A SUFFICIENT CONDITION FOR L^{p}-MULTIPLIERS

Satoru Igari and Shigehiko Kuratsubo

Suppose $1 \leqq p \leqq \infty$. For a bounded measurable function ϕ on the n-dimensional euclidean space R^{n} define a transformation T_{ϕ} by $\left(T_{\phi} f\right)^{\wedge}=\dot{\phi} \hat{f}$, where $f \in L^{2} \cap L^{p}\left(\boldsymbol{R}^{n}\right)$ and \hat{f} is the Fourier transform of f :

$$
\hat{f}(\bar{\xi})=\hat{f} \frac{1}{\sqrt{2 \pi^{n}}} \int_{R^{n}} f(x) e^{-i \xi x} d x
$$

If T_{ϕ} is a bounded transform of $L^{p}\left(\boldsymbol{R}^{n}\right)$ to $L^{p}\left(\boldsymbol{R}^{n}\right), \phi$ is said to be L^{p}-multiplier and the norm of ϕ is defined as the operator norm of T_{ϕ}.

Theorem 1. Let $2 n /(n+1)<p<2 n /(n-1)$ and ϕ be a radial function on R^{n}, so that, it does not depend on the arguments and may be denoted by $\dot{\phi}(r), 0 \leqq r<\infty$. If $\phi(r)$ is absolutely continuous and

$$
M=\|\phi\|_{\infty}+\left(\sup _{R>0} R \int_{R}^{2 R}\left|\frac{d}{d r} \phi(r)\right|^{2} d r\right)^{1 / 2}<\infty
$$

then ϕ is an L^{p}-multiplier and its norm is dominated by a constant multiple of M.

To prove this theorem we introduce the following notations and Theorem 2. For a complex number $\delta=\sigma+i \tau, \sigma>-1$, and a reasonable function f on \boldsymbol{R}^{n} the Riesz-Bochner mean of order δ is defined by

$$
s_{R}^{\partial}(f, x)=\frac{1}{\sqrt{2 \pi^{n}}} \int_{|\hat{\xi}|<n}\left(1-\frac{|\xi|^{2}}{R^{2}}\right)^{\delta} \hat{f}(\xi) e^{i \xi x} d \hat{\xi} .
$$

Put

$$
t_{R}^{\hat{j}}(f, x)=s_{R}^{\dot{o}}(f, x)-s_{R}^{j-1}(f, x)
$$

and define the Littlewood-Paley function by

$$
g_{o}^{*}(f, x)=\left(\int_{0}^{\infty} \frac{\left|t_{R}^{\delta}(f, x)\right|^{2}}{R} d R\right)^{1 / 2}
$$

which is introduced by E. M. Stein in [3]. Then we have the following.

Theorem 2. If $2 n /(n+2 \sigma-1)<p<2 n /(n-2 \sigma+1)$ and $1 / 2<$ $\sigma<(n+1) / 2$, then

$$
A\left\|g_{\sigma}^{*}(f)\right\|_{p} \leqq\|f\|_{p}<A^{\prime}\left\|g_{\sigma}^{*}(f)\right\|_{p}
$$

where A and A^{\prime} are constants not depending on f.
The first part of inequalities is proved by E. M. Stein [3] for $p=2$ and by G. Sunouchi [4] for $2 n /(n+2 \sigma-1)<p<2$. The other parts will be shown by the conjugacy method as in S. Igari [2], so that we shall give a sketch of a proof.

Proof of Theorem 2. For $\delta=\sigma+i \tau, \sigma>-1$, and $t>0$ let $K_{t}^{\delta}(x)$ be the Fourier transform of $\left[\max \left\{\left(1-|\xi|^{2} t^{-2}\right), 0\right\}\right]^{\delta}$. Since $K_{t}^{\dot{s}}(x)$ is radial, we denote it simply by $K_{t}^{\delta}(r), r=|x|$. Then $\left.K_{t}^{i}(r)=2^{\delta} \Gamma(\delta)+1\right)$ $V_{(n / 2)+\dot{o}}(r t) t^{n}$, where $V_{\beta}(s)=J_{\beta}(s) s^{-\beta}$ and J_{β} denots the Bessel function of the first kind. Considering the Fourier transform of $t_{R}^{\delta}(f, x)$ we get

$$
t_{R}^{\delta}(f, x)=\frac{1}{\sqrt{2} \pi^{n}} \int_{R^{n}} f(y) T_{R}^{\dot{j}}(x-y) d y=f * T_{R}^{j}(x)
$$

where $T_{R}^{j}(x)=R^{-2} \Delta K_{R}^{\delta-1}(x)$ and $\Delta=\partial^{2} /\left(\partial x_{1}^{2}\right)+\cdots+\partial^{2} /\left(\partial x_{n}^{2}\right)$.
Let H be the Hilbert space of functions on ($0, \infty$) whose inner product is defined by $\langle f, g\rangle=\int_{0}^{\infty} f_{R} \bar{g}_{R} R^{-1} d R$. For a function $g_{R}(x)$ in $L^{1}\left(\boldsymbol{R}^{n} ; H\right)$, that is, H-valued $L^{1}\left(\boldsymbol{R}^{n}\right)$-function, define an operator ${ }^{2} v^{\delta}$ by

$$
v^{\bar{\delta}}(g, x)=\frac{1}{\sqrt{2 \pi^{n}}} \int_{R^{n}}<T_{R}^{\delta}(y), \bar{g}_{R}(x-y)>d y
$$

By the associativity of convolution relation

$$
\begin{equation*}
\int_{\boldsymbol{R}^{n}} v^{\bar{s}}(g, x) \bar{f}(x) d x=\int_{\boldsymbol{R}^{n}}<g(x), t^{\bar{\iota}}(f, x)>d x \tag{1}
\end{equation*}
$$

for every f in $L^{2}\left(\boldsymbol{R}^{n}\right)$ and g in $L^{2}\left(\boldsymbol{R}^{n} ; H\right)$, which implies that $v^{\overline{0}}$ is the adjoint of t^{j}.

By the Plancherel formula

$$
\begin{align*}
\left\|t^{\delta}(f)\right\|_{L^{2}(H)} & =\left(\int_{|\xi|}^{\infty}\left(1-\frac{|\xi|^{2}}{R^{2}}\right)^{2 \sigma-2} \frac{|\xi|^{4}}{R^{5}} d R\right)^{1 / 2}\|f\|_{L^{2}} \tag{2}\\
& =B_{\sigma}\|f\|_{L^{2}}
\end{align*}
$$

where $B_{\sigma}=[B(2 \sigma-1,2) / 2]^{1 / 2}, \delta=\sigma+i \tau$, and $\sigma>1 / 2$. Therefore $f=$ $\left(1 / B_{o}^{2}\right) v^{\bar{o}} t^{\hat{o}}(f)$ for $f \in L^{2}\left(\boldsymbol{R}^{n}\right)$. By Schwarz inequality $\left|<t^{\hat{o}}(f, x), g(x)>\right|$ $\leqq\left\|t^{i}(f, x)\right\|_{I I}\|g(x)\|_{I I}$. Applying this inequality with (2) to (1) we get

$$
\begin{equation*}
\left\|v^{\delta}(g)\right\|_{L^{2}} \leqq B_{\sigma}\|g\|_{L^{2}(H)} . \tag{3}
\end{equation*}
$$

On the other hand

$$
\int_{|x|>2|y|}\left\|T_{R}^{\hat{o}}(x+y)-T_{R}^{\hat{o}}(x)\right\|_{H} d x<A_{o} e^{-|\tau| / 2}
$$

for $\sigma>\alpha+1, \alpha=(n-1) / 2$ (see [4]), where $A_{p, q}$ denotes here and after a constant depending only on p, q and the dimension n. Thus by the well-known argument (see, for example, Dunford-Schwartz [1; p. 1171] we get

$$
\begin{equation*}
\left\|t^{\grave{o}}(f)\right\|_{L^{q}(H)} \leqq A_{q, e^{-i z}} e^{\pi \tau \mid / 2}\|f\|_{L^{q}} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|v^{\dot{o}}(g)\right\|_{L^{q}} \leqq A_{q, \rho} e^{\approx \mid=\| / 2}\|g\|_{L^{q}(I I)} \tag{5}
\end{equation*}
$$

for $1<q \leqq 2$ and $\delta=\rho+i \tau, \rho>\alpha+1$. Fix such a ρ and a q.
Remark that the Stein's interpolation theorem (see [5; p. 100]) is valid for H-valued L^{p}-spaces and apply it between the inequalities (2) and (4), and (3) and (5). Then we get

$$
\begin{equation*}
\left\|t^{\sigma}(f)\right\|_{L^{p}(H)} \leqq A_{p, \sigma}\|f\|_{L^{p}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|v^{\sigma}(g)\right\|_{L^{p}} \leqq A_{p, \sigma}\|g\|_{L^{p}(I)} \tag{7}
\end{equation*}
$$

for $1<p \leqq 2$ and $\sigma>(n / p)-\alpha$.
Since $f=\left(1 / B_{\sigma}^{2}\right) v^{\sigma} t^{\sigma}(f)$, we get Theorem 2 for $2 n /(n+2 \sigma-1)<p$ $\leqq 2$ from (6) and (7). The case where $2 \leqq p<2 n /(n-2 \sigma+1)$ is proved by the equality (1) and the conjugacy method.

Proof of Theorem 1. Let $f \in L^{2}\left(\boldsymbol{R}^{n}\right)$. By definition

$$
\begin{equation*}
t_{R}^{1}\left(T_{\phi} f, x\right)=-\frac{1}{\sqrt{2 \pi}} \int_{|\xi|<R} \frac{|\xi|^{2}}{R^{2}} \phi(\xi) \hat{f}(\xi) e^{i \xi x} d \xi \tag{8}
\end{equation*}
$$

Put

$$
F(r \omega)=F(\xi)=\frac{-1}{\sqrt{2 \pi^{2}}} \frac{|\xi|^{2}}{R^{2}} \hat{f}(\xi) e^{i \xi x},
$$

where $r=|\hat{\xi}|$ and ω is a unit vector. Then

$$
t_{R}^{1}\left(T_{\phi} f, x\right)=\int_{0}^{R} \dot{\rho}(r)\left(\int_{|\omega|=1} F(r \omega) d \omega\right) r^{n-1} d r
$$

The last term is, by integration by parts, equal to

$$
\phi(R) \int_{0}^{R} r^{n-1} d r \int_{|\omega|=1} F(r \omega) d \omega-\int_{0}^{R} \frac{d}{d r} \dot{\phi}(r) d r \int_{0}^{r} s^{n-1} d s \int_{|\omega|=1} F(s \omega) d \omega .
$$

Thus

$$
t_{R}^{1}\left(T_{\dot{\phi}} f, x\right)=\dot{\phi}(R) t_{R}^{1}(f, x)-\int_{0}^{R} \frac{d}{d r} \dot{\phi}(r) \frac{r^{2}}{R^{2}} t_{r}^{1}(f, x) d r
$$

By the Schwarz inequality the last integal is, in absolute value, dominated by

$$
\left(\frac{1}{R} \int_{0}^{R}\left|\frac{d}{d r} \dot{\phi}(r)\right|^{2} r^{2} d r\right)^{1 / 2}\left(\frac{1}{R^{3}} \int_{0}^{R}\left|t_{r}^{1}(f, x)\right|^{2} r^{2} d r\right)^{1 / 2}
$$

Divide $(0, R)$ into the intervals of the form $\left(R / 2^{j+1}, R / 2^{j}\right)$ and dominate r^{2} by $R^{2} / 2^{2 j}$ in each interval. Then the first integral is bounded by

$$
\sum_{j=0}^{\infty} \frac{1}{2^{j-1}} \frac{R}{2^{j+1}} \int_{R / 2^{j+1}}^{R / 2^{j}}\left|\frac{d}{d r} \phi(r)\right|^{2} d r \leqq 4 \sup _{R>0} R \int_{R}^{2 R}\left|\frac{d}{d r} \phi(r)\right|^{2} d r .
$$

Therefore

$$
\begin{aligned}
g_{1}^{*}\left(T_{\dot{\rho}} f, x\right) & \leqq\|\dot{\phi}\|_{\infty}\left(\int_{0}^{\infty} \frac{\left|t_{R}^{1}(f, x)\right|^{2}}{R} d R\right)^{1 / 2} \\
& +2\left(\sup _{R>0} R \int_{R}^{2 R}\left|\frac{d}{d r} \dot{\phi}(r)\right|^{2} d r\right)^{1 / 2}\left(\int_{0}^{\infty}\left|t_{r}^{1}(f, x)\right|^{2} r^{2} d r \int_{r}^{\infty} \frac{d R}{R^{4}}\right)^{1 / 2} \\
& \leqq \frac{2}{\sqrt{3}} M g_{1}^{*}(f, x)
\end{aligned}
$$

Thus, if $2 n /(n+1)<p<2 n /(n-1)$, then by Theorem 2 we have

$$
\left\|T_{\dot{\phi}} f\right\|_{p} \leqq A^{\prime} \| g_{1}^{*}\left(T_{\phi}(f)\left\|_{p} \leqq \frac{2}{\sqrt{3}} A^{\prime} M\right\| g_{i}^{*}(f)\left\|_{p} \leqq \frac{2}{\sqrt{3}} A A^{\prime} M\right\| f \|_{p}\right.
$$

which completes the proof.
Finally the authors wish to express their thanks to the referee by whom the proof Theorem 2 is simplified.

References

1. N. Dunford and J. T. Schwartz, Linear Operators, Part II, Intersci. Publ., 1963.
2. S. Igari, A note on the Littlewood-Paley function $g^{*}(f)$, Tôhoku Math. J., 18 (1966), 232-235.
3. E. M. Stein, Localization and summability of multiple Fourier series, Acta Math., 100 (1958), 93-147.
4. G. Sunouchi, On the Littlewood-Paley function g^{*} of multiple Fourier integrals and Hankel transformations, Tôhoku Math. J., 19 (1967), 496-511.
5. A. Zygmund, Trigonometric Series, vol. 2 2nd ed., Cambridge, 1958.

Received October 12, 1970.
Mathematical Institute, Tohoku University
and
Department of Mathematics, Hirosaki University

