf | |/»| |?
The answer is " y e s " quite often, but can be " n o , " even
when A is a subalgebra.

Motivated by a wide variety of examples, I wish to consider the

following general situation. Throughout this paper A will be a

normed linear space, not necessarily complete, and j?~ will be a local-

ly convex Hausdorff topology on A which is weaker (coarser) than

the norm topology. Say that Fatou's lemma holds for A relative to

^~ if whenever aβ-+a in ^ 7 it follows t h a t \\a\\ ̂  l im r in f^r \\aβ\\.

I t is usually easier to apply the equivalent condition s tated in the

following proposition.

PROPOSITION. Fatou's lemma holds for A relative to J7~*=> whenever

a in ^ 7 it follows that \\ a | | ^ sup^ || aβ | | .

Proof. => is obvious, since sup ^ lim inf. For^=, let aβ-+a in

be given. We may assume lim r inf^ r \\aβ | | = L < oo, for other-

wise there is nothing to prove. Fix ε > 0. Given 7, 3/3^7 with

\\<iβ II ̂  L + ε. Write this β as β(i) and we obtain aβir)-+a with

sup r II aβ{r) II ̂  L + ε. By hypothesis, then || a || ^ L + ε. Now let ε —* 0.
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It may be instructive to examine a few examples.

1* For each E1 £ E2 S Ez £ with each I?,- measurable and
U-E'i = [0, 1], the topology J7~ of uniform convergence on every Eβ

is locally convex and Hausdorff. EgorofPs theorem shows that if
measurable fn—*f pointwise, then fn—>f in ^~ for some such ^ 7
In this manner the classical Fatou's lemma becomes a special case
of the definition above.

2. Let A = Cι[0, 1], | | / | | = sup |/1 + sup |/ ' | , and jr" be the
topology of pointwise convergence. To verify Fatou's lemma, suppose
fa(x)—*f(%) for each x. Let xQ maximize | / | and xι maximize | / ' | .
Then [fa(x + δ) -fa(x)]/d^[f(x + δ) - f(x)]fδ, implying f'a(Xl + ΘJ)-^
fr(x1 + θδ) by the mean-value theorem. This takes care of the part of
the norm depending | / ' | , the part depending on [/[ following from
Λ(a?o)-^/(»o). The same result holds for \\f || = sup (|/ | + | f'\) or
11/11 = max (sup | / | , sup |/'|)> etc. Using the appropriate differen-
tial quotients we can extend this example to any of the usual Ck-
norms and of course to other manifolds.

3* Let D be an open connected subset of the plane which is
the interior of its closure D. Let A = all functions continuous on
D which are analytic on D, with the sup norm, and ^ " = the
topology of convergence in each derivative at some fixed point z0 e D.
To conclude || / || ^ sup || fa\\ from f{

a

k)(z0) ->f{k)(z0) (all &), one may
argue this way: if sup | | / α | | = c>o, done; if s u p | | / α | | < oo, then a
standard normal families argument shows that some subnet converges
uniformly on compact subsets of D. This implies that

for each ze D, which completes the proof. See de Leeuw [1] for a
different proof of a similar example.

4. Let A = all continuous functions on [0, 1] satisfying | | / | | =
sup I / I + Σ 2n I f(l/ri) I < oo and let ^~ be the topology of pointwise
convergence. The proof of Fatou's lemma for this example is a direct
consequence of the classical case for a discrete measure plus part of
the proof in Example 2.

5* Let A = all C1 functions on the circle with C1 norm,
the topology of convergence in each Fourier coefficient. If fr—>f in
^ 7 then Kn*fr—>Kn*f uniformly, since the Fejer kernel Kn uses
only finitely many coefficients. By the argument in example 2,
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II Kn * / II < supr II Kn * fr || and since Kn*f —>/ uniformly (and even in
norm), we get

|| / || ^ supw || Kn * / || fS sup. supr || Iζ, * / r || .

The proof is completed by the observation that || Kn * g |[ ^ || g || for
any g. See [1] for abstractions and generalizations of this example.

In discussing the general situation let us use X* for the space
of all continuous linear mappings of a topological vector space X into
the scalar field. Observe that (A, J^~)* g i * . If X is a normed
linear space, let U(X) be the unit ball of X.

THEOREM 1. Let A, J7~ he given. These are equivalent.
(1) Fatou's lemma holds for A relative to j^~.
(2) (A, ^Ύ Π 17 (A*) is weak-*-dense in £7 (A*).
(3) For every ae A, \\a \\ = sup {\φ(a) \: φe (A, ^ H *

Proof. 1 —* 3: It is sufficient to prove (3) for an arbitrary α0 of
norm 1. Let C ~ {α: || α || ^ 1 — ε}, where ε > 0. By (1) the closure
C of C in Jί7~ does not contain α0. Since C is convex, circled, and
contains 0, there is a functional <pe(A, <_̂ ~)* with

(α)|: aeC} - (l-ε)||<p|( .

Since || α01| = 1, this proves (3).

3 - > 2 : If (2) is false, let D = (A, S~)* Γ) U{A*) and let i ί e
U(A*) be chosen so that Ψ £ D = the weak-*-closure of Z). This implies
existence of JP in (A*, weak-*-topology)* with

F(Ψ)

Since F is given by evaluation at some ae A, we get

Ψ(a) > sup {I φ(a) \: φ e S} ^ sup {| φ(α) | : φ e D} .

This evidently contradicts (3).

2 —> 1: Let aβ -y a0 in ^ T Choose φ0 e A* with || φ01| = 1 and

^0(α0) = | | α o | | . By (2) there is φP^φ0 (weak*) with | | ^ | | ^ 1 and

φP e (A, j ^ ) * . Then | ^(α^) | ^ || ^ , || || aβ || ^ || α, || and φP{aβ)yφP(a*).

Therefore | φP(a0) \ ̂  sup^ | φP{aβ) \ ̂  sup^ || aβ | |. It follows that

II α01| = ^o(̂ o) = lim, φP(a0) ^

and this is equivalent to (1).
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COROLLARY. Let zΌ belong to a plane domain and let A be the space
of functions continuous on the closure of the domain and analytic in
the interior, | | / | | = sup | / | . Then every φeA* is the wealth-limit
of functions Ψ of norm g \\φ\\ of the form Ψ{f) = ̂ finite a3f

{3) (z0).

THEOREM 2. If A is reflexive, then Fatou's lemma holds for A
relative to any

Proof. Let aγ—*α0 in S\ We need to show that | |αo | | ^ sup; \\a-\\.
If the sup is co r we are done. Let the sup be K< oo. Since A is
reflexive, the ball of radius K in A is compact in the weak topology
induced by A* and hence is compact in the topology induced by
(A, J7~Y S A*. This means that a1 exists in A with ]| aL \\ g K and
a subnet exists with φ(aϊiβ)) y φ{ax) for every φe(A, ^~)*. Since
α r ( ^ α 0 in ^ 7 φ(αr(/ϊ)) y φ(α0) for every 9 6 ( A , ^ ) * . This implies
that α0 = #i, since j ^ " is locally convex and Hausdorff, and we are
done

In a similar manner we obtain the following.

THEOREM 3. If A is the dual of a normed linear space and ̂ Γ
is comparable to the weak-""-topology on A, then Fatou's lemma holds
for A relative to ά7~.

THEOREM 4. Let A be any normed linear space which is not
reflexive. Then there is a locally convex Hausdorff topology ^ on
A, weaker than the norm topology, so that Fatou's lemma fails for A
relative to

Proof. Let<£>eA*, φ Φ 0, and put B^kerφ. B is a closed
subspace of A and A is isomorphic with 5 φ C ; hence, B is not
reflexive. This means that when we view A g A** in the natural
way, B is not closed in the A*-topology. We can choose aβ e B and
aeA**-B so that )]α^|| = 1 and aβ~~>a in the topology induced by
A*. Since φ = 0 on J5, it follows that φ(a) = 0, and since aeBwe
see that a£ A.

Let A' be the span of B and a. For any aoeA-B, the map-
ping between A' and A given by b + λα <=* b + λαQ is a vector space
isomorphism which is bicontinuous in the norm. Use this mapping to
transfer the A*-induced topology of A! over onto A, where we obtain
a locally convex Hausdorff topology S" weaker than the norm to-
pology. Since aβ —> α0 in ^ the proof is completed by selecting a0 to
have norm 2, for example.
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REMARK, By a slight modification of the method of proof one
can obtain ^ so that each element of a sequence αw, | | α Λ | | = n, will
be the ^"-limit of elements of norm fg 1. Then it will be impossible
to give A an equivalent norm which accommodates J7~ in Fatou's
lemma.

The failure of Fatou's lemma for an abstract linear space is not
surprising. However, it is somewhat unexpected for A a subalgebra
of C(X) when ^ is uniform convergence on X. Recall that any
semi-simple commutative Banach algebra A may be regarded, via the
Gelfand transform, as a subalgebra of C(J), A the maximal ideal space
of A, and || / || ^ sup, | / | .

THEOREM 5. There exists a semi-simple commutative Banach
algebra A with elements f, fn satisfying | | / J | ^ 1 , | | / J | > 1 , and
/*—*/ uniformly on j . That is, Fatou's lemma fails for A relative
to the topology of uniform convergence on its maximal ideal space.

Proof. First consider the Banach algebra B of all sequences x =
(x19 x2, •) such that ||| x ||| = Σ 2k \ xk | < oo. All algebraic operations
on B are defined coordinate-wise. As a Banach space B is isometrical-
ly isomorphic to l\ We can compute the maximal ideal space of B
as follows. Let hj(x) = Xj. These homomorphisms show that B is
semi-simple. To see that these are all the homomorphisms of B, let
h: B->C and look at h{e3), where e, = ( , 0, 1, 0, •) with the " 1 "
in the j t h place. If h ^ 0, then h(eJQ) Φ 0 for some jQ1 since linear
combinations of the e3- are dense. Applying h to the equation e^j = δi3

yields h(eJQ) = 1 and h{e3) = 0 for j Φ j 0 . Then the equation eJQ(x-xJQ e5) = 0
leads to h(x) = xjo and h = hjo.

Now we obtain A as the algebra of B together with a new norm
|| ||, equivalent to ||| | | | . Of course, A will be semi-simple and have
the same maximal ideal space. To construct the new norm, let
C = {xeB: | xγ \ ^ 1/4 and Σ Γ 2fc | xk \ ̂  1} and let D = the convex
hull of {ei&(ej2 + 4ek/2k): all real θ, all k ^ 4}. Both C and D are
convex and circled (stable under multiplication by scalars of absolute
value S 1). Put U = the convex hull of C U D and p = the support
functional of U: p(x) — inf {r : x e rU) = 1/sup {r: rx e U}.

Observe that ||[ x ||| ^ 1 ==> 1/2 x e C=> p{x) ^ 2 and

p(x) ^ 1 - (l-ε).τ - Xc + (l-λ)d => (1-ε) || | x \\\ £ max (||| c || |, | | | d |||)

- max (l—, δ) = 5 .
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Since U is convex, circled, and absorbing, p defines a new norm
I1 #11 — P(χ) o n B which we have seen is equivalent with the norm

III I I I .
To show that p is a Banach algebra norm, it is sufficient to show

uvf e U for any u, uf e U. Since u (resp. vf) is a convex combination
of c, d (resp. c', df), uuf is a convex combination of cc', cdr, crd, and
dd'. The first three clearly belong to C; furthermore, dd'eC
since the definition of D requires k ^ 4. This proves p is sub-
multiplicative.

Now we estimate p{eγ). Suppose re1 e U; then τeι = Xc + (1-X)d.
Apply the linear functional L(x) — 2,Γ %kχk to this equation and get
0 = xL(c) + (l-λ)L(d). Therefore, (1-λ) | L(d) | ^ λ |.L(c) | ^ λ, since
1 L(c) I <̂  1. L(d) = 8di for all d, since this is true for the generators
of D. Hence, (1-λ) | dL \ ̂  λ/8. Looking at the first coordinate of
re1 = Xc + (l-λ)d, we see r = Xcλ + (l-λ)^. Finally, | cx | ^ 1/4 by de-
finition and (1-λ) \dλ \ ̂  λ/8; so r ^ 3/8λ ^ 3/8. Thus p(βj ^ 8/3.

The theorem is proved with / = eJ2 and fn = eJ2 + 4e%/2\
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