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EXAMPLES CONCERNING SUM PROPERTIE> FOR
METRIC-DEPENDENT DIMENSION FUNCTIONS
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J. C. NicHOLS AND J. C. SMITH

Let d, denote the metric dimension function defined by
Katetov, and let dim be the covering dimension function. K.
Nagami and J. H. Roberts introduced the metric-dependent
dimension functions d; and d;, and J. C. Smith defined the
functions ds and d,;. The following relations hold for all metric
spaces (X, o):

do(X, p) = du(X, p) = do(X, p) = di(X, p) = do(X, p) .

Since all of the metric-dependent dimension functions above
satisfy a ‘“Weak Sum Theorem,” it is natural to ask if any
of these functions satisfy the Finite Sum Theorem or the
Countable Sum Theorem. In this paper the authors obtain
new properties of these dimension functions, and using these
results construct examples for which none of the metric
dependent dimension functions satisfy either of the sum
theorems in question.

Let d, denote the metric dimension function defined by Katetov
[2], and let dim be the covering dimension function. K. Nagami and
J. H. Roberts [5] introduced the metric-dependent dimension functions
d, and d,, and J. C. Smith [7] defined the functions d; and d,. The
following relations hold for all metric spaces (X, p):

(*) dy(X, 0) = dy(X, 0) = du(X, p) = di(X, ) = di(X, 0) .

In [8] J. C. Smith has shown that all of the above dimension
functions satisfy the “Weak Sum Theorem” stated below for d,.

THEOREM. Let (X, p) be a metric space satisfying these condi-
tions:

(1) X = Uwcs F, where each F, is closed in X.

(2) {F,.aec A} is locally finite.

(38) dy(F,, p) =n for each ae A.

(4) dim[(bdry F.,) N Fs] < n — 1 for a +# (.
Then d (X, p) < n.

It is now natural to ask the following question. Do any of the
above dimension functions satisfy the Countable Sum Theorem or the
Finite Sum Theorem? In this paper we answer this question in the
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negative. In §2 we obtain a number of results relating the dimension
functions d, and d, to certain subsets of Euclidean n-space. In §3 we
apply these results in constructing a metric space for which none of the
above metric-dependent dimension functions satisfies the Finite Sum
Theorem.! In §4 we prove that if any countable disjoint collection
of compact subsets of Euclidean n-space (n = 3) is removed, the
dimension function d, may decrease by at most 1. This result is
analogous to Theorem 1 of [5]. As an application of this theorem
we construct an example of a metric space for which none of the
above metric-dependent dimension functions satisfies the Countable
Sum Theorem.

2. Definitions and preliminary results.

DEFINITION 2.1. Let (X, o) be a metric space and let B, C and
D be closed subsets of X. The set B is said to separate C and D in

X if X— B=SUT where S and T are nonempty open sets, C< S
and DS T.

DEFINITION 2.2. Let (X, p) be a nonempty metric space and let
n be a nonnegative integer. Then d,(X, p) < n if (X, p) satisfies this
condition:

(D,) For any collection & = {(C;,C)):4=1, -+, n + 1} of n+1
pairs of closed sets with o(C;, Ci)) > 0 foreachi =1, ---, n + 1, there
exist closed sets B;, t =1, --+, » + 1, such that

(i) B; separates C; and C; for each ¢ =1, .-+, » + 1 and

(ii) N B, = @.

If X = @ then d,(X, p) = —1.

DEerFiNITION 2.3. Let (X, o) be a nonempty metric space. The
metric dimension of (X, p), written d,(X, o), is the smallest integer &
such that for every ¢ > 0 there exists an open cover % of X with
mesh (%) < ¢ and order (%) <k + 1.

DEFINITION 2.4. Let d denote a dimension function on the class
of all metric spaces. Then d is said to have the Finite Sum Property
if given any metric space (X, 0) which is the finite union of closed
subsets A; with d(4;, p) < n, then d(X, p) <n. Also d is said to
have the Monotone Sum Property if given any metric space (X, o)
which is the countable union of closed subspaces A; with A4;< 4,
and d(4;, o) £ n for each 1, then d(X, o) < n.

DEFINITION 2.5. Let (X, p) be a metric space. Suppose
1 The basic idea for Example 3.1 is due to J.H. Roberts.
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s ={C;, C):i=1, -+, n}

is a collection of 7 pairs of disjoint closed subsets of X with the
property that, if B; is a closed set separating C; and C; in X for
each 4, then N, B; # @. Then & will be called an n-defining
system for X.

DEFINITION 2.6. A decomposition of a metric space (X, o), X =
Uses H, will be called a proper decomposition if there are at least
two indices @, ge A such that H, + @ and H; # Q.

The following characterization of d, is proved in [5] page 426.

LEMMA 2.7. Let (X, 0) be a metric space. Then dy(X, p) <n if
and only if there exists a sequence of locally finite closed coverings
{F: 1= 1} such that

(i) mesh (F;) < 1/t for each 1.

(ii) ord (F;) <n + 1 for each 1.

The following theorem is proved in [4].

THEOREM 2.8. Let X be a metric space with dim X < n, and let
B, B,, -+ be a sequence of closed subsets of X such that B, = X and
dim (B;) = n;. Let ¢ > 0. Then there exists a locally finite closed
covering F = {F,: ae '} which satisfies the following conditions:

(i) mesh (F) < ().

(i) for each i, ord (¥ |B;) < n; + 1.

(iii) for each i and for each j < m; + 2, dim Ni-, [Fam N B)] <
n; — 3§ + 1, where {aQl), @(2), ---, a(4)} is any collection of j distinct
members of I'.

THEOREM 2.9. Let X be a metric space with dim X < n, and let
B,, B, --+ be a sequence of closed subsets of X with dim (B;) = n; and
B,=X. Let ¢ > 0. Then there exists a locally finite closed covering
F = {F,:ac I'} which satisfies the following conditions:

(i) mesh (F ) <e.

(ii) of A;={x:ord (v, & ) =g} for g =1, -+, n + 1, then

dim(AJmBl)én,,—j-l“l

for each 1.

Proof. By Theorem 2.8 above there exists a locally finite closed
cover .+ = {F,:«ae I'} which satisfies (i)—(iii) of that theorem. By
(i) with B,= X, we have ord {# }<n + 1. Foreach k, 1<k
n + 1, define H, = {x: ord (x, & ) = k} so that A; = Ui} H,. Let I,
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be the collection of all subsets of I" whose cardinality is %, and let
2 ={Naes Farge I}, Since & is locally finite, <7 is a locally
finite collection of closed sets whose union is A,. Thus by (iii) in
Theorem 2.8 we have that dim (LN B;) < n; —j + 1 for each Le &.
Hence by the Locally Finite Sum Theorem for covering dimension,
dim (4; N B;) = n; — 7 + 1 for each 1.

As an application of Theorem 2.9 above we obtain the following.

THEOREM 2.10. Let {J;:© = 1} be a sequence of closed substs of a
Cantor 3-manifold (K, o) such that dim (J,) < 1 for each ©. Then there
exists a sequence of closed sets {H;:v =1} satisfying the following
properties:

(1) For each i, H; = K — U1 J

(2) HNH =@ fort+#].

(3) dim (H)) £1 for each 1.

(4) do(K — [(Uiz: 7)) U (Ui H)D = 1.

Proof. Since (K, p) is a Cantor 3-manifold there exists a 3-defin-
ing system &, = {(C;, C)): 1 =1, 2, 8} for (K, o). We may assume that
o(C;, C}) > 6 > 0. By Theorem 2.9 with B; = J; for ¢ = 1, there exists
a finite closed cover &, of K satisfying,

(1) mesh () <d

(2) if A, = {z:ord(z, #,) = j} for =1, --., 4 then

dim (AN B) =8 —j + 1.

Let H, = B, and H, = Al. By (2) above we have dim (4}) < 1.
By Theorem 1 in [6] we have dim (4) = 1. Hence dim (4} = 1.
Therefore by Theorem 2.9, dim(H,NJ;) <1 -3+ 1= —1, so that
HNnJ, =@ for all 1> 1.

We apply Theorem 2.9 again with B, = H; for 1= 0,1 and B; =
J,_, for 1 =2, and ¢ = §/2. Thus there exists a finite closed cover
#, of K satisfying.

(1) mesh (&) < /2.

(2) if A® = {x:ord (x, &,) = j} for j =1, ---, 4 then

dim(ASNH)y=n;,—j+1 for 2=10,1.

Let H, = A:. By the same argument as above we have dim (H,) =1
and dim (H, N H,) £ —1,sothat H N H,= @. Similarly H;NJ, = @
for ¢ = 1,2 and any 5 = 1.

Repeating this process we obtain a sequence of finite closed covers
{Z 1 = 1} satisfying the following:

(1) mesh (F;) < i/i for each 7= 1.

(2) with H; = A; for each ¢ =1, we have dim (H;) = 1, and H;
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is a closed subset of K.

(8) HNH, =@ forall t#j, and H;NJ,= @ for all 1 =1,
E=1.
Let X =K~ [(Uiz: H) U (UizJ)].  Then dy(X,0) =1 by Lemma
2.7.

The following Lemma is proved in [3, p. 21]

LeEMMA 2.11. Let X be a compact metric space with disjoint closed
subsets D and E. Then one of the following must be true.

(1) There exists a continuum W in X such that WN D # @
and WNE =+ O.

(2) The sets D and E can be separated by the empty set.

The following is an immediate consequence of Lemma 2.11.

LEMmMA 2.12. Let (X, 0) be a compact metric space, let
e ={C;, C:i=1, -+, m}
be an n-defining system for X, and let Y = X such that
d(X—-Y)=n—2.

If for each 1 =1, -+-, m — 1, B; is a closed set separating C; from C.,
then there exists a continuum W < Mo B; & Y such that WNC, #= @
and WNC,# Q.

The following is proved in [5, p. 416]

LEMMA 2.13. If X 1s a comnected compact Hausdorff space then
there 1s no countable proper decomposition of X imto mutually disjoint
closed subsets.

The following is an easy consequence of Lemma 2.13.

Lemma 2.14. If (X, p) s a closed connected subset of FEuclidean
n-space, them there is mno proper decomposition of X imto a countable
collection of mutually disjoint, compact sets.

3. No metric-dependent dimension function has the finite
sum property.

ExamMpPLE 3.1. Using Theorem 2.10 we construct a metric space
(X, p) with the property that X = A, U A,, where

dO(Ah (O) —g 1y dO(A27 (0) é 1
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but d.(X, o) = 2. Hence by the relation (*) above (X, p) is an example
for which none of the metric-dependent dimension functions have the
Finite Sum Property.

Let Y, ={(x, ®,2):0=2, <1 ¢=1,2,3}. Since (Y, ) is a
Cantor 3-manifold by Theorem 2.10, with J, = @ for all 4+ = 1, there
exists a sequence of sets {H,:1 = 1} satisfying:

(1) each H; is closed in Y,.

(2) H,NH; =@ for 1+7].

(3) dim(H;) =1 for all 4.

(4) do(Y, — Uizn H) = 1.

Similarly let Y, = {(x,, ®,, ,): 0 < 2, <1 fort=2,3and 1 < 2, < 2},
Again by Theorem 2.10 with J;, = H; for each 7 = 1, there is a sequ-
ence of sets {L;:7 = 1} with the following properties:

(5) each L; is closed in Y, and L; & Y, — Uss, H;-

(6) L;NL; = for i+ j.

(7) dim(L;) =1 for all 7= 1.

(8) do(Y: — (Uker He U Uiz L) = 1.

Let A1 = Y1 - (U'Z?_l Hi U Uigl Li)r let Az = Yz - (UigL Hi U Uigl Li)
and define X = A4, U 4,. Then dy(A4, 0) <1 and dy(4,, 0) =<1 by (4
and (8) above. We assert that d,(X, o) = 2. Suppose d,(X, o) < 1.
Let

Ci={,x,x)2,=00=2,=1,7=1, 2}
Cl={(@, &, @), =200, <1, 0=1, 2}
and let

Ci={(®, @, 0): 0=, =20, =0, 0= 2; = 1,7 # 1}

Ci={(x, @, x): 0=, <25, =1,0=a; <1, 5% fore=23.

Then & = {(C;, C): 1 =1, 2, 3} is a 3-defining system for the compact
metric space Z = Y, U Y,. By Lemma 2.12 there exists a continuum
GZ (Uizi H) U (Uiz L) such that GN C, # @ and GN C] # @. Since
H,NC =@ and L,NC, = @ for each 7, G is not contained in any
one H; or L;,. Define M,, = GN H; and M,,_, = G N L; for each 7 = 1.
Then G = Uiss M; and M; N M; = @ for 17+ j. The collection {M;:
1 = 1} is thus a proper decomposition of G. This contradicts Lemma
2.13 above. Therefore d,(X, p) = 2.

4., No metric-dependent dimension function has the monotone
sum property.

THEOREM 4.1. Let (E", p) denote FEuclidean n-space for n = 3.
Let {A;:1 =1} be any collection of compact subsets of E™ such that



EXAMPLES CONCERNING SUM PROPERTIES 157
ANA; =@ for all i#j7. Then dy(E™ — Uizs 4) = n — L.

Proof. Suppose dy(E" — Uiz1 A) = n—2. Foreachi=1, «+-, n—1
let C; = {(x,, ++-, 2,); 2, = 1} and let C; = {(x,, ++-, ®,): 2; = —1}. For
each j = 1, define S; = {(z,, +++, #,): 2, = j} and let

So={(x, ++v,2,):2,=00=2,<1,9=1, -+, m—1}.
Then for any j = 1 the collection
z; ={(C, C)i=1,---,n—1}U(S; S}
is an n-defining system for the compact space
Ty =A{(z, -+, wa)t |2 =7}

Since d(E" — Uiz 4;) < n — 2, there exist closed sets B, .-, B,
such that B; separates C; from C; foreachi =1, .--, n — 1, and B =
N B; < Uiz A;. By Lemma 2.12, for each j = 1 there exists a
continuum D; such that D, = B U, 4;, D;NS, # @ and D;NS; # &.
If 0 <k <j, then S, separates S, from S; in T. Thus for all j =1
and all & satisfying 0 < &k < 7, we have that D, N S, = &.

We have thus proved the statement:

(1) For each 7 =1, B contains the continuum D; such that
D;NS,#= @ forall k, 0 <k < 5.

Since lim inf{D,: 5 = 1} # @ we have by [1, p. 100] that in any
T;, R=limsup{D,:j = 1} is connected. Note that R < B since B is
closed. From statement (1) above we now have,

(2) R is a connected set with the property that RN S; # @
for every j = 1.

Since each A; is compact, R cannot be contained in any one A,.
Let H; = A;N R. Then {H;:7 =1} is a proper decomposition of the
connected set R into a collection of mutually disjoint compact sets.
This contradicts Lemma 2.14 and completes the proof of the theorem.

ExAMPLE 4.2. We construct a metric space (X, p) with the pro-
perty that X = U,., A;, where for each 7= 1, A4; is a closed set,
di(A;,, 0) =1 and A, S A, yet dy(X, 0) =2. Foreachi=1,let T, =
{(z,, @, 2): |2;] < 4}, Then Ui, T; = E* and T, < T;,, for all 1> 1.
For each ¢ = 1 we construct a sequence of closed subsets {H;,: k = 1}
of T,. Applying Theorem 2.10 to the Cantor 3-manifold 7,, with

.= @ for all £k = 1, we obtain a sequence of closed subsets

{Hy: k= 1}

of T, such that:
(1) H,NH,;= @ for all j + k.
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(2) dim(H,) <1 for all k= 1.

(3) dO(Tl - ngl Hlk) é 1-
Suppose that for each 7 =1, ... m the closed collection {H;:%k = 1}
has been constructed satisfying the following,

(1) H,y,NnH; =@ for (t,k)y # (1,71 <1< m 11 < m.

(2) dim(H;,) <1 for all 4, 1 <1< m, and for all k= 1.

(3) dO(Tz - Uj':l [ngl ij]) é 1.
To construct the collection {H,,.,,.: k¥ = 1} we apply Theorem 2.10 again
to the Cantor 3-manifold 7,.,, identifying the collection {J;:7 = 1} in
the theorem with the collection {H;,:5 =1, ---, m; k = 1}. Finally we
conclude that there exists a countable collection of compact sets
{H;: 1= 1k = 1} satisfying the following:

(1) H,NH,; = for all (i, k) = ({, 7)

(2) dim(H;) <1 for all ¢, k.

(8) d(T;, — Uiz, [Uiz H,i]) £ 1, for all 4.
For each ¢ = 1, we define W, = T; — Ui=, [Us=: Hirls

4= Wi~ U|U Hal,
and X = U;., 4;. Now X is a monotone sum since for all 4= 1,
A, < A,,, and A4, is closed in X. Also we have that

o

x-p-glon]

7=1

and for each ¢, dy(W,) < 1 by construction. Therefore d,(4;) < 1 since
A, < W, for each 1.

Now the collection {H;,:5 = 1, k = 1} is a countable collection of
compact mutually disjoint subsets of E®. Hence by Theorem 4.1 above
we have that d,(X) = 2. Thus (X, o) is an example of a metric space
for which none of the metric-dependent dimension functions satisfy
the Monotone Sum Property.
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