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SHARP ESTIMATES OF CONVOLUTION TRANSFORMS
IN TERMS OF DECREASING FUNCTIONS

GARY SAMPSON

Let f=*g denote the convolution transform of two
Lebesgue measurable functions on the real line defined by
the equation

(f * g)@) = Si“f(t)g(x — bt

We get best possible upper and lower estimates for the
expression

sup §E| (fi - * fu)@) |Pd(@)

fi~0}
|EISu

where p =1 and 2, with applications to Fourier transform
inequalities. Here g are preassigned decreasing functions
and the symbol f; ~ gi means

[ {o: | fi(z) | > 9} | = |{x: gf (%) > y}| for all y.

0. Introduction. In order to formulate the general problem,
we remember the Hardy and Littlewood estimate [4, page 130,
Theorem 6.8] of the L,norm (g = 2) for the Fourier coefficients

¢, = Sﬁ ft)e™ of f in terms of the decreasing rearrangement g* of |f|:

0.1 lealls = 4] @*@)aa)

where the constant A, depends only on ¢. As one might expect,
the same theorem [Theorem E, this paper] holds for the Fourier
transform F(f), i.e.

02 [ 1801 = @ @ @) e

holds for g = 2, where g* is the decreasing rearrangement of |f|.
It is very remarkable that for (0.1), this is the best possible estimate
in terms of ¢*, i.e. independent of signs and arrangement of f, since
for prescribed g* the left side always reaches the right side for some
suitable f and this same result is valid for (0.2). Thus, Hardy and
Littlewood were able to determine the

sup [[ () Mle »

where f varies over all functions with the same g*. If ¢ =2k (k
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positive integer), then we have, by using Parseval’s formula, the
following:

IS E = VR fxeee o s

Thus, we have the related problem of determining

sup || fx e 5 fll:

More generally, one should look for

SuP”T(fvay ""fk) ]Ip ’

where T denotes a multi-linear operator and the sup extends over
all f,, .-+, fi with prescribed g}, ---, gi.

Recently, O’Neil obtained sharp bounds for ng* in the case g =
0
Jfi = fa which leads to sharp estimates for various norms of g. In the
present paper, we obtain sharp bounds for g 9%, where g = f,* ++« x fi.
0

We also obtain estimates for Sz(g*)" and x(gl «eeg,)* for the cases
0

n =2 and n = 4, where each of the g’s is itszzlf a convolution product.
Because the estimates for the case n =4 are lengthy, we have
omitted them from the present paper. Detailed estimates, all of
which involve the combinations

s

appear in Theorem 1.6, Theorem 2.1, and Corollary 3.3. In §4, we
apply our results to give a new proof of some rearrangement theorems
due to Hardy and Littlewood.

The functions f,g,--- which appear in this paper will be
Lebesgue measurable functions for which |{z:|f(z)| > y}| < + o for
every ¥ > 0. By the statement f(x) = g(x), we mean that |{x: f(x) #
g(x)}| = 0. Theorems labeled with letters (e.g., Theorem A, Theorem
B, --.) are known; also, Theorem 2.2 (for the case n = 2) and
Corollary 1.8 are also known. So far as we know, all of the other
Theorems and Corollaries are new.

1. Upper L.-estimates. The estimates that we get will be in
terms of the decreasing rearrangement f* and symmetrically de-
creasing rearrangement f of |f(x)|; where here, f(x) is a complex-
valued function and « is a real parameter. Thus, we start by
giving definitions of these ideas.
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DEFINITION 1.1. The functions f and ¢ are said to be equi-
measurable, and we write f~ g, if |{z:|f(@) ]| >y} | = [{x:|g(x) ]| > y}|
for all y.

DEFINITION 1.2. By f*(x) we denote a function such that
(i) f*~Irl
(ii) f*(x) decreases for x > 0.

Further, for « > 0, we set

FH@) = %S:f*(t)dt :

DEFINITION 1.3. By f(z) we denote a function such that

(i) F~I7L

(i) f@) = f(—2)

(iii) f(x) decreases for x > 0.
From the above definition, it follows that f ~ g, if and only if
f(@) = g(x). Therefore, we get that f*(2/xz|) = f(x), since f*(2|x]|) ~
f@) and f*(2|x|) is symmetrically decreasing.

The next lemma (Lemma 1.4) plays an important role in simplify-
ing our proofs. We must first define the function,

1 zel0,| E,j]
0 elsewhere

e, a, f*) = {

where E, = {t: f*() = f*(o)}.
I wish to thank W. B. Jurkat for suggesting the following lemma:

LemmA 1.4 (Jurkat). If lim,. .. f*(z) = 0 then
@ = = e @ @) -

Proof. Given =z, let «, = inf{a: f*(@) = f*(x)}, then f*(a+) =
f*(x). Hence,

et a, odre@) = - |7 dr@) = fla) = flo) -

A nonnegative sequence {@,>;> . is said to be symmetrically
decreasing if G =T, =0, = vo+e =0y =0y = »++. A well-known
fact [1, Theorem 375, page 273] is that the convolution of sym-
metrically decreasing sequences is also a symmetrically decreasing
sequence. The previous statement also holds if we replace the term
“sequence” with the term “function”. We see this in the next
lemma.



216 GARY SAMPSON

LEMMA 1.5. The function h, = G, * G, * +++ * J, 1S symmetrically
decreasing.

Proof. To show that h,(®) = h,(—x) is straight forward and we
omit the proof. To show that h, decreases for z >0, we first
consider the case where

k@) = | 7@ — o)

and

10=v=u

97 @) = {O elsewhere .

Then
hta) = | 9t @0)(Fx = 0) + 7 + 0))dv
= S:Hdvg;*(Zv) + g:—xdvg;‘(%) .

For © > 0, we see that h,(x) is decreasing.
Consider the case lim,..g*(2v) =0. We get after applying
Lemma 1.4

o) = — | dlgr )| doetw, @, a1)auw = ) + gl + o)

and therefore, h,(x) decreases for x > 0.
In the case where lim,.,. gF(2v) = ¢, we have

oo +eo
) = @0 - 9. — 0w + o] “gwan .
Therefore, it follows that h,(x) decreases for 2 > 0 and hence #,(x)
decreases for x > 0.

Unless otherwise specified, the functions f, g, --- which appear
will be nonnegative. A remarkable inequality [1, page 279, Th. 379]
can be formulated in the following manner:

THEOREM A. sup S+:d(m)r1(x)(f1 = fo)(@) = Si:d(w)?’(w)(ﬁl * G,)(x).

T~ J—
fe~9%

The following extension of Theorem A, which is well known for
sequences, [1, page 273, Th. 374], will be of more interest to us. It
can be stated in the following way:
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T @ (fir e £)@) = | AT,

THEOREM B. su_pS
P

Proof. At first, we see from Theorem A,
sup | @« )@ = sup | a@r@ T @
A i
= awre@ @ 7@

sup | @) (s L)) -

Therefore, we see

sup | “d@n @)+ £ @) = sup | Ta@F@@ T @

Fr~9k

= sup | "a)F » DT I

A 7 * 5@ * £ @)

fe~ok

- sup|

JE~9k

= Si:d(x)i(x)(ﬁx * gy * G5)(®) .

In general, we have

+oo +oo
sup (@@ (s - 1)@ = | ar@hG .
[N e
Our first new result is the following:

THEOREM 1.6. If lim, .. gi(x) = lim,_.r*@) =0, and r*, gf are
finite a.e., for 1 < k < m, then

sup Si:on(w)(fl* coexfo)(@) < S:d(x)xn-l(r** — ) (GF*—gF) + -+ (gE—g3)

ry~r
Fe~9%

Proof. Case I. We will first show the theorem when,

*(2) = {1 0=2=a,
IE¥ =10 elsewhere
1025w
* — - -
(@) {O elsewhere
and where 0 <o, <a,< --+ < a,.
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Suppose % = a,:
| Ca@r@| atn O - s f)@ - 0
< (Ta@n@| ey -
= d(xm(x)S U@ | A (@)

= Uy 200 Qpy

- de(w)%"“‘(“* — )G — gf) e (93— 97) .

Suppose u > a,:
| “a@n@| a0« e s fde — b
= || Tah O s fde - 1

= s Qy,

= S:d(x)x"“('r** — P (gt — gF) - (0 — gb)

Case II. First let us set,

&(x) = ez, a, 7) + e(—wx, a, 7)
81($) = 5(90, B gl) + 5(““/‘7 B 51)

e@) = 6@, %2 3) + (=, 7, §.)
0<o<|BM

1
.
el ) 0 elsewhere

By Theorem B we have,

r

sup [ A @)(fi -+ £ = | Td@TEE -

T~
Tk~Tk

by Lemma 1.4 we get,

= (- ar@)| @) -+ | @] “dwe @i -

and by Case I,

= ([ @) a@@) -+ | a@.m)
% [Cd@aerr — e e @ - e

= S:d(x)x”*l(r** = rNGEF — gF) e (05 — g7) .

and  Ey(h) = {t: h(t) = h(V)} .

o0 g,)(®)

e x8,)(@)
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If we combine Theorem B with Theorem 1.6, we find that

Si:d@w”)h”(”) = de(cc)x”"‘(q"** — NG = g8 - - (90— 9%)
= A(r*, g¥, «oo, 95 .

However, we do know more because of Theorem 2.1. Combining
Theorem 1.6 with Theorem 2.1, we then have

() | awr@n.@ = K407, gt -+, 00

where K is a constant (1/2" < K < 1) which depends on »*, g*, -+, gk.
In (2), the right side (our estimate) has an advantage over the left
side; that is, it is easier to determine. For example, take g}(t) =
1/t and »*(t) = 1/t*, where 0 <, ¢t <1.

In applying our estimate (Theorem 1.6), the minus signs that
appear could conceivably present difficulties; and moreover, the result
only holds for functions whose decreasing rearrangement goes to 0 at
infinity. The next estimate does away with these problems.

THEOREM 1.7.

+oo
sup | Uz (e e o )0
Fr~o}
=[[lor - [for + % 8 3 [dwe—gior 11 0]

0 =1
F#m iEm
i#k

Proof. To prove the theorem, we will first show

al"a@argre — gt) o (05 = o)
(1.1) u ‘ u n n - n
= g gl ee- S gi + % PPy S d(@)a"gngi 11 gi*
S S

when lim,_.. gf(x) = 0, for each 1 <k < n.

Case I. Here we show (1.1) when

. 1 0Ly
gi(®) = {0 elsewhere
and ¢, <, £ -+ Zaq, .

A (u<a).
The left-side of (1.1) equals ua, -+« a,_,.
The right-side of (1.1) equals
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{u/‘ + g—a?" + oo + 12t-(aloL2 ces @l — %u”} + U e Ay
B) (@ =u = apy).
The left side of (1.1) equals ua, -+- a,_,.
The right side of (1.1) equals

(@ afwr + Lo+ e+ Ly, -

> U, Apy

2
= Uy 20 Ay o

© (u>a)

The left side of (1.1) equals a, --- a,.
The right side of (1.1) equals a, --- a,

e, — (n — k) un—k}

U e By

Case II. Here we show (1.1) when lim,_. g}(x) =0, for each
1 <k < mn. First let me set,
& = &2, a, gf)

En = E(QU, ,By g::) .
Applying Lemma 1.4 to the left side of (1.1), we find

ug:d(w)x”‘z(gik* — gF) e (95* — g7)

= (~vuf dgr@) - [T @n| dweer e - e
and by Case I,

= (-1 agr@) - |Tdgz(s)

JICHAEES

0

n
7 &7
=1 =1
Fm iEm
3 % 3
oy
0

ik
[Ca@agigr 3% g2
* im
ik
Therefore, by Theorem 1.6 with »*(x) = {1 0=z=u

0 elsewhere W€ have shown
Theorem 1.7, when lim,_ .. gf(x) = 0 for each 1 <k < n.

Case III. Let us consider the case when g} is arbitrary and
lim, .. gi(x) = 0 for each 2 < k < n.
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9@ lzl=r

Define: ) ={ 0 |zl >

Then, we find

| @ -+ 7@

—uf2

< tim | wdtg"(t)S AR AR

rooo J—

< lim [Sog?; g gr + —;i > g S g:ig,fgogi’; II Sogi‘
k#m

r—0c0 m=2 k 1=2

iFEm
ik
+u kZ=2 Su d(x) gt 9& I=12 go g?]

ik

= S g .. S gr + 2 ZZS d(@)x"*gngt 11 oF*
0 0 2 Jj=1k=1 Ju :;}m
1%k

Reapplying the above procedure and using induction, we find that

the theorem holds when g,, +--, g, are arbitrary.

A corollary of Theorem 1.7 is a result due to R. O’Neil [2,
Lemma 1.5].

COROLLARY 1.8. (O’Neil’s Lemma).

sup g (fi * 9) (@) < w'f* g™ + urf *g*

f 1~f *
g1~g*

Proof. Simply take n = 2 in Theorem 1.7.

II. Lower L,-estimates. In this section, we will show that the
inequalities found in Theorem 1.6 and Theorem 1.7 are sharp. That
is, the upper estimates become lower estimates when they are multi-
plied by suitable constants.

THEOREM 2.1. If »**(x), gi*(@)1 < k < n) are finite for each z,
then

2= sup | "A@n@(F - )@

F~o%

= ["a@e(7r = ) — g o 0 - a0
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Proof. We will first prove the theorem when,

; 1 02 a,
gk (x) =
@.1) 0 elsewhere
) (@) { 1 05w
r*(x) =
0 elsewhere
and where o, <, < -+ < a,.

Suppose # < a,:

“+oo “+oco

| ar@| ag.one

uf2 ayi2—z P
a2 h 2] ]
0 0

0

a2
=2\ dth,.,

—a,/2

a,/2
> %, 9_%15 dth,_,
2 2 J-ayn2
Uy »o° Ay 1 (= e ok *
z Wttt o L [Ta@arieer — e — g) - (0% - 02).

When we are in the case (v > a,), we apply a similar procedure.
Hence, we are finished when our functions are as in (2.1).

In the case where lim, . gf(x) =lim,.r*(x)=0 1=k =<mn),
if we apply Lemma 1.4 as we did in Theorem 1.6 (Case II) then our
result follows.

Now let us consider the case where ¢ and r* are arbitrary, and
lim,_. gf(x) = 0 for each 2 < k < n.

Define:
g = (@ O=sa=m
[0 x> m
ri(x) = {T*(W) 0o <s .
0 x>s

AR A e

= lim Tim {"7,@)@% -+ < 7) @)

Mm— 400 §—-0co —

L jim lim rd(x)x”‘l(ﬂ‘* — rI)ghs — gk) c o (95F — g%)
0

2"—1 m—>-+oo S—>-4o0

= 23-1 de(x)xn_l(’"** — g = g7) - (g3 — 03) -

v
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If we apply the above procedure and use induction, then we are
finished.

Our next theorem, Theorem 2.2, was known for the case n = 2
by O’Neil [2].

THEOREM 2.2. If g¢gi*(x) is finite for each » 1=k <mn) and
n = 2, then

w-2tsup | A@L @5 e L))
Fe~9%

2 S gt S gx + % > 2 S d(@)zgign 11 97" .

0 m=1 k=
;ﬁ iFEm
itk

Proof. To prove the theorem, we will show

ﬁuj Aoz (g — gF¥) + -+ (g2* — g7)

(2.2) .
= S g7 - g g5 + E Z Z S d(x)x g0 II 9"
0 m==1 #‘m u z#m
1%k
where
@) {1 0=2v=a,
*° x) =
e 0 2> a,
and
a, é @ é * é a,
A) (u<a)

The left side of (2.2) equals (n/2)ua, «-- a,_,.
The right side of (2.2) equals

<un_‘_%ar¢—1+ s +'22(/‘(a1"' n— 2) —""un> T UR e Ay

< (”;2>(zwc1 e ) UG Ay = —g(u“x e la)

B (=uc= Qpsr)e
The left side of (2.2) equals (n/2)ua, «+- a,_,.
The right side of (2.2) equals,
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(@ ap{urt + Lapt =+ o Llage oo ai) — BBy

U, e Oy < —Z—(ual e @,)
© @ > a,).
The left side of (2.2) equals (n/2)a, --- a,.
The right side of (2.2) equals @, «-- a,.
To complete the proof, we simply follow the same approach as
we used in the proof of Theorem 2.1.

III. L,estimates. In this section, we are concerned with finding
both upper and lower estimates of

sup | (£ x -+ £ @A)

fi~a;
|Eisu

where p = 2. However, we were also able to get (explicitly) upper
and lower estimates for the case p = 4, but we have omitted them
from this paper.

LEmMmA 3.1.

sup | Td@1 @ e L)@ e 1 )@

fi5~Tij

RPN SO PR AR

—u

Proof. We note that by Theorem B

| @@ Fax -+ FD@(Fx -+ @)

IIA

U@L e T @) ar * 2 e+ * T (@)

A

+

0o
+oo

@)L e(@) (o * + 0 * For) (@) (Gor x <+ + * Fai) (@)

—00

A

S
| Ct@ @ T T @@ - * 5@
|

We set,

4,(x) = a"(gh* — g%) «+++ (95 — gt)

and

dy(x) = 2 (g5* — g5) + - (0% — 030 -



SHARP ESTIMATES OF CONVOLUTION TRANSFORMS 225

THEOREM 3.2. If gi*(x) are finite for each  and lim,_. gf(x) = 0,
then there exists a constant K, 277 < K £ 1, such that

sup | TA@ L@ fa ke L@ < L)

s amog¥ .
f“ (%)

- K. [g @) (4,(2) - 4a0)) + u(S d(x)A( ))(S d(%)d(x)] :

Here, K depends on ¢i; and u; and we mote that 1 <12 and
1 <7 < max (¢, 8).

(3.0)

Proof. (i) We first prove that K <1. We consider the case
where,

1 0=2=ay

3-1) g7 (@) = 0 elsewhere

0y = cer S, and gy S occc S0y .

Without loss of generality, we can assume that a, < a,, and a,, > 0.
A) (v =a)

Si/:,zd(m)(gn #oeee k G @) (o + 000 * Fop) (@)

IA

cee Foo _ -
L C I S1C

28
Qyy =2 Qs @22 Gy,
zs

= [0 @) s + ol | A s )| "L a0

B) (@, <u < a,)

[” 0@« -+ < 0.)@@ -+ 700

—-u
Qyy o000 Qyplyy 00 Qg
4298

W] 5P ([ 5 a)

IA

© @<a,)

Su/z d(w)(g—u *oeee Xk gw)(x)(gzl * eew ok gzs)(x)

—u/2

e a,) (@ e a) M(S:%gldi(x)xg:%?az(x)) )

B a’ls ¢ a2.s‘
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To complete the proof, we apply Lemma 1.4 as we did in Theorem 1.6
(Case II).

(ii) Here we prove that K = 27", First, we consider functions
as defined by (3.1).

A) (u = ay)

|7 @)@+ 0@ - < )@

—u/2

1/2 (u/2)—2 (u/2) +2 (agg/2) —x (agg/2) +o
= 2" a@[ " h + [ e [ R+ [ ]

/2 @252 Qi sos Qo oo (O
-&2 2
2 alrg hl(r——l)g hz(s_l) z = 'ris - -
0 0 2 azs

T s o[ 22000 ()]

B (@, =u < ay)

Su/ A@) (G * oo x glr)(x)(gn ook ng)<x)

—u/

(e U,./2 w/2)—x (w/2) 42 ( (agg/2)—= (agg/2) +2
=@ | s+ e [ e+ [ ]

Ay =0 Wyl =00 Qo
2(r+s)a2$

= (7=) (75 40) (5 40)

(C) (u < a/n)

|7 d@@. <+ 5 )@@ * -+ * 7@

(a1p/2—2 (ayp/2) += (agg/2)—2 (ags/2) +
2S d(%)[g by + SO kl(r—-l)][go hayjoyy + SO hm—n]

Uy 2 ¢ Qo * 0 Qs
2(r+3)a o

= (7= (5 0)( 5 a)

To complete the proof, we apply Lemma 1.4 as we did in
Theorem 1.6 (Case II).

v

COROLLARY 3.3. If gi*(x) are finite for each x and lim,_ . gi(®) =
0, 1<k=<mn, then there exists a constant K, 27" < K <1, such
that
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sup | d@7e@((Fx -+ L)@

fj’*'g?
— K[g (x)alz(n»—l( )2 (gn&< — gyz)2
u(de(m)xH(gf* —g0) - @ = a0 |-
Here K depends on gf 1 <k <n) and u.

Proof. This is a special case of Theorem 3.2, with »r =s=mn
and gi; = ¢/

IV. Applications. The functions f(x) in this section are complex-
valued and the variable x is real. We require that Re (f(x)) and
Im (f(x)) be Lebesgue measurable and |{xz:|f(z)| > y}| < = for every
y > 0. In a natural way we can now talk about the decreasing rear-
rangement function f* of f.

We mean by the statement

Sy = (L)hmfn(x),we(—oo o),

that limn—»“’ an - f'!P =0.
By Plancherel’s theorem if we let fe Ly(— oo, +c0), then

T (@) =, 1V 2r lim,ﬁwg ft)e=dt, exists a.e., and belongs to L,;

also, if fe L,, then || F(f) ]]2— [l f1l:: A generalization of Plancherel’s
theorem (Theorem C and D), due to Hardy and Littlewood, is a
consequence of Corollary 3.3. Another rearrangement theorem [4,
pages 128-131], due to Hardy and Littlewood, is contained in
Theorem E.

THEOREM C. (Hardy and Littlewood). If |f(x)|?]|xz]|*? (¢ = 2)
belongs to L(—co, + o), then F(f)(@) =, 127 hmwi F(b)e=dt,
exists a.e., and belongs to L,; and -

13 1l = of| 1@ o @)}

Proof. Suppose first that fe L. and has compact support, then
we have by Plancherel’s theorem,

Py

K:l%(f) [rd (x) = Si:lf*f* coe s fRA()
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and by Corollary 3.3,
= |Ta@aon(rer = prye
= @n | e (@)
< @ "a@a | 1w 1

We first note that M,, = {xg(w): Si:d(u(x)) |2g(x) |* < + o0, where

dv(®)) = d(oc)/xz} = L, ,(—c0, + ). Now for each he M,, set T(h) =
F(h/x). Here, we can apply the interpolation theorem of Riesz-
Thorin to the operator T [4, pages 93-96].

THEOREM D. (Hardy and Littlewood). If feL, 1< p <2), then

{{Tst@risra@} " < qisl,
where 1/p + 1/qg = 1.

Proof. Use our estimate from Theorem C for ||F(f)|,, then
use the proof found in [3, Theorem 80, page 110].

If you take f(t) =1/(|t|+1), t€(—oo, + o), then ||F(f) |l = oo

and |[¢tf(t)|l« = 1. Thus, Theorem C does not hold when ¢q = .
However we see from Corollary 3.3 that if fe L, N L., then

HF) e = N2(f** = ) |lw -
We define the

set A, = {g*: r(g*(x))"ac"”zd(x) < 4+, and lim g*(x) = 0} .

THEOREM E. (Hardy and Littlewood). g*€ A, if and only if
B(f) e L(q = 2), for every f~ g*. If g*e A, (qa = 2), then

) 1/q
151l = c@{| 0" @@}
for every f ~ g* where ¢(q) is a constant which depends on q.
Proof. (=)

LEmMA. If (e L, (¢ <2), then
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+oo — 1/q —
{{ e 1011 7@ 1} < @) 15 I -
Proof. Suppose fe€ L, N L., then by Plancherel’s theorem
+oco - +oo —
8@ e = e s raw
+oo —
z | e | o) )

To complete the proof, we note [4, page 19] that if 35 a, cos (nx) € L,
@=z2) fore,z2a,=z++=a,= -+, then

(4.1) Y I i‘, a,, cos (nx) rd(x) = B(q) i ain®? .
‘We quote from Titchmarsh [3, pages 70, 71, 109].
Let
(v+1)/2 _
a, = S R f)dt v =0, x£1, £2, cos)
and

?,(x) = i a,e>*lt,
Then, if 6> 0 and n = [\b] — 1,
lim ,(c) = S" Ftyeat

uniformly in any finite interval. We note that in our case a, =
A1 20 =0,2=++2=a,=0. From (4.1) we see that,

B(q)Siz[ ?,(x) 'd(x) = )“S_ ,;ae

Aoy =03 ar v ]

y=—

If v =1, then

(v+

" (Fyetde .

(v+1)/2

Since,
|| Foear - [ e ear | = 7@z

a<lzl

we get that

infn ] .
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Hence, we get out result.
(=:) In the proof of Theorem C we showed that if fe L. and has
compact support, then

[ 1500 ) = @ aw =g @) .
Now if f is arbitrary (f ~ g*), then we define

Sy [ =r o=
fwy=1r [f@l>nrlel=r
0 elsewhere

therefore (|f — f.))*(@) < ¢g*(x) and lim,_.(f — f.])*(@) = 0. Hence
it follows that,

S _:f ) Prd(x) = (Zn)mS: df)a* ™ (g™ ()" .

Next, we show the theorem for 2 < ¢ < 2n.

Let
Iy = 1T |af(@) | < 3
netrseren Janfia) | > 31
and
i =1 O | af(@) | = 3\

'.:cf(x) — AetrsErfED ) | > 3k .

10/ I = a2 N (o | F0/) | > 2010

o

= c¢(n, ¢; Z)UTV“Z’“*S“?/Z”“”{%: xfF(x) >y} + Sjkq“s yviw: mf?(w’)>y}]

0 SO
32 oo
!0

(oo °
< ¢(n, ¢; 2)[5 N"““SO ¥ iv{a wg(x) > vy + go AV yv{a: xff‘(x)>y}]
0

< ¢(n, q; 2)[§?xq—lv{x: xg*(x) > x}] = c¢(n, q,2) [[2g*(x) [I7.. -
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