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SHARP ESTIMATES OF CONVOLUTION TRANSFORMS
IN TERMS OF DECREASING FUNCTIONS

GARY SAMPSON

Let / * g denote the convolution transform of two
Lebesgue measurable functions on the real line defined by
the equation

(/*£)(»)= [+°°f(t)g(x-t)dt.

We get best possible upper and lower estimates for the
expression

sup \ I (/i * * fn)(x) \pd(x)
fi~9\ J ^

where p = 1 and 2, with applications to Fourier transform
inequalities. Here g* are preassigned decreasing functions
and the symbol fi ~ gt means

I {x: \fi(x) \ > y } \ = \{x: gt{x) > y) I f o r a l l y .

0* Introduction* In order to formulate the general problem,
we remember the Hardy and Littlewood estimate [4, page 130,
Theorem 6.8] of the Lq-noγm (q 2£ 2) for the Fourier coefficients

f(t)eint of / in terms of the decreasing rearrangement g* of | / | :

(0.1)

where the constant Aq depends only on q. As one might expect,
the same theorem [Theorem E, this paper] holds for the Fourier
transform %{f), i.e.

(0.2)

holds for q ;> 2, where g* is the decreasing rearrangement of | / |
It is very remarkable that for (0.1), this is the best possible estimate
in terms of (/*, i.e. independent of signs and arrangement of /, since
for prescribed g* the left side always reaches the right side for some
suitable / and this same result is valid for (0.2). Thus, Hardy and
Littlewood were able to determine the

sup| |S(/) | | f f f

where / varies over all functions with the same g*. If q = 2k (k
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positive integer), then we have, by using ParsevaPs formula, the
following:

Thus, we have the related problem of determining

sup \\f* . . . */ | | 2 .

More generally, one should look for

Λ, •• , Λ ) I I P ,

where T denotes a multi-linear operator and the sup extends over
all /x, *, fk with prescribed gf, , gt.

S x

g* in the case g =
0

/i * /2, which leads to sharp estimates for various norms of g. In the

S x

g*, where g = ft* . . . * / f c.
o

We also obtain estimates for \ (g*)n and \ (βfi <7«)* for the cases
Jo Jo

n = 2 and w — 4, where each of the $r's is itself a convolution product.
Because the estimates for the case n = 4 are lengthy, we have
omitted them from the present paper. Detailed estimates, all of
which involve the combinations

-IV* - /*
X Jo

appear in Theorem 1.6, Theorem 2.1, and Corollary 3.3. In § 4, we
apply our results to give a new proof of some rearrangement theorems
due to Hardy and Littlewood.

The functions /, g, which appear in this paper will be
Lebesgue measurable functions for which | {x: \f(x) \ > y) \ < + oo for
every y> 0. By the statement f(x) == g(x), we mean that | [x:f(x) Φ
g(x)} I = 0. Theorems labeled with letters (e.g., Theorem A, Theorem
B, •••) are known; also, Theorem 2.2 (for the case n — 2) and
Corollary 1.8 are also known. So far as we know, all of the other
Theorems and Corollaries are new.

1* Upper L^estimates, The estimates that we get will be in
terms of the decreasing rearrangement /* and symmetrically de-
creasing rearrangement/ of |/(x)|; where here, f(x) is a complex-
valued function and a; is a real parameter. Thus, we start by
giving definitions of these ideas.



SHARP ESTIMATES OF CONVOLUTION TRANSFORMS 215

DEFINITION 1.1. The functions / and g are said to be equi-
m e a s u r a b l e , a n d w e w r i t e f ~ g , i f | {x: \f{x) \ > y} I = [ {x: \ g(x) \>y}\
for all y.

DEFINITION 1.2. By f*(x) we denote a function such that

( i ) / * ~ l / | .
(ii) f*(x) decreases for x > 0.

Further, for x > 0, we set

r*{χ) = -[f*(t)dt.
X JoX

DEFINITION 1.3. By f(x) we denote a function such that

(i) /~I/L
(ii) /(a) = / ( - * )
(iii) /(a;) decreases for x > 0.

From the above definition, it follows that f ~ g, if and only if
f(x) == #(x). Therefore, we get that /*(2| α |) =f(x), since /*(2| a; |) ~
/(a?) and /*(2|a?|) is symmetrically decreasing.

The next lemma (Lemma 1.4) plays an important role in simplify-
ing our proofs. We must first define the function,

ί l s G [ O f | J S β j ]
e(x,a,f*) -

(0 elsewhere

where # α = {ί:/*(ί) ^/*(α)} .
I wish to thank W. B. Jurkat for suggesting the following lemma:

LEMMA 1.4 (Jurkat). If limx_+00 f*(x) — 0 then

Proof. Given x, let a0 — inf {a: f*(a) — f*(x)}, then /*(αo+) =
/*(&). Hence,

ίaj, α, f*)d(f*(a)) = - Γ d(/(α)) = /(α0+) - /(») .

A nonnegative sequence <̂ αw)>ίΓ_oo is said to be symmetrically
decreasing if a0^ aλ = a^ ^ ^an — a^n ̂  . A well-known
fact [l, Theorem 375, page 273] is that the convolution of sym-
metrically decreasing sequences is also a symmetrically decreasing
sequence. The previous statement also holds if we replace the term
"sequence" with the term "function". We see this in the next
lemma.
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L E M M A 1.5, The function hn — gι* g2* * 9% is symmetrically
decreasing.

Proof. To show that hn(x) = hn( — x) is straight forward and we

omit the proof. To show that hn decreases for x > 0, we first

consider the case where

9i(v)g2(x - v)dv

and

ίl 0 < v < u
gϊ(2v) = .

(0 elsewhere .

Then

h2(x) = \ gf(2v){g2(x — v) + g2(x + v)}dv
Jo

For x > 0, we see that h2(x) is decreasing.
Consider the case \imυ_(X>gΐ(2v) — 0. We get after applying

Lemma 1.4

h{x) = - 1 d(g?(2a))\ dvε{v, a, g?){g2(x — v) + g2(x + v)}
Jo Jo

and therefore, h2{x) decreases for x > 0.
In the case where \imυ^O0g^(2v) = c, we have

Λ2(ff) — I (9i(v) — c)9A% — v)dv + c\ g2(v)dv .
J—oo J—oo

Therefore, it follows that h2(x) decreases for x > 0 and hence hn(x)
decreases for x > 0.

Unless otherwise specified, the functions /, g, which appear
will be nonnegative. A remarkable inequality [1, page 279, Th. 379]
can be formulated in the following manner:

THEOREM A. sup I d ^ r ^ X / i */2)(α) = \ d{x)r(x){g1*
rl~"?l J—°° J—oo

The following extension of Theorem A, which is well known for
sequences, [1, page 273, Th. 374], will be of more interest to us. It
can be stated in the following way:
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THEOREM B. sup ί dixfaix)^ * */»)(») = I d(χ)r(x)hn(x).
r]~~~r J — °o J —oo

Proof. At first, we see from Theorem A,

S +oo r+oo ,

d(x)rx(x){fι */2)(#) = sup I d(x)f(x)(fί *fy(x)

S + °°

a\xjr\x)\gi * g2)\X)
- O 0

= sup J^dί^f (»)(/! */a)(a?) .

Therefore, we see

S +oo Γ + eo .

(Z(a)fiθ&)(/i * / 2 * Λ)(«) = sup I d{x)r{x){g1 * / 2 * /8)(α?)f + _ _
= sup d(a?) (r * ^ ) (a?) (/2 * /3) (a?)

S + oo _ _

d{x){r * gύ{x){fz
.. .. -°°

S + oo __ _ _ _

d(x)r(x)(g1 * g2 * g3)(χ) .
_ o o

In general, we have

sup Γ~d(x)rAp)(fi * ••• * Λ ) 0 ) = Γ d(x)r(x)hn(x) .

fk~9k

Our first new result is the following:

THEOREM 1.6. // Hm^gϊix) = lim^eo r*(a?) = 0, and r*, sf* are
a e., /or 1 ̂  & ̂  ^, then

Proof. Case I. We will first show the theorem when,

0 elsewhere

0 elsewhere

and where 0 <£ aγ ̂  α2 ̂  ^ αn
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Suppose u i j an:

ύ^ . . . *f*-d(x - t)

•Λ-1)(a; - t)

= \+'d(x)rι(x)\+"d(x)f1(x) • λ+~d(x)f.-1(x)
J —oo J —oo J —oo

"- 1 ^** - r*)(gf* - g*) . . ( # * - gl)

Suppose u > an:

^ . . . *Λ-1)(s - ί)

*Λ_1)(x - ί)

(x)χ-1(r** - r*)(</** - g*) . . . (^* - ffί) .

Case II. First let us set,

eo(x) = ε(x, a, r) + ε( — x, a, r)

e^x) = e(x, β, g,) + e(~x, β, gx)

εn(x) = ε(x, Ύ, gn) + ε ( - α , 7, ^Λ)

e(x, λ, Λ) = ] Λ " " and J^(A) - {ί: h(t) ^
10 elsewhere

By Theorem B we have,

sup I dWnixXf, * * fn)(x) = I d(a?)f (a?)(^ * . . . * gn)(x)
r,~r J —00 J —°°
flc~9k

by Lemma 1.4 we get,

and by Case I,

{())\Siβ)) Γ
jo Jo

x [d(x)xn-1(εr - ε*) (s *
J

- r*)(gΐ* ~ Λ*
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If we combine Theorem B with Theorem 1.6, we find that

\+~d(x)r(x)K(x) ^ \~d(x)xn-ι(r** - r*)(gΐ* - g*) (g** - g*)
J-eo Jo

= A(r*,g?, * ,gZ) .

However, we do know more because of Theorem 2.1. Combining
Theorem 1.6 with Theorem 2.1, we then have

( #) \+°°d(x)r(x)hn(x) = K-A(r*> g*, •, g*) ,

where K is a constant (lβn ^ K <̂  1) which depends on r*, g?, , gl.
In (#), the right side (our estimate) has an advantage over the left
side; that is, it is easier to determine. For example, take g*(t) =
l/tλk and r*(t) — l/tμ, where 0 < λ̂ , μ < 1.

In applying our estimate (Theorem 1.6), the minus signs that
appear could conceivably present difficulties; and moreover, the result
only holds for functions whose decreasing rearrangement goes to 0 at
infinity. The next estimate does away with these problems.

THEOREM 1.7.

r+oo

sup d(x)χE(x) ( / > • • • * Λ) (x)

^ Γ(V ••• ("ffί + \ Σ Σ \~d(x)x*-*gigi Π gt*]
LJo Jo 2 m = l fc = i Ju i = i J

Proo/. To prove the theorem, we will first show

u\^d{x)xn-\gΓ - 9ΐ) ••• (ϊlV ~ gt)

^ Ur U ϊ + -£ Σ Σ d(»)«"^^? Π gr

when lim^oo gl(x) — 0, for each 1 <^ k ^ n.

Case I. Here we show (1.1) when

fl 0 ^ x ^ ak

(0 elsewhere

and aλ ^ a2 ^ ^ αTC .
(A) (u < a,).

The left-side of (1.1) equals uaγ

The right-side of (1.1) equals
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%-a
2

(B) (ak ^ u ^ αΛ +i).

The left side of (1.1) equals MĈ  ακ_1.
The right side of (1.1) equals

(α4 ajjtt-* + 1-αϊτ*-1 + + | ( α 4 + ι

+• ua,

(C) (w > O
The left side of (1.1) equals at an.
The right side of (1.1) equals a, αn.

Case II. Here we show (1.1) when \imx_>oo gt{%) = 0, for each
1 <; fc ̂  n. First let me set,

εn = ε(x, β, gt) .

Applying Lemma 1.4 to the left side of (1.1), we find

u[~d(x)a?-2(g** - gΐ) (g** - gt)

= ( - l ) tt("d(flίf(α)) ••• ("dtorCSWί^αJ-^ίsr* - e?) . . . (βί* - ε )
JO JO Jtt

and by Case I,

O u Γu Λ» n n Γoo n ~~l

s * \ £ * + — Σ Σ i ώ ( x ) ^ w ~ 2 ε * ε f c Π ε * ι
0 Jθ 2 «=1 * = 1 Jit i=L J

S u fit nf n n Γ σo n

o Jo 2 w=ifc—l J« ί=i

Therefore, by Theorem 1.6 with r*(α;) = {J ^lSwhfrΓ w e h a v e s h o w n

Theorem 1.7, when lim^oogt(x) = 0 for each l^k^n.

Case III. Let us consider the case when g? is arbitrary and
gt(x) = 0 for each 2 ^ k <* w.



SHARP ESTIMATES OF CONVOLUTION TRANSFORMS 221

Define: gιr{x) = \ \ , ""
I 0 \x\ > r .

Then, we find

Γu/2

J-tt/2

S +oo _ r«/2 _ _

£%ir(£)i d(x)(g2 * * 0»X# — ί)
—oo J — ίt/2

Ow ftt -. n n Γ oo Γx n Γx

fffr Uί + ^ Σ Σ sign oί Π ft*
0 Jo 2i ^ = 2 fc = 2 J w Jθ i=2 Jθ

u± \d{%)gtgt ft (ft'
k=2 Ju i = 2 JO

= ( V ("fltf + - | Σ Σ ("dίαj)*"-*^* Π ft**
Jo Jo 2 3=1 k=i Ju i=i

Reapplying the above procedure and using induction, we find that
the theorem holds when g19 * ,gn are arbitrary.

A corollary of Theorem 1.7 is a result due to R. O'Neil [2,
Lemma 1.5].

COROLLARY 1.8. (O'Neil's Lemma).

sup ( (Λ * gj(x) £ u'f**g** + u\Γf*g* .
l-EΊ Stt J ^ Ju

Proof. Simply take n = 2 in Theorem 1.7.

II. Lower ^-estimates. In this section, we will show that the
inequalities found in Theorem 1.6 and Theorem 1.7 are sharp. That
is, the upper estimates become lower estimates when they are multi-
plied by suitable constants.

THEOREM 2.1. If r**(x), gt*(x)(l ^k^ri) are finite for each x,
then

- 1 sup pdίφφXΛ * *fn)(x)
* J o

^ - r*){g** - g*) . . . (g** - g*) .
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Proof. We will first prove the theorem when,

(1 0 ^ x <Ξ ak

(o elsewhere

(1 0 <x<u

(0 elsewhere

and where at ^ a2 ^ ^ an.
Suppose u ^ an:

2 J-anl

2 2 J-αn/2

i j " ( a ! ) a - . ^ ( r * * - r*)(g** - flr*) . (g** - gt) .

When we are in the case (u > an), we apply a similar procedure.
Hence, we are finished when our functions are as in (2.1).

In the case where lim^co g*(x) = lim^co r*(x) — 0 (1 ^ k ^ ri),
if we apply Lemma 1.4 as we did in Theorem 1.6 (Case II) then our
result follows.

Now let us consider the case where gf and r* are arbitrary, and
oo gt{x) = 0 for each 2 ^ k ^ n.

Define:

[9i(x) 0 ^ x ^ m

I 0 α; > m

\r*(x) 0 < x < s

(0 x > s

* ••• *gn)(x)d(x)

lim lim \ r,(x)(g?m * ̂ n)(»)d(ίc)

-r^r lim lim \™d{x)xn-\rΓ - r.*)^*.* - 0*.) (ffί* - gί)
2 n m ^ + 00 s ^ + 00 JO

- r*)(ff** - g?) (flr** - ^ )
2Λ Jo
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If we apply the above procedure and use induction, then we are

finished.

Our next theorem, Theorem 2.2, was known for the case n — 2

by O'Neil [2].

THEOREM 2.2. // gΐ*(x) is finite for each x (1 <̂  k ^ n) and
n ^ 2, then

n 2^2supJ^(α;)χs(α;)(/1 * . . . */Λ)(α>)

S
u Γu n. n n Coo n

0 JO 2 ™ = 1 * = 1 Jw i = l

Proof. To prove the theorem, we will show

—7-̂ , i αxx t̂/i yi ) 'φ' \yn gn)

^ I flfί \ 9n + — Σ Σ d{x)xn~2gιgt Π 9*
Jo Jo 2 «* = i fc = i Jw i = i

where

1 0 ^
0 » >

and

(A) (u < αx)
The left side of (2.2) equals (n/2)uaί α%_lβ

The right side of (2.2) equals

+ J^ar1 + + γ(tt! α;_2) - -!£u») +

- ^ — j i u a , αΛ_j) + %(*!••• α n _i = ^ ( ^ α : .

(B) (ak^u ^ ak+1).
The left side of (2.2) equals (n/2)ua1 α%_1.
The right side of (2.2) equals,
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~ k) tt»-

(C) (w>α>).
The left side of (2.2) equals (u/2)αx α%.
The right side of (2.2) equals aL α%.
To complete the proof, we simply follow the same approach as

we used in the proof of Theorem 2.1.

III. L2-estimates. In this section, we are concerned with finding
both upper and lower estimates of

supί [(Λ

where p = 2. However, we were also able to get (explicitly) upper
and lower estimates for the case p = 4, but we have omitted them
from this paper.

LEMMA 3.1.

S +oo

d(x)χE(%)(Jn * */ir)(α)(/2i * */2.)(α)
fij~9ij

S U/2 _ _ _ _

d(x)(gn * * 0ir)(a?)(02i * *
-tt/2

Proof. We note that by Theorem B

S +oo _ _

d(x)χE(fn * * /ir)0*0(02i * * flr2β)(α)
_eo

^ Γ d(^)χ^(x)(/u * . . . * /lr)(α)(g21 * . . . * J2β)
J —oo

S +oo _ _ _ __ _

d(x)χE(x)(gn * . . . * glr)(x)(g2ι * . . . * fir28)
-eo

We set,

A(X) = »r(Λ*l* - 01*0 te* - gΐr)

and
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THEOREM 3.2. // g**(x) are finite for each x and lim^oo g*j(x) — 0,
then there exists a constant K, 2~r~s <Ξ K fg 1, such that

sup y_J,(x)χE(x)(fn * *flr)(x)(f2i * " *f2s)(x)

(3.0)

Here, K depends on gfd and u; and we note that 1 ^ i ^ 2 and
1 <Ξ j" ̂  max (r, s).

Proof, (i) We first prove that ίΓ ^ 1. We consider the case
where,

(1 0 < x < ai5

(3.1) gUx) = ~ -
(0 elsewhere

<hι ̂  " ^ α l r and α2L ^ ^ α2s .

Without loss of generality, we can assume that aιr ^ a2s and α l r > 0.
(A) (u ^ α2s)

S ti/2 _ _ _ _

d{x)(gn * . . . * flflr)(a?)(flf21 * * g2,)(x)
- i ί / 2

α2s

(B) (α l r g u < α2s)

w/2 _ _

d(x)(gn * . . . * glr)(x)(g2ί * *
- M / 2

(C) (w < α l r)

S W/2 _ _ _ _

d{x)(gn * . . . * flrlr)(ίc)(flr21 * * g2,)(x)
-u!2

= aιs*a2s
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To complete the proof, we apply Lemma 1.4 as we did in Theorem 1.6
(Case II).

(ii) Here we prove that K Ξ> 2~r~s. First, we consider functions
as defined by (3.1).

(A) (u ̂  a2s)

Γuj2 _ _ _ _

d(x)(gn * . . . * glr)(x)(g2ί * . . - * g2s)(x)
J-w/2

D-x Γ(ul2)+x ~\ΓC(a2sl2ϊ-χ Γ(a2s!2)+x

s/27 ^ α u alra2l a2s

2 r + sα 2,

(B) (alr ̂ u < a2s)

- M / 2

= \ d(x)\ A1 ( r_1 } + &1(r_1} I A 2 ( s _ υ +
Jo LJo Jo JLJo Jo

an

( i
V 2 r + S

• aίra2ί
LA ^2S

)\\)u X

• a2s

.2 ^ -̂ y

(C) (w

i faXίίπ glr)(x)(92i * *
-tt/2

(olr/2-»

Lt a^

To complete the proof, we apply Lemma 1.4 as we did in
Theorem 1.6 (Case II).

COROLLARY 3.3. If gt*{x) are finite for each x and lim^oo g*{x) =
0, 1 ̂  k ̂  n, then there exists a constant K, 2~2n ^ K ̂  1, such
that
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sup ^Jί(χ)χE{χ)[(f1 * - f«)(χ)Y
fΓ9)

- y ^ t \ 2 _ ^ _ / y - J ^ •£ g~, -'fi \ 2(gr - 9ΐ)2

n-\gr ~ gf) ••• (flfί* - ί/,ΐ))2]

depends on gl (l^k^n) and u.

Proof. This is a special case of Theorem 3.2, with r = s = %
and g*i = gf.

TV. Applications. The functions /(x) in this section are complex-
valued and the variable x is real. We require that Re (f(x)) and
Im (/(#)) be Lebesgue measurable and | {x: \f(x) \ > v}\ < °° for every
y > 0. In a natural way we can now talk about the decreasing rear-
rangement function /* of /.

We mean by the statement

) =iLp)Umfn(x), xe (-00, 00) ,

that l i m n . β β | | Λ - / | | p = 0.
By PlanchereΓs theorem if we let fe L2(— oo, + oo), then

Cn

%(f)(x) =(L) 1/V 2π linv_co f(t)eίtxdt, exists a.e., and belongs to L2;
J—n

also, if fe L2, then || %(f) ||2 = || / ||2. A generalization of PlanchereΓs
theorem (Theorem C and D), due to Hardy and Little wood, is a
consequence of Corollary 3.3. Another rearrangement theorem [4,
pages 128-131], due to Hardy and Little wood, is contained in
Theorem E.

THEOREM C. (Hardy and Littlewood). If \f{x)\q \x\q~2 (q ̂  2)

belongs to L(-oo, +oo), then %(f)(x) = ( x , l/τ/2π limn^ Γ f(t)eίtxdt,
J —n

exists a.e., and belongs to Lq; and

'\f(x)\^\xrid{x))m.

Proof. Suppose first that feL^ and has compact support, then
we have by PlanchereΓs theorem,

= Π/*/* •••
^\*J\f\*\f\*~'*\f\YA(x)
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and by Corollary 3.3,

Jo

^ {2n)2n[~d{x)x2[n-ι)(f*{x))2n

JO

^ (2n)2n\+°°d(x)x2{^1) \f(x) \2n .

{ Γ+oo

xg(x): \ d{v(x)) \ xg(x) \q < +00, where

d(v(x)) = <%)/x2j = L g ,,(- 00, + 00). Now for each heMq,v set Γ(ft) =

%(h/x). Here, we can apply the interpolation theorem of Riesz-
Thorin to the operator T [4, pages 93-96].

THEOREM D. (Hardy and Littlewood). If feLp (1 < p ^ 2),

{j j δ(/)(») IΊ »r2

+ 1/q — 1.

Proof. Use our estimate from Theorem C for | | § ( / ) | | g , then
use the proof found in [3, Theorem 80, page 110].

If you take /(«) = l/(|ί | + 1), t e ( - o o , + 0 0 ) , then ||
and ||ί/(ί) ||βo = 1. Thus, Theorem C does not hold when ̂ = 0 0 ,
However we see from Corollary 3.3 that if fe Lλ Π L^, then

We define the

set Aq = \g*: \°°(g"ί(x)yx^2d(x) < +00, and limg*(x) = θ | .
I Jθ S-*oo J

THEOREM E. (Hardy and Littlewood). g* e Aq if and only if
%{f) e Lq(q ̂  2), for every f ~ g*. If g* e Aq (q ̂  2), ίλew

for every f ~ g* where c(q) is a constant which depends on q.

Proof. (<=:)

LEMMA. If%(f)eLq (q ̂  2),
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1/?

* I'"2 \f(x) ή ^ e(q)

Proof. Suppose feL,. Π Lm, then by Plancherel's theorem

-° \f(x)\tΛd(x) .

To complete the proof, we note [4, page 19] that if Σ<Γ an cos (it*) 6
(q ^ 2) for αj Ξ£ α2 ^ ^ an ^ , then

(4.1) Γ
Jo

, an cos (nx) d(x) ^ J5(g) Σ alnq~2

We quote from Titchmarsh [3, pages 70, 71, 109].
Let

S ίv + D
(v = 0, ± 1 , ± 2 , . . . )

and

= Σ

Then, if 6 > 0 and n = [Xb] - 1,

lim<P.(«) = Γ f(t)eix dt

uniformly in any finite interval. We note that in our case α0 =
«_! SΪ ^ = α_2 ^ 2; αre ^ 0. From (4.1) we see that,

J-πλ

If v ^ 1, then

Φ.(x)\<d(x) = Σ a^* d{x) ^ λ Σ αϊ I v l'~2

Since,

1 Γ f(t)eίtxdt - fα f{t)eitx

II J-6 J-a

we get that

|
α<!a;|<δ

«\<-*d(x)
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Hence, we get out result.
(=>:) In the proof of Theorem C we showed that if fe L^ and has
compact support, then

\2nd(x) ^ (2n)

Now if / is arbitrary (/~ g*), then we define

(fix) \f(x)\^r,\x\ ύr
fΛx) = r \f(x)\ > r , \x\ ^r

[ 0 elsewhere

therefore (|/ - fr |)%τ) ^ g*(x) and Km r ^ (|/ - fr \)*{x) = 0. Hence
it follows that,

Next, we show the theorem for 2 < q < 2π.
Let

and

h2(x) =

xf(x)

Xeίaτg(

) -Cί \ >v 0 \V(r

I rι" TI O" I λ P °

I χf(χ) ^ 3λ

> 3λ

! aj/(a?) I ^ 3λ

> 3λ .

2λ}

y2n~1v{x: xg*(x) > y)

H τ : χg*(χ) > λ}] ^ c(n, q, 2) || . ^
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