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FIXED POINT THEOREMS FOR NONLINEAR
NONEXPANSIVE AND

GENERALIZED CONTRACTION MAPPINGS

W. A. KIRK

Let X be a reflexive Banach space, H a closed convex
subset of X, and let K be a nonempty, bounded, closed and
convex subset of H which possesses normal structure. If
T: K-^H is nonexpansive and if T: dMK->K where dRK
denotes the boundary of K relative to H, then T has a fixed
point in K. This result generalizes an earlier theorem of
the author, and a more recent theorem of F. E. Browder. An
analogue is given for generalized contraction mappings in
conjugate spaces.

!• Introduction* In [13] we proved that if K is a nonempty,
bounded, closed and convex subset of a reflexive Banach space, and
if K possesses "normal structure" (defined below), then every non-
expansive mapping T of K into K has a fixed point. This result, also
proved independently by F. E. Browder [4] and D. Gohde [11] (in
uniformly convex spaces), initiated rather extensive study of fixed
point theory for nonlinear nonexpansive operators in Banach spaces,
including applications to the study of nonlinear equations of evolution
by Browder [5] and to certain nonlinear functional equations (see
Browder and Petryshyn [8], Kolomy [16], Srinivasacharyulu [21]).

In this paper we modify the approach of [13] to treat the follow-
ing problem: Given closed and convex subsets K and H of a Banach
space X such that K Π H Φ 0 and an operator T: K —> X such that
( i ) T: KΓ\H->H and (ii) T: dIΣK-*K (where dHK denotes the
relative boundary of K Π H in H), when does T have a fixed point ? This
kind of problem has been of particular interest in the case where
the operator T is completely continuous, H is the positive cone of X,
and the fixed points of T correspond to positive solutions of a dif-
ferential equation (for example, see [17]). A standard approach is to
use the technique of "radial projection" to associate with T an
operator B which is also completely continuous, has the same fixed
points as T, and maps the intersection of H with the ball K: \\ x \\ <: R
into itself, thus permitting application of the classical Schauder
Theorem [19]. Such an approach, however, is not suitable for our
purposes because we consider mappings of nonexpansive type. Since
radial projection is in general not nonexpansive (see [9]), the associated
operator B need not be nonexpansive and one cannot obtain a fixed
point by direct application of the theorem of [13].
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Before stating our results we establish relevant notation and
definitions.

A mapping T of a subset K of a Banach space X into X is cal-
l e d n o n e x p a n s i v e i f \\Tx — T y \ \ ^ \ \ x — y\\ f o r a l l x, y e K .

For a subset S of a Banach space X, the symbol δ(S) denotes
the diameter of S — i.e.,

δ(S) = sup {|| a - ! / 1 | ; α ,τ/eS} .

The notation Ϊ7(«; r) is used to denote the spherical neighborhood
of z of radius r > 0:

U(z; r) = {xe X: \\z - x \\ < r} .

Similarly,

U(z; r) = {xeX: \\z - x \ \ ^ r } .

The concept of normal structure, due to Brodskii and Milman [3],
plays a key role in our approach. A bounded convex set K in a
Banach space X is said to have normal structure if for each convex
subset S of K which contains more than one point, there is a point
x e S which is a nondίametral point of S (i.e., sup {\\x — y\\:yeS}<

δ(S)). Compact convex sets possess normal structure ([3], [10, Lemma

1]) as do all bounded convex subsets of uniformly convex spaces. (For

a comparison of normal structure and uniform convexity, see Belluce-
Kirk-Steiner [2]. The concept has also been studied by Gossez and
Lami Dozo [12].)

We wish to thank the referee for his suggestions, particularly
for pointing out the corollary to Theorem 3.1.

2* A fixed point theorem for nonexpansive mappings* For
H and K subsets of X, we use the symbol dHK to denote the bound-
ary of K relative to H: Thus, letting H — K denote the points of H
which are not in K, if K is closed,

dHK ={zeK: U(z; r) Π (H- K) Φ 0 for each r > 0} .

THEOREM 2.1. Let X be a reflexive Banach space, H a closed
convex set in X, and K a nonempty, bounded, closed, convex subset
of H which possess normal structure. If T: K—*H is nonexpan-
sive, and if T: dHK—*K, then T has a fixed point in K.

The above theorem immediately reduces to our theorem of [13]
upon taking H' = K. A more interesting consequence of this theorem
arises from taking H — X:
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COROLLARY. Let K be a bounded closed convex subset of a reflexive
Banach space X and suppose K possesses normal structure. If
T: K—>X is nonexpansίve, and if T maps the boundary of K into
K, then T has a fixed point in K.

Browder first obtained the above result [6, Theorem 3] for K
a bounded closed convex set in a uniformly convex space with
the additional assumption that T is defined on an open convex set
Gi) K with dist (K, X - G) > 0. Subsequently Browder [7] and
Nussbaum [18] have removed this assumption (in a uniformly convex
setting) while proving more general results, a fact which is signi-
ficant because in general one may not enlarge the domain of non-
expansive mapping [20].

Proof of Theorem 2.1. Let ^ be the family of all closed con-
vex subsets of H such that for Fe^~, F f] Kφ 0 and T: Ff}K->F.
Since He^~, J7~ Φ 0 . Let {Fa} be a descending chain of sets of
^ 7 and let F — Γ\aFa. Note that F f] K is nonempty, since each of
the sets Fa Π K is a nonempty weakly compact subset of X. Also,
since T: Fa f] K~> Fa for each a, clearly T: FΠK-+F. Since F is
closed and convex, Fe^~~y and therefore by Zorn's Lemma, ^~ has
a minimal element.

Letting F be such a minimal element of ^ 7 first note that vje
may sssume dFKΦ 0 , for otherwise FaK and T: F Π K—>F would
imply T:F—>F. The existence of a fixed point would then follow
from the theorem of [13].

Now ive assume 3 (F f] K) > 0 and obtain a contradiction. Let
δ — δ(F Π K). Since K possesses normal structure, there exists a
point c e F Π K such that

sup {|| c — z | |: z e F D K} = r < δ .

Let

C = {xeX: FnKaU(x; r)} .

It is easily seen that C is closed and convex and, since c e F Π C,
(F f] C) f]KΦ 0 . Also there exist points x,yeFf)K such that
|| x — y || > r. Such points cannot be elements of C and therefore F Π C
is a proper subset of F. We complete the proof by showing
F Π C e S\ Since we have already seen that (F Π C) Π K Φ 0 , we
need only show that T: (F f) C) Π K-* F Π C.

Suppose ze(Ff)C) Γ) K. Let

W - U(Tz; r)f]F.

Γ, then since WaF and F is minimal, W = F. This implies



92 W. A. KIRK

FΠ KczFa U(Tz r) ,

and hence Tz e C. Since T:FΠ K-~>F, this in turn yields TzeFOC.
Therefore T: (F Π C) Π K-+ F Π C if We jT~ for every ze(FΠC)Γ)K.
We complete the proof by showing this to be the case.

First suppose x e W Π K. Then xe F Π K so \\x — z\\ ^ r (because
zeC). Hence || Tα - Ts || ^ r and TxeU(Tz r). But a e ΐ F n ϋ Γ
also implies xeFnKand hence Γx e F. Therefore TxeU(Tz; r) ΠF =
W, i.e., T: W Π K ~> W.

Finally, since 3FKφ 0 , it follows that W Π K Φ 0 . To see this,
note that if yedFK then y e F f] K and ||̂ / — ^ | | ^ r , which implies
II 2fy — Tz || ^ r and therefore Ty e W. But also dFKcz3πK implies
Ty e K; hence Ty e W Π K and F/ Π if ^ 0 .

This completes the proof that F f l C e ^ 7 contradicting the as-
sumption δ(Ff] C) > 0. Thus δ(FΠ C) = 0 and FΠC consists of a
single point which, because T: dFK—+K, is fixed under T.

3. Generalized contraction mappings* In this section we give
an analogue of Theorem 2.1 for the class of generalized contraction
mappings studied in [14, 15]. With X a Banach space, and KdX,
a mapping T: K—+X is called a generalized contraction mapping if
for each xe K there is a number a(x) < 1 such that

|| Tx - Ty\\<L a(x)\\x - y\\ for each yeK .

It was noted in Belluce-Kirk [1] that mappings of this type pro-
vide an example of a class of mappings with "diminishing orbital
diameters"; thus fixed point theorems proved in [1] apply to this
class of mappings. In [15] it is shown that if A is a bounded open
convex subset of X and if F: A-^X is continuously Frechet dif-
ferentiable on A, then F is a generalized contraction mapping on A
if and only if for each x0 e A the norm of the Frechet derivative F'o
of F at x0 is less than one. It is also shown that if if is a w*-
compact convex subset of a conjugate Banach space X and if
T:K-+K is a generalized contraction mapping, then T has a fixed
point in K. This result may be generalized as follows:

THEOREM 3.1. Let X be a conjugate Banach space, H a convex
iv*-closed subset of X, and K a nonempty convex w*-compact subset of
H. If T: K—+H is a generalized contraction mapping on K, and if
T: dHK —> K, then T has a fixed point in K.

Proof. As in the proof of Theorem 2.1, obtain a w*-compact
convex set F minimal with respect to the properties F Π K Φ 0 and
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T: F n K—> F. As before, it may be assumed that dF(K) Φ 0
(otherwise FdK and existence of a fixed point follows from
Theorem 1.1 of [15]).

The argument parallels that of Theorem 2.1 upon obtaining a
point ce F f] K such that

(1) sup{ | | c - z\\: zeFf] K} < δ .

Such a point can be obtained by letting x e dFK, noting that
Tx e F Π K, and using the procedure of the proof of Theorem 1.1 of
[15] to show that Tx has the property specified for c in (1). Speci-
fically, one can show that if δ = δ(F Π K) > 0 then for the number
a(x) < 1 associated with T by definition, one has

U(Tx;a(x)δ) f]

which implies

sup {II Tx - z | | : z e F Π K) ^ a(x)δ = r < δ .

Then letting Tx = c, define the set C as in Theorem 2.1 and observe
that

C= Π tffr r).

Thus C is w*-compact and convex. This and the fact that the set
W defined later in the argument is also w*-compact and convex,
enables one to complete the proof precisely as in Theorem 2.1. We
omit the details.

COROLLARY. If X is a conjugate Banach space and H is a closed
convex subset of X of which every intersection with a w*-compact set
is w^-compact (e.g. Ή. — X), and if T: H—*H is a generalized con-
traction mapping on H> then T has a fixed point in H.

Proof. Let xe H and let

— Tr I
K= HO Ulx;

1 - a(x)

Then T: dHK~* K and by Theorem 3.1, T has a fixed point in H.
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