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FIXED POINT THEOREMS FOR NONLINEAR
NONEXPANSIVE AND
GENERALIZED CONTRACTION MAPPINGS

W. A. KIRK

Let X be a reflexive Banach space, H a closed convex
subset of X, and let K be a nonempty, bounded, closed and
convex subset of H which possesses normal structure. If
T: K— H is nonexpansive and if 7': 0;,K > K where 0K
denotes the boundary of K relative to H, then 7T has a fixed
point in K. This result generalizes an earlier theorem of
the author, and a more recent theorem of F. E. Browder. An
analogue is given for generalized contraction mappings in
conjugate spaces.

1. Introduction. In [13] we proved that if K is a nonempty,
bounded, closed and convex subset of a reflexive Banach space, and
if K possesses “normal structure” (defined below), then every non-
expansive mapping T of K into K has a fixed point. This result, also
proved independently by F. E. Browder [4] and D. Gohde [11] (in
uniformly convex spaces), initiated rather extensive study of fixed
point theory for nonlinear nonexpansive operators in Banach spaces,
including applications to the study of nonlinear equations of evolution
by Browder [5] and to certain nonlinear functional equations (see
Browder and Petryshyn [8], Kolomy [16], Srinivasacharyulu [21]).

In this paper we modify the approach of [13] to treat the follow-
ing problem: Given closed and convex subsets K and H of a Banach
space X such that KN H+# ¢ and an operator T: K — X such that
(i) T: KNH—H and (ii) T: 0,K — K (where 0,K denotes the
relative boundary of K N H in H), when does T have a fixed point? This
kind of problem has been of particular interest in the case where
the operator T is completely continuous, H is the positive cone of X,
and the fixed points of T correspond to positive solutions of a dif-
ferential equation (for example, see [17]). A standard approach is to
use the technique of <“radial projection” to associate with 7 an
operator B which is also completely continuous, has the same fixed
points as 7, and maps the intersection of H with the ball K: ||z||< R
into itself, thus permitting application of the classical Schauder
Theorem [19]. Such an approach, however, is not suitable for our
purposes because we consider mappings of nonexpansive type. Since
radial projection is in general not nonexpansive (see [9]), the associated
operator B need not be nonexpansive and one cannot obtain a fixed
point by direct application of the theorem of [13].

89



90 W. A. KIRK

Before stating our results we establish relevant notation and
definitions.

A mapping T of a subset K of a Banach space X into X is cal-
led nonexpansive if || Te — Ty || < ||z — y || for all z, ye K.

For a subset S of a Banach space X, the symbol §(S) denotes
the diameter of S —i.e.,

0(S) = sup{lje — ¥l|; », yeS}.

The notation U (z; 7) is used to denote the spherical neighborhood
of z of radius » > 0:

Ui;r)={zecX: |lz—a||<r}.
Similarly,
U;r) ={zeX: ||z —a||Z1}.

The conecept of normal structure, due to Brodskii and Milman [3],
plays a key role in our approach. A bounded convex set K in a
Banach space X is said to have mormal structure if for each convex
subset S of K which contains more than one point, there is a point
xze S which is a nondiametral point of S (i.e.,sup{|/|z — y|:yeS}<
0(S)). Compact convex sets possess normal structure ([3], [10, Lemma
1)) as do all bounded convex subsets of wunmiformly convex spaces. (For
a comparison of normal structure and uniform convexity, see Belluce-
Kirk-Steiner [2]. The concept has also been studied by Gossez and
Lami Dozo [12].)

We wish to thank the referee for his suggestions, particularly
for pointing out the corollary to Theorem 3.1.

2. A fixed point theorem for nonexpansive mappings. For
H and K subsets of X, we use the symbol 9,K to denote the bound-
ary of K relative to H: Thus, letting H — K denote the points of H
which are not in K, if K is closed,

0, K=1{2eK: U(z; 1) (H— K)+ @ for each r >0} .

THEOREM 2.1. Let X be a reflexive Banach space, H a closed
convex set in X, and K a momempty, bounded, closed, convex subset
of H which possess mnormal structure. If T: K-— H 1s nonexpan-
swe, and if T:0,K — K, then T has a fived point in K.

The above theorem immediately reduces to our theorem of [13]
upon taking H = K. A more interesting consequence of this theorem
arises from taking H = X:
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COROLLARY. Let K be a bounded closed convex subset of a reflexive
Banach space X and suppose K possesses normal structure. Ir
T: K— X is nonexpansive, and if T maps the boundary of K into
K, then T has a fived point in K.

Browder first obtained the above result [6, Theorem 3] for K
a bounded closed convex set in a uniformly convex space with
the additional assumption that T is defined on an open convex set
GO K with dist(K, X — G) > 0. Subsequently Browder [7] and
Nusshaum [18] have removed this assumption (in a uniformly convex
setting) while proving more general results, a fact which is signi-
fieant because in general one may not enlarge the domain of non-
expansive mapping [20].

Proof of Theorem 2.1. Let .7~ be the family of all closed con-
vex subsets of H such that for FFe 9, FN K+ @ and T: FNK—F.
Since He .7, 7 # @. Let {F,} be a descending chain of sets of
7, and let FF = (. F.. Note that FF N K is nonempty, since each of
the sets F, N K is a nonempty weakly compact subset of X. Also,
since T: F. N K— F, for each «, clearly T: FN K— F. Since F is
closed and convex, F'e. 7, and therefore by Zorn’s Lemma, .Z has
a minimal element.

Letting F be such a minimal element of .7, first note that we
may sssume 0,K # ¢, for otherwise Fc K and T: FFn K — F would
imply T: F— F. The existence of a fixed point would then follow
from the theorem of [13].

Now we assume o(FNK)>0 and obtain a contradiction. Let
0 =0(FNK). Since K possesses normal structure, there exists a
point ¢e F'N K such that

sup{lle —2||:ze FNK} =r<d.
Let
C={weX: FNKcU(x; r)}.

It is easily seen that C is closed and convex and, since ce FFnC,
FNCINK+ Q. Also there exist points @, yc FF N K such that
[ —y||>r. Such points cannot be elements of C and therefore F'n C
is a proper subset of F. We complete the proof by showing
FNnCe . Since we have already seen that (FNC)NK # @, we
need only show that 7T: (FNC)N K— Fn C.

Suppose ze (FNC)N K. Let

W=U(Tzv)NF.
If We &7 then since W< F and F is minimal, W = F. This implies
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FNnKc Fc U(Tz ) ,

and hence Tze C. Since T: F N K— F, this in turn yields Tz¢ F N C.
Therefore T: (FN O NK—FNCif We. 9 for every ze(F'n C)N K.
We complete the proof by showing this to be the case.

First suppose e WN K. Then e FFN K so ||z — z|| =< » (because
2eC). Hence ||[Tx — Tz||<r and TaocU(Tz;#). But zeWnNK
also implies # € F'N K and hence Tw e F. Therefore Toe U(Tz; »NF =
W, ie., T: WNK— W.

Finally, since 0,.K +# @, it follows that W N K = @. To see this,
note that if y€d,K then ye FN K and ||y — z|| < », which implies
| Ty — Tz || <r and therefore Tyec W. But also 9,K Cd,K implies
Tye K; hence Tye WN K and WN K = @.

This completes the proof that F'N Ce.o, contradicting the as-
sumption 6(FFNC)>0. Thus ¢(FNC)=0 and F N C consists of a
single point which, because T: 3,K — K, is fixed under 7.

3. Generalized contraction mappings. In this section we give
an analogue of Theorem 2.1 for the class of generalized contraction
mappings studied in [14, 15]. With X a Banach space, and KC X,
a mapping T: K— X is called a generalized contraction mapping if
for each x e K there is a number «a{x) <1 such that

N1 Te — Tyl £ a@)ile —yll for each ye K.

It was noted in Belluce-Kirk [1] that mappings of this type pro-
vide an example of a class of mappings with “diminishing orbital
diameters”; thus fixed point theorems proved in [1] apply to this
clagss of mappings. In [15] it is shown that if A is a bounded open
convex subset of X and if F: A— X is continuously Fréchet dif-
ferentiable on A, then F' is a generalized contraction mapping on A
if and only if for each x,¢ A the norm of the Fréchet derivative F,
of F at x, is less than one. It is also shown that if K is a w*-
compact convex subset of a conjugate Banach space X and if
T: K— K is a generalized contraction mapping, then T has a fixed
point in K. This result may be generalized as follows:

THEOREM 3.1. Let X be a conjugate Banach space, H a convex
w*-closed subset of X, and K a nonempty convex w*-compact subset of
H. If T: K— H 1s a generalized contraction mapping on K, and if
T:0,K— K, then T has a fixed point in K.

Proof. As in the proof of Theorem 2.1, obtain a w*-compact
convex set F' minimal with respect to the properties F'N K = ¢ and
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T: FNK—F. As before, it may be assumed that 0,(K) # @
(otherwise F c K and existence of a fixed point follows from
Theorem 1.1 of [15]).

The argument parallels that of Theorem 2.1 upon obtaining a
point ¢e F'N K such that

@ sup{lle — z||]: ze FN K} <o .

Such a point can be obtained by letting x€0.K, noting that
Tvxe F'N K, and using the procedure of the proof of Theorem 1.1 of
[15] to show that Twx has the property specified for ¢ in (1). Speci-
fically, one can show that if 6 =o0(F N K) >0 then for the number
a(xr) < 1 associated with T by definition, one has

U(Tx; a@)d) N Fe 9
which implies
sup{l|Te — z||:2ze FN K} S a®x)d =r<d.

Then letting Tx = ¢, define the set C as in Theorem 2.1 and observe
that
C= N U@;».
ze 'NK

Thus C is w*-compact and convex. This and the fact that the set
W defined later in the argument is also w*-compact and convex,
enables one to complete the proof precisely as in Theorem 2.1. We
omit the details.

CozoLLARY. If X s a conjugate Banach space and H 1is a closed
convex subset of X of which every intersection with a w*-compact set
is w*-compact (e.g. H=X), and +f T: H— H is a generalized con-
traction mapping on H, then T has a fived point itn H.

Proof. Let xe H and let

K= w00 (s Lo =Bl

Then T:06,K— K and by Theorem 3.1, T has a fixed point in H.
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