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BLOCKS AND F-CLASS ALGEBRAS OF
FINITE GROUPS

WILLIAM F. REYNOLDS

For an arbitrary field F of characteristic p ^ 0, the usual
partitioning of the p-regular elements of a finite group G
into i^-classes (-F-conjugacy classes) is extended to all of G
in such a way that the F-classes form a basis of a subalgebra
Y of the class algebra Z of G over F. The primitive
idempotents of E®F Y, where E is an algebraic closure of
F, are the same as those of Z. By means of this fact it is
shown that if p > 0 the number of blocks of G over F with a
given defect group D is not greater than the number of
p-regular F-classes L of G with defect group D such that
the .F-class sum of L in Z is not nilpotent; equality holds if
Op,p>,p (G) = G or if D is Sylow in G. The results are genera-
lized to arbitrary twisted group algebras of G over Fm

1* Introduction. The representation theory of a finite group G
over an arbitrary field F involves certain subsets of G called F-
conjugacy classes or simply F-classes [6, p. 164], [9, p. 306]. In this
paper we show (Theorem 4) that the F-class sums in the group
algebra A of G over F form a basis of a subalgebra Y(A) of the
center Z(A) of A; we may call Y(A) the jP-class algebra of G. (If
F has prime characteristic p, the definition of the p-singular i^-classes
requires some care.) The crucial property of Y(A), from our stand-
point, is that its extension Y(A)E to an algebra over an algebraic
closure E of F has precisely the same primitive idempotents as the
jP-algebra Z(A) (Theorem 4); thus the blocks of G over F correspond
to the primitive idempotents of an algebra over an algebraically closed
field. Furthermore we obtain a corresponding result for any twisted
group algebra (without any normalization of the factor set) of G over
F by the methods of [16].

We make use of jP-class algebras in conjunction with methods of
Berman and Bovdi (Bδdi) [2], [3] to obtain results about the number
of blocks of twisted group algebras. In the group-algebra case these
results (Theorems 6, 8, and 9) can be summarized as follows.

THEOREM 1. Let F have prime characteristic p. For any p-
subgroup D of G, the number of blocks of G over F with D as a
defect group is less than or equal to the number of p-regular F-classes
L of G with D as a defect group such that the F-class sum of L is
not a nilpotent element of A. Equality holds here if Op>p,,p{G) = &
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or if D is a p-Sylow subgroup of G; in the latter case the nonnilpotence
condition can be omitted.

Theorem 1 incorporates generalizations of results of Brauer and
Nesbitt [4, Corollaries 1 and 2], [5, (6D)] as well as of [2] and [3]
concerning the case where .Fis a splitting field for G. In [2, Theorem
2] part of the result for OPtP>,p(G) = G is stated for arbitrary F, but
without proof. The p-Sylow, or "highest defect", result for group
algebras over arbitrary F has been obtained independently by Hubbart
[10]; Bovdi's proof of this result is of interest even in the splitting-
field case. Treatments of Brauer's results by Rosenberg [17] and
Conlon [8] will be referred to frequently. Further references are
given below.

In Corollary 2 we generalize a result of Brauer [5, (13A)] on
blocks of defect 0. We remark that there is a connection between
i^-class algebras and the notion of S-rings (see [18] for example).

Added in proof. L. G. Kovacs discovered most of Theorem 1
using vertices and sources, but his proof has appeared only in some
unpublished notes written by Andrew Hopkins [9a]. Michler [lla]
has independently obtained some interesting related results.

Terminology. We have attempted to help a reader interested
only in the group-algebra case to skip over the complications caused
by twisting. Standard notations, such as NG{H), OP(G), Z(G), and
the vertical line symbol for restrictions of mappings will be used
without comment. A p'-group is one of order not divisible by p> i.e.
such that all its elements are ^-regular; if p = 0, every finite group
is a p'-group, and a p-group has order 1. The center and Jacobson
radical of an algebra X are called Z(X) and J{X) respectively. We
shall follow the notation of [16] except for its categorical machinery.

2* Representations of a Galois group* Throughout the paper
A denotes a twisted group algebra of a finite group G over an
arbitrary field F of characteristic p ^ 0; thus A has a basis {ag: g e G]
with

(2.1) agag, = f(g, g')agg, , 9,g'eG,

for some nonzero f(g, gf) e F. For any subset H of G, AH denotes the
subspace of A with basis {ah:heH}; if H is a subgroup, AH is a
twisted group algebra of H. E is a fixed algebraic closure of F,
and 2^ is the (untopologized) Galois group of E over F. For any
F-space (F-algebra) X, XE = E®FX is the i?-space (E'-algebra)
obtained from X by extension of the ground field. We regard X as



BLOCKS AND F-CLASS ALGEBRAS OF FINITE GROUPS 195

embedded in XE in the usual way; thus (AH)E = {AE)H = Af.
We consider two representations of & on the i£-spaee AE. First

there is the well-known canonical semilinear representation of gf on
AB, which we shall call PA: for each σe&,

g eG

where w(g)° denotes the image of w(g) under σ. PΛ(
σ) is a ring-

automorphism of AE. (The existence of PA does not depend on the
fact that A is a twisted group algebra.)

The second representation of & on AE is the linear representation
SA of [16, Theorem 5]. We can describe SA(σ) by the following
restatement of [16, Corollary to Theorem 4].

THEOREM 2. For each σ e S ,̂ there is a unique E-linear trans-
formation SA(σ) of AE to AE such that:

(2.2) For each cyclic subgroup ζg)> of G, the restriction of
SA(σ) to AE

g} is an algebra-automorphism of AE

g>.

(2.3) For each cyclic p'subgroup ζgy of G, ψj(aSA(σ)) =
[ψj{aPA{σ))]a~ι whenever a e AE

g) and ψ3- is an irreducible
character of AE

gy.

(2.4) For each cyclic p-subgroup <#> of G, SA(σ) fixes every
\Eelement of Afg>.

Here ψj is defined with values in E. By Theorem 2, the analogue
of SΛ(σ) for any subgroup H of G is

(2.5) SAH(σ) == SA(σ)\AE

H

(cf. [16, Theorem 4, (a)]). The group {SA(σ): σe%?}is finite [16, § 6]
More explicitly: choose any n divisible by the exponent of G and

write n — npnp, where np is a power of p and nv> is not divisible by
p. (If p = 0,n = nP,.) Choose m(σ) so that ω° = ωw ( σ ) for every
?V-th r°ot ω of 1 in E and m(σ) = 1 (mod np). Then g 7 has a
permutation representation s^ on G such that

(2.6) gsG(σ) = g"^ , ^ G G .

Then agSA{σ) is a scalar multiple of ag, in A^ where gf = gsG(σ)
([16, (6.4)] gives a formula for the scalar); thus SA acts monomially,
with sG as the associated permutation representation (cf. [16, §3]).
In particular if A is a group algebra, we can take ag — g; then
gSA(σ) = gsG(σ) [16, (9.2)].

G acts by conjugation both on itself and on AE by automorphisms:
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(2.7) aKA(x) = a^aax, gkG(x) = x~ιgx ,

for ae AE, geG, xeG [16, (4.1) and (4.2)]; KA is a monomial represent-
ation of G with kG associated to it. The fixed-point space of KA is
clearly the center Z(AE) = Z(A)E of AE.

In the next proof, and throughout the paper, we shall make tacit
use of the basic properties of idempotents of commutative algebras
(for example, see [11], especially pp. 54-55). We refer to the primitive
idempotents of a commutative algebra as block idempotents.

THEOREM 3. If σe gf, then:

(2.8) SA{σ)\Z(AE) is an algebra-automorphism of Z(AE).

(2.9) For every block idempotent d of Z(AE), dSA(σ) = dPA{σ).

Proof. By [16, (8.1)], SA(σ)KA(x) = KA(x)SA(σ); this is obvious in
the group-algebra case. Hence SA(σ) maps Z(AE) onto itself. Observe
that since PA(σ) permutes the block idempotents, (2.9) says that SA(σ)
permutes them in the same way. We prove this theorem in three cases
of increasing generality.

Case I. Suppose that A is a group algebra. If also p = 0, the
theorem is due to Burnside [7, p. 317, Theorem VII]; our argument
generalizes his. To each block idempotent d of Z(AE) there corres-
ponds a "block" B[d] of AE to which are assigned certain irreducible
representations Fό of AE, their traces or characters φjy and the
corresponding principal indecomposable representations Uj. Then

(2.10) d ^rpi(sr)g
\G\

where g runs over the ^-regular elements of G and φ3- over the
irreducible characters of B[d]: this is Osima's formula [12, §2] written
in characteristic p; for p > 0 we interpret (deg Uj)/\G\, which can
be written with denominator not divisible by p [5, (3F)], as an
element of the prime subίield of F. A consideration of characteris-
tic roots shows that φά{gm{σ)) = φά{g)° (cf. [16, Theorem 3]) and (2.9)
follows. If p = 0, Z(AE) is the direct sum of the fields dE; since
SA(σ)\Z{AE) permutes the cΓs, (2.8) holds. In particular this is true
when F = Q, in which case any integer relatively prime to the
exponent of G can serve as m(σ); an easy reduction modulo p yields
(2.8) for prime characteristic.

Case II. Suppose that there is a positive integer I such that
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, g'Y = 1 for all g, gf in (2.1), Then there exists a finite central
extension G* of G such that A is (up to isomorphism) a direct
summand of the group algebra A* of G* over F [8, pp. 155-156];
then A — A*e* for an idempotent e* of Z{A*). Let M: α* ι-> α*e* be
the projection of A* onto A, and let ΛP be its extension to a pro-
jection of (A*)E onto A2*. For any σe &, set

S - SΛ(σ), S* = ^ * ( σ ) , P = PΛ(σ), P* - P^*(σ) .

By [16, Theorem 4, (a)], S*ME = ΛFS. Using Case I we find that
e*S* = e*P* = e*, and that for any zeZ(AE),

zS = (xME)S = (aS*)ΛP - (zS*)e* - (2S*)(β*S*) - (ze*)S* = zS*

hence S|Z(A*) is a restriction of S*\Z((A*)E) and (2.8) holds. As for
(2.9), if d is any block idempotent of Z(AE), dS = dS* = dP* = dP,
using Case I and the fact that P = P* | AE by canonicity.

Case III. Let A be arbitrary. By [16, §9] there exist elements
c(g) of E such that if we set α* — c(g)ag, then {α*: ^eG} is an i^-basis
of a twisted group algebra A* for G over F such that Case II holds
for A*. We have (Aψ = AE. For a fixed αegf, set S = SΛ(σ),
S* = ^#(σ), P = PA(σ), P* = PA#(σ). At once P - P*Γ where Γ is the
E'-linear transformation of AE onto AE such that

(2.11) agT=^ψ-ag, geG.

By the proof of [16, (9.3)], the mapping gv-> c(g)σ/c(g) is a 1-cocycle,
i.e., a homomorphism of G into the group of roots of unity of E;
hence T is an algebra-automorphism.

We claim that S = S*T. In proving this we can replace G by
its cyclic subgroups <g> by (2.5). By (2.2) we can suppose that <#>
is either a p-group or a p'-group. In the first case S and S* are the
identity by (2.4), and so is T since the homomorphism in (2.11) is
trivial. Suppose then that G is a cyclic p'-group. Then AE = Z(AE)
(see the proof of [16, Theorem 4]) and AE is the direct sum of the
fields dE [8, p. 156]. By (2.3) fj(dS) - [fjidP)]0"1 = fj(dP) for each
j since ψj(dP) is 0 or 1; hence dS = dP in this case. Similarly
dS* = dP*, and [^(S*)"1]^ - [d{P*)~ι\P = dT; then S - S#Γ for cyclic
p'-groups and hence for all G.

Now Case II implies the general case: for since S*\Z{AE) and
T\Z(AE) are algebra-automorphisms, so is S\Z(AE), while dS ~
(dS*)T= (dP*)T = dP.

REMARK 1. The argument in Case III shows that (2.3) is equiva-
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lent to the condition:

(2.12) For each cyclic p'-subgroup <(#> of G, dSA(σ) = dPA{σ)
for every block idempotent d of Afg>.

Hence in Theorem 4 of [16], we can replace condition (b) by our
condition (2.9), which is roughly dual to (b). Also condition (c) can
be replaced by our stronger condition (2.8).

REMARK 2. Theorem 3 can also be proved using the generaliza-
tion of (2.10) for twisted group algebras; without proof we state that
this formula is

(2.13) d ^f9i(α7X
\G\

with summations as in (2.9). Since deZ(AE), the coefficient of ag

vanishes unless g is in a ϋΓ^-regular conjugacy class of G (see §3).
Passman [13] has shown that only p-regular g are needed without
deriving (2.13).

3* -F-class algebras* As in [16, §8], we can combine SA and KA

to form a monomial representation DA of the abstract direct product
& xG on AE by setting

(3.1) DA(σ, x) = SA(σ)KA(x) = KA(x)SA(σ) ,

(3.2) dσ(σ, x) = sG(σ)kG(x) = kG(x)sG(σ) .

The following result was suggested by a lemma of Berman [1,
Lemma 3.1].

THEOREM 4. The fixed-point space of DA is an E-subalgebra of
Z(AE) with identity. Its block idempotents are identical with those
of Z(A).

Proof. Temporarily denote this space by X. The first sentence
follows from (2.8), for since Z(AE) is the fixed-point space of KA, X
is the fixed-point space of the subrepresentation of SA on Z(AE).
There is a finite normal (not necessarily separable) extension field N
of E such that every block idempotent d of Z(AE) lies in N®FZ(A).
PA permutes the d's, and by [15, Lemma 2] the block idempotents
of Z(A) are the sums ^d over the various orbits. By (2.9) these are
also orbits under SA; then the sums X d are the block idempotents
of X.

We shall call the orbits of dG the F-conjugacy classes, or F-classes,
of G. Since gdG(σ, x) = ar1^*""1' x by (2.6), this agrees with the usual
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definition [9, p. 306], [1] for the p-regular elements of G (cf. the
proof of [16, Theorem 6]). The monomial representation DA distin-
guishes certain .F-classes: as in [16, §3] we say that an jF-class L is
DA-regular provided that there exist nonzero q(g) e E, ge L, such that
DA acts as a permutation representation on the elements q{g)ag of
AE. By [16, Lemma 2] if geL, then L is /^-regular if and only if
the stabilizer {(σ, x) e S^ x G: agDA (σ, x) — ag) of ag under DA equals
the stabilizer of g under dG. (In the group-algebra case, all F-classes
are /^-regular.) By [16, Lemma 1] the dimension of the fixed-point
space of DA is the number of /^-regular F-classes. In fact an i?-basis
is formed by the elements

(3.3) yL - Σ q(g)ag

as L ranges over the /^-regular .F-classes.
Analogous considerations apply to KA: thus we have elements zκ

as K ranges over the KA-τegular conjugacy classes of G which form
a well-known basis of the fixed-point space Z{AE) as well as of Z(A)
[8, p. 155].

In the group-algebra case we can choose all q(g) — 1 in (3.3)
so that the yL are the F-class sums in A. For general A it is
interesting, although not essential for our later arguments, that we
can choose all q(g) in the ground field F, so that still yL e A. This
statement is equivalent to the following theorem.

THEOREM 5. The fixed-point space X of DA has the form Y{A)E

for a unique F-subalgebra Y(A) of Z(A).

Proof. It will suffice to show that the fixed-point space of SA

has form WE for an F-subspace W of A, since this will imply that
X= WEΠZ(AE) = [WΠZ(A)]E. By (2.5), (2.2), and (2.5) we can
reduce to the case that G is a cyclic p'-group. As in Case III of
Theorem 3, AE = φ dE and the fixed-point space of SA is X. By
Theorem 4 the block idempotents e of X are all in A; then
X = φ eE — ( φ eF)E as required. For general G, Y(A) is unique
since Y(A) = X Π A = X Π Z(A). The statement about the yL is true
since X = φ L [Y(A)E n Af] = ®L [Y(A) n AL]E.

Henceforth the symbol Y(A) always denotes this F-algebra, and
the yL are chosen in A, so that they form an F-basis of it. Y(A)
may be called the F-class algebra of A. We could "normalize" the
basis {ag} of A, changing it so that all q(g) — 1 in (3.3); however we
shall not do this in order to avoid conflicting normalizations for
subgroups and for conjugacy classes.

We say that an i^-class L is A-nonnilpotent provided that (a) L
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is /^-regular and (b) yL is not a nilpotent element of Y(A). Here
(b) makes sense since yL is determined up to a scalar multiple; in
terms of radicals it is equivalent to saying that yL g J( Y{A)) or that
yL$J(Y(A)E). (It is not always true that J{Y{A)E) = J(Y(A))E: see
the example of [15, pp. 12-13].)

REMARK 3. I have not been able to answer the following question
even in the group-algebra case: does SA(σ) map J{A) into itself?

4% Counting blocks* From now on p will always be prime.
For each F-class L, call any p-Sylow subgroup of CG(g) for any g e L
a defect group of L; this is determined up to conjugacy in G since
CG(gm{σ)) — CG(g). In other words, the defect groups of L are the
same as the defect groups of the conjugacy classes within L. Each
block idempotent e of Z(A), i.e., of Y(A)E or of Y(A), has form
e = Σ r[L]VL, τ[L] e F, summed over the p-regular Z^-regular F-classes
L (cf. Remark 2). By [17, §2] and [8, §3], the largest of the
defect groups of those L for which r[L] Φ 0 form a single conjugacy
class of subgroups of G, called the defect groups of e (in A).

The following result is a generalization of the lemma of Brauer
that is quoted in its proof.

LEMMA 1. Let D be any psubgroup of G, and let H— NG{D).
Then there is a bisection of the set of all DA-regular F-classes of G
with defect group D and the set of all DAjJ-regular F-classes of H
with (unique) defect group D, given by L i-> L Π H.

Proof. By a lemma of Brauer [5, (10A)], [17, Lemma 3.4], there
is a bijection Kv^ Kf) H of all conjugate classes of G with defect
group D to all conjugate classes of H with unique defect group D.
For each .F-class L of G with defect group D, L = \Jσe5f K

ίm{σyi where
Kίm{σU = {gm{a):geK}, and L 0 H = [J(K f) H)ίmW; hence there is a
bijection L t—> L Π H of all i^-classes of G with defect group D to all
.F-classes of H with defect group Zλ If L is /^-regular and he L Π H,
the stabilizers of ah under DA and of h under dG are equal; then the
stabilizers of ah under DAH and of h under dH are equal, so that
L Π i ϊ is /^-regular.

Conversely suppose that L Π H is /^-regular with defect group
D. The following argument is a refinement of the proof of the
Lemma of [14]. Let heKOHQLΠH, and suppose that (σ, x) e & x G
is such that hdG(σ, x) = Λ; we must show that ahDA(σ, x) = ah. Let
T = {t e G: ahKA(t) — ah} be the stabilizer of ah under KA. K Π H is
-K^H-regular, i.e., T Π H = CH(h). By Brauer's lemma, Z> is p-Sylow
in Cσ(A) as well as in CH(h). Since CH(h) g Γ g Cσ(A), I> is p-Sylow
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in T. Now ahDA(σ, x) = cah for some ce E; if te T then

ahKA{x~ιtx) = c~ι ahDΛ(σ, x) KA{x~ι tx)

= c~ι ahKA(t) DA(σ, x) = c~ι ah DA(σ, x) = ah ,

so that x~ιTx gΞ T; similarly xTx"1 g T, so that x~xDx is p-Sylow in
T. Then x~ιDx = r ' D ί for some ί e T, and αtf"1 G NG{D) = H. Now

Λdff(<x, xt~ι) = hdG(σ, xt~ι) = hdG(σ, x)kQ(t)~ι = hkG{t)~ι = h .

Since L Π H is D^^-regular, ahDA(σ, xt"1) = αλ; and then ahDA(σ, x) =
ahKA(t) = αA as required.

LEMMA 2 (cf. [3, Lemma 4]). Under the assumptions of Lemma
1, £&e number of p-regular A-nonnilpotent F-classes of G with defect
group D is not less than the number of p-regular AH-nonnilpotent
F-classes of H with defect group D.

Proof. The mapping R of AE into AE

H defined by

geC

where C — CG{D), satisfies SA{σ)R = RSAH(σ); hence the Brauer
homomorphism R\Z(AE) of Z(AE) into Z(A|) [5, (7B)], [17, Lemma
3.3], [8, §3] carries Y(A) into F(Aff). For the basis element yL of
Y(A) in (3.3), τ/zJ? is an analogous element of Y(AH) for the i^-class
L Π H = L Π C; if τ/L is nilpotent so is 2/Li2. Since L is p-regular if
and only if L Π H is, Lemma 1 implies the result.

The next theorem generalizes [3, Theorem 1], which in turn
strengthens [4, Corollary 1] and [12, Corollary 2 to Theorem 9].

THEOREM 6. For any p-subgroup D of G, the number of block
idempotents of Z{A) with defect group D is not greater than the
number of p-regular A-nonnilpotent F-classes of G with defect group
D.

Proof. By Brauer's first main theorem on blocks, suitably
generalized [5, (10B)], [17, Theorem 5.3], [14, Theorem 1] and by
Lemma 2, we reduce at once to the case G — NG(D). In this case,
let V be the .P-subspace of Z(A) with a basis consisting of the
elements zκ (see the paragraph after (3.3)) for the iί^-regular conjugacy
classes K of G with defect group D. By [17, Lemmas 4.1 and 4.4],
[8, p. 166] and [14, p. 281], V is a (commutative) subalgebra of Z(A)
(possibly without an identity) and the idempotents e mentioned in
the statement are precisely the block idempotents of V. By Theorem
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4 they are the block idempotents of U — Vf] Y(A), which is a
subalgebra of Z(A) with a basis consisting of the elements yL for the
/^-regular F-classes L of G with defect group D. The block idem-
potents of U/J(U) are the elements e + J(U). Since these are linear
combinations of the elements yL + J(U) for the F-classes L mentioned
in the statement, the theorem is proved.

COROLLARY 1 (cf. [2, Lemma 1]). The number of block idem-
potents of Z(A) is not greater than the number of p-regular A-
nonnilpotent F-classes of G.

Theorem 6 and its proof, together with the theory of commutative
algebras [11], yield the following corollaries, which generalize results
of Brauer [5, (13A)] and Bovdi [3, Theorem 3] concerning the case

D = {1}.

COROLLARY 2. For any p-subgroup D of G, the number of block
idempotents of Z(A) with defect group D is the E-dimension of
UE/J(UE), where U is defined for D in N0(D). This equals the
F-dimension of Uι for sufficiently large i.

COROLLARY 3. The following conditions are equivalent, where

(4.1) There exists a block idempotent of Z(A) with defect
group D.

(4.2) There exists an AH-nonnilpotent F-class of H with
defect group D.

(4.3) There exists a p-regular AH-nonnilpotent F-class of H
with defect group D.

Now we obtain some sufficient conditions for equality in Theorem
6. First we consider groups such that OPfP>,p(G) = G.

THEOREM 7 (cf. [2, Theorems 1 and 2], [3, Theorem 2]). Assume
that G has normal subgroups P and M, P g ikf, such that P and G/M
are p-groups while M/P is a pf-group. Then the number of block
idempotents of Z(A) is equal to the number of p-regular A-nonnilpotent
F-classes of G. These coincide with the DA-regular F-classes of G
which are contained in OP(G)> and also with the p-regular DA-regular
F-classes of G with a defect group which contains P.

Proof. By Burnside's theorem Z{P) has a normal complement Q
in C = CM(P). Then C = Z(P)xQ, and easily Q = Opf{M) - OP,(G).

Let L be any p-regular /^-regular i^-class of G; then L g l ,
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We claim that the following conditions on L are equivalent: (a) L g Q ;
(b) L ϋ C; (c) L has a defect group which contains P; (d) the jP-elasses
of M contained in L have defect group P; (e) L is A-nonnilpotent;
(f) the conjugacy classes of M contained in L are A^-nonnilpotent.
It is straightforward that (a) <=> (b) <=> (d) <=> (c). Since AQ is semisimple
[8, p. 156], (a) => (e). Suppose now that (e) holds; let Kγ be a fixed
conjugacy class of M contained in L. Then L is a disjoint union
of classes of form K — {gdG(σ, x): geK^ for suitable choices of
(σ, x)e &xG. For the element yL = S ^ ί t o ) ^ of (3.3), let zκ~
Σ/7extf(#)α<7 Then yL — ̂ zKy and zκ is a choice for the basis element
of Z(AQ) corresponding to K. Since yLDA(σ, x) = yL, zKldG(σ, x) — zκ.
By (2.8) the elements zκ are either all nilpotent or all nonnilpotent;
since their sum is nonnilpotent, so are they; hence (e)=>(f). Finally
(f) => (b) by the twisted generalization [8, p. 166] of [17, Lemma 4.2].

Let e be any block idempotent of Z(A). Since the expression
for e involves only ^-regular elements, eeZ(AM). By [15, Lemma 3],
e e Z(AC); then e e Z(AQ) since (b) => (a). (Alternatively: by the twisted
generalization of [17, Proposition 4.4] which is implicit in [8, §3],
every block idempotent of Z(AM) has defect group P. The proof of
Theorem 6 shows that e is in the algebra V defined for P in M; then
eeZ(AQ) since (d)=>(a).) Therefore the block idempotents of Z{A)
are identical with those of Z(A) Γ) Z(AQ), and with those of
Y{A)E Π Y(AQ)E. Z(AQ), being semisimple, is a direct sum of copies
of E; then so is Y(A)E Π Y(AQ)E, and the number of block idempotents
of Z(A) equals the dimension of that algebra, namely the number of
/^-regular F-classes of G which are contained in Q. Since (a) <=>
(c) <=> (e), the theorem is proved.

Together with [16, Theorem 6], Theorem 7 implies:

COROLLARY 4. If G has a normal p-complement, each block of
A contains exactly one irreducible representation of A over F.

Combining Theorems 6 and 7 we obtain:

THEOREM 8 (cf. [3, Corollary 3]). If G satisfies the hypothesis of
Theorem 7, then for every p-subgroup D of G we have equality in
Theorem 6.

We conclude by treating the case of highest defect [5, (6D)],
[17, Theorem 6.1], [8, p. 166], [3, Theorem 4], [10]. Our argument,
based on [3], differs from that of [17] and [8] in using subalgebras
of Z(AH) instead of a quotient algebra, and thus avoids counting
p-singular classes.
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THEOREM 9. If P is a p-Sylow subgroup of G, the number of
block idempotents of Z{A) with defect group P is equal to the number
of p-regular DA-regular F-classes of G with defect group P. All such
F-classes are A-nonnilpotent.

Proof. By the first main theorem on blocks, the number of block
idempotents in question is equal to the number of block idempotents
of Z(AH) with defect group P, where H= NG(P). These are all the
block idempotents of Z{AH), as in the proof of Theorem 7; by that
theorem, for H, the number of such block idempotents equals the
number of p-regular /^-regular i^-classes of H with defect group P.
By the bisection of Lemma 1, this equals the number of the jP-classes
of G mentioned in the first sentence. The jF-classes of H in question
here are all A^-nonnilpotent since (c) ==> (e) in the proof of Theorem
7; then Lemma 2 implies the second sentence.
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