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A FAMILY OF
COUNTABLE HOMOGENEOUS GRAPHS

C. WARD HENSON

Let .7 be the class of all countable graphs and let
9%, be the class of all members of .°7~ which have no com-
plete subgraphs of cardinality p. R. Rado has constructed a
graph U which is universal for .77", In this paper U is
shown to be homogeneous, in the sense of Fraissé. Also a
simple construction is given of a graph G, which is homo-
geneous and universal for 57, (for each p = 3) and the
structure of these graphs is investigated.

It is shown that if H is an infinite member of °%, then
H can be embedded in G, in such a way that every auto-
morphism ef H extends uniquely to an automorphism of G,. A
similar result holds for U. Also, U and G, have single-orbit
automorphisms, while if p > 3, then G, has no such auto-
morphism. Finally, a result concerning vertex colorings of
the graphs G, is proved and used to give a new proof of a
Theorem of Folkman on vertex colorings of finite graphs,

1. A graph G is a relational structure which consists of a
nonempty set |G| of vertices and an irreflexive, symmetric binary
relation R(G) on |G|. If AC|G]| is nonempty, let G| A denote the
induced subgraph of G which has vertex set A. Write Hc G to
mean that H equals G| A for some A C|G|. An embedding of H
into G is an isomorphism of H onto an induced subgraph of G. If
such an embedding exists we say that G admits H. If G and H are
isomorphic we write G = H.

The complement graph of G is denoted by G. K, denotes a com-
plete graph with p vertices (p an integer = 1.) For each ve |G|, G’
denotes the induced subgraph of G which has vertex set

{w](w,v)e R(G)} .

(The wvalence subgraph determined by v.) The induced subgraph of G
obtained by removing a vertex v will be designated by G — v. The
cardinality of the vertex set |G| will be denoted by ¢(G). Z denotes
the set of all the integers and N the set of nonnegative integers.
The study of homogeneous relational structures was begun by
Fraissé [4] as an attempt to generalize certain familiar properties of
the ordering of the rational numbers. This study was continued in
a very general setting by Jonsson [6 and 7] and by Morley and
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Vaught [8]. The basic properties of homogeneous graphs needed in
this paper may be summarized as follows.

DeFINITION 1.1. A graph G is homogeneous if whenever H C G
and ¢(H) < ¢(G), every embedding of H into G can be extended to
an automorphism of G.

THEOREM 1.2. An infinite graph G is homogeneous «— whenever
HcCG, ¢(H)<c(G) and ve | H|, every embedding of H— v into G can
be extended to an embedding of H into G.

THEOREM 1.3. Let G be an infinite homogeneous graph.

(a) Suppose ¢(H) = ¢(G) and G admits every graph K C H for
which ¢(K) < c¢(H). Then G admits H.

(b) If H s homogeneous, c(H) = ¢(G) and G and H admit exactly
the same graphs of cardinality < ¢(G), then H = G.

In case G is a countably infinite graph, as will be true in this
paper, Definition 1.1 comes from [4]; in that case, Theorem 1.2 is
[4, Theorem 5.5] and Theorem 1.8 is [4, Theorems V and 5.4]. In
general, G is homogeneous in the sense of Definition 1.1 if and only
if G is 2 -homogeneous in the sense of [7] and [8], where .5 is
the class of all graphs; here Theorems 1.2 and 1.3 are included in
[8, Theorems 2.3 and 2.5]. (It should be noted that in [8], and in
model theory generally, “homogeneous” is used in a different, weaker
sense. This should cause no confusion here, since only the meaning
which agrees with [4] will be used.)

Rado’s graph [9, 10] is universal among countable graphs by
virtue of satisfying the condition

(A) if F, F, are disjoint, finite sets of vertices of GG, then there
is another vertex which is connected in G to every member of F,
and to no member of Fl.

THEOREM 1.4. Any graph G (with ¢(G) = W) which satisfies con-
dition (A) is homogeneous. Moreover, any two such graphs are 1so-
morphic.

Proof. Rado [10] showed that any graph which satisfies (A)
must admit every finite graph. Thus the second statement follows
from the first by Theorem 1.3.D.

Let G be a graph which satisfies (A) and ¢(G) = W,. We prove
that G is homogeneous by showing that it satisfies the condition in
Theorem 1.2. Suppose H < G and ¢(H) < ¢(G), so that H is finite.
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Let ve|H| and assume f is an embedding of H — v into G. Let
F, = f(|H"|) and F, = Range(f) — F,. There is a vertex w in |G|
which is connected to every member of F, and to no member of Fi.
It follows that letting f(v) = w extends f to an embedding of H into
@G, completing the proof.

We will designate by U a graph (isomorphic to Rado’s graph)
which is constructed as follows. Let {P,|ne€ N} be an enumeration
of the finite subsets of N, each one occurring infinitely often. Choose
a sequence v, < v, < -+ in N which satisfies v, > max(P,) for all
ne N. To define U let |U|= N and let R(U) consist of all pairs
of vertices of the form (w, v, or (v,, w) where we P, and ne N.
Then U satisfies the following strong form of (A).

(A)) if Fc|U| is finite, then there exist arbitrarily large v in
| U | which satisfy

F={w|lw<v and (w,v)e R(U)}.

In particular, U satisfies (A) and is thus isomorphic to Rado’s graph,
by Theorem 1.4. (Note that Rado’s graph itself does not satisfy (A’).)

REMARK. In [2] Erdos and Renyi put a natural probability
measure on the set of all graphs with vertex set N, and show that
the measure of the set of such graphs which satisfy condition (A) is
1. They conclude from this that almost all graphs with vertex set
N have a nontrivial automorphism. In fact the stronger result, that
almost all such graphs are isomorphic to U, follows from Theorem
1.4.

COROLLARY 1.5. (a) U=U
(b) 1 Ul=AU---UA, and A, ---, A, are pairwise dis-
joint, then U|A = U for some j =1, <+, n.

Proof. (a) U obviously satisfies condition (A).

(b) It suffices to consider the case n = 2.
Suppose (U] =AU A and AN A = @, and assume that neither
U|A nor UJA" is isomorphic to U. Then there exist disjoint,
finite subsets F, F, of A and F\, F, of A’ which satisfy: (i) if »
is connected in U to every member of F, and to no member of F,
then ve 4, and (ii) if » is connected in U to every member of F/
and to no member of F,, then v¢ A’. But F, U F, and F,{ F, are
disjoint, so there is a vertex v which is connected in U to every
member of F,|J F! and to no member of F,J F,. This implies that
veé AU A’, which is a contradiction.

It follows immediately from Theorem 1.5 that if A< |U| and
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|U| — A is finite, then U|A = U. Also, using 1.5.a and the vertex
symmetry of U we note that U’ = (U)?, for any ve|U|. Then since
|U”| and | (T)”| form a partition of | U — v| it follows that U’ = U
for every ve|U|.

Recall that two graphs H,, H, with the same vertex set are cal-
led edge disjoint if R(H) N R(H, = @. If & is a family of graphs
with a common vertex set A, then the union of & is the graph
whose vertex set is A and whose edge relation is Y {R(H)| He & }.
A spanning subgraph of G is a graph H which satisfies |H| = |G|
and R(H) C R(G).

THEOREM 1.6. There is a family {H;|1€ N} of pairwise edge dis-
joint graphs (all with vertex set N) such that if |G|=N, R(H,)CR(G)
and R(H;) N R(G) = @ (for some 4, je N) then G = U.

Proof. Let {(P., Q., f(n), 9(n)) | ne N} be an enumeration of all
quadruples (4, B, ¢,j) in which A, B are disjoint, finite subsets of
N and 4,jeN. Let v, <wv,<--+ be a sequence in N such that
v, >max (P, U Q,) for all ne N. Define H,, for each i€ N, by letting
| H;| = N and letting R(H;) consist of all pairs of vertices (w, v,) and
(v, w) such that f(n) =4 and weP, or g(n) =1 and weQ,.

Suppose |G| = N and, for some 4, j€ N, G satisfies R(H;) C R(G)
and R(H;) N B(G) = ©@. Let F, F, be disjoint, finite subsets of |G]|.
Choose n so that P, = F,Q, = F,, f(n) = ¢ and g(n) = j. Then v, is
connected in H; (and thus in G) to every member of F,. Also v, is
connected in H; (and thus not in G) to every member of F,. This
shows that G satisfies condition (A) and therefore G is isomorphic to U.

In particular, Theorem 1.6 asserts that the union of the family
{H;| 1> 0} is isomorphic to U. Thus there exists a family {G;|ie N}
of pairwise edge disjoint spanning subgraphs of U which satisfies (i)
the union of the family is U, and (ii) if G is any spanning subgraph
of U such that R(G;)CR(G), for some 7€ N, then G = U.

Recall that a (one-way) Hamiltonian path for a graph G (with
¢(@) = N, is a bijection 7 from N onto |G| such that for each =,
7(n) and 7(n + 1) are connected in G. The path v will be called
totally symmetric if the function sending z(n) to t(n + 1) (each ne N)
is an embedding of G into itself.

THEOREM 1.7. There exists a totally symmetric, one-way Hamil-
tonian path for U. ’

Proof. Let {P,|mn<c N} be an enumeration of all finite subsets of
N, with the properties:
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(i) P,c{0, «-+, n} for each me N, and (ii) each finite subset of N
occurs in the list {P,|n e N} infinitely often. For ne N define

n(n + 1)

—24
¢ 2

so that @, = 2 and a,., = a, + n + 1. Construct a chain Q,CQ,C---
of finite subsets of N — {0} by letting @, = {1} and (for n = 0)

Qi = Q@ UAa — klkeP,}.
If ke P, then 0 <k < n so that
a,+1=a,, —n=0a,, —kZa,, .
It follows, by induction on =, that @, {0, ---, a,} and
Quiy — @uCHa, + 1, =++, a,} .

Now let A = U {Q.|ne N} and construct a graph G with |G| =
N and R(G) = {(m, n)| |m — n|e A}. Since 1€ A, it is obvious that G
has a totally symmetric (one-way) Hamiltonian path. Thus it sufficies
to prove that G satisfies condition (A4), so that U = G.

If F, F, are disjoint, finite subsets of N, we may choose n large
enough so that P, = F, and F,J F, {0, --+, n}. For each 0=k <m
the construction of @,., insures that

Aty — ke Qu——kekF,.
But since A N {0, -- -, Qpii} = Quyy, it follows that
Apy — ke Ae— ke F, .

Thus a,., is connected in G to every member of F, and to no member
of F,. That is, G satisfies condition (A) and the proof is complete.

REMARK. Let Z be the set of all the integers and A the set
constructed in the proof of Theorem 1.7. Define a graph H with
| H| = Z by letting

R(H) = {(a,b)|a,be Z and |a — b|eA}.

Evidently the functions f, sending a to a + 1, and g, sending a to -a,
are automorphisms of H. Moreover, since 1¢ A, the identity function
from Z to | H| defines a two-way Hamiltonian path for H. Finally,
if F, F, are disjoint, finite subsets of | H|, choose k large enough so
that f*(F,UF,) N, and let be N be connected in H to every
member of f*(F)) and to no member of f*(F.,). (Choose b using the
fact that H| N = U, as proved above.) Then f~*(b) is connected in
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H to every vertex in F, and to no vertex in F,. That is, H satisfies
condition (4) and is thus isomorphic to U.

This may be summarized by stating that U has a totally sym-
metric, two-way Hamiltonian path. In particular, note that U has an
automorphism with a single orbit.

2. This section is devoted to a family {G,|p» =3} of induced
subgraphs of U, defined by letting

|G, = {m|me N and there is no finite set AC N
with m = max A4 and U|A = K,},

for each integer p=3. It follows that G,cG,.,cU(p =3). and
that U is the union of the chain of graphs {G,|» = 3}. In addition,
G, satisfies the following condition, analogous to (A).
(4,) (i) G does not admit K,
(i) if F,, F, are disjoint, finite sets of vertices of G and G| F)
does not admit K, ,, then there is another vertex which is con-
nected in G to every member of F, and to no member of F,.

LEMMA 2.1. For each p = 3, G, satisfies condition (A,).

Proof. It is obvious that G, satisfies (i). Suppose F,, F, are
disjoint, finite subsets of |G,| and that G,|F, does not admit K,_.
Since U satisfies (A’) we may choose ve | U| which satisfies v > max
(F,U Fy) and

F,={wlw<v and (w,v)eRU)} .

It suffices to observe that U|F, = G, | F, dose not admit K, , and
therefore ve |G, |.

LEMMA 2.2. Let p = 3 and assume that G satisfies condition (A4,).
Suppose also that H is a finite graph which does not admit K,, ve | H|
and f s an embedding of H — v into G. Then f can be extended to
an embedding of H into G.

THEOREM 2.3. For each p = 3, G, ts homogeneous, and admits
exactly those finite graphs which do not admit K,. Moreover, any
graph G (with ¢(G) = Y, which satisfies condition (A,) is isomorphic
to G,.

Proof. TUsing Lemma 2.2, it can be shown by induction on ¢(H)
that if G satisfies (4,) and H is a finite graph which does not admit
K,, then G admits H. That is, any graph which satisfies (4,) admits
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exactly those finite graphs which do not admit K,.

It follows by Theorem 1.2 that if ¢(G) = W, and G satisfies (4,)
then G is homogeneous. (In particular, by Lemma 2.1, G, is homo-
geneous.) Finally, by Theorem 1.3.b, any such G is isomorphic to G,.

The following result is an immediate consequence of Theorem 1.3.a
and Theorem 2.3, and answers a question raised (for p = 3) by Erdos
and Hajnal [3, p. 121].

COROLLARY 2.4. For each p =3, G, is a universal graph in the
class of countable graphs which do not admit K,.

COROLLARY 2.5. Let p = 3.
(a) If Ac|G,| and |G,| — A 1is finite, then G,| A = G,
(b) Ifvel|G,.. | then (G,.)" = G,

Proof. (a) If F, F, are disjoint, finite subsets of A and G, | F},
does not admit K,_,, then there are, in fact, infinitely many vertices
in |G, which are connected to every member of F, and to no
member of F,. Since |G,| — A is finite, this shows that G,| A satis-
fles (4,).

(b) Suppose H is a finite graph satisfying H < (G,,)’ and sup-
pose that f is an embedding of H into (G,,,)’. Since G,., is homo-
geneous, there is an automorphism g of G,,, such that g extends f
and g(v) =v. Thus ¢ determines an automorphism of (G,.,)’ which
extends f. This shows that (G,.))” is homogeneous. The fact that
(G,.)" and G, are isomorphic follows from Theorems 1.3.b and 2.3
and the observation that (G,.)” admits a finite graph H if and only
if G,., admits the graph obtained from H by adding a new vertex
connected to every member of | H|.

Note that for each v»e|G,| the graph (G,)" is infinite, with no
two vertices connected.

The analogue of Corollary 1.5.b for G, is false, as can be seen
by considering the partition of |G,| determined by |(G,)"| and its
complement. (Also see §4.)

If H is a spanning subgraph of G,(p =3) and H = G,, then H
cannot be isomorphic to G,. For there must be vertices a, b in |G, |
which are connected in G, but not in H. If H= G, then there exists
AcC|G,| so that H| AU {a} and H|A U {b} are isomorphic to K,_,.
But this would imply that G,| A4 U {a, b} = K,, which is impossible.
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In particular, the analogue for G, of Theorem 1.6 is false.
Corresponding to Theorem 1.7 are the following two results.

THEOREM 2.6 There ewxists a totally symmetric (one-way) Hamil-
tonian path for Gi.

Proof. Let the sequence {P,|n € N} be as in the proof of Theorem
1.7, and construct a chain @, C @, C --- of finite subsets of N-{0} as
follows. Let Q, = {1}; for m =0, if there exist a, bec P, so that
0<l|la—10ble@,, then let Q,., = Q,. Otherwise let

Qi=Q, U —klkeP,}.

Recalling that P,c {0, ---, n}, it follows that Q,c{0, ---, 3"} and
Qo —Q,c{3"+1,---,3". Let A =U{Q.|ne N} and construct a
graph G, as in the proof of Theorem 1.7, by letting |G| = N and

R(G) ={(m,n)| |m —n|eA}.

As before, it suffices to prove that this graph satisfies condition (4,).

Suppose that F, F, are disjoint, finite subsets of |G| and that
G| F, does not admit K,. That is, if a,beF, and a =+ b then
la — blg A. Choose n large enough so that P, = F, and

F.UF,c{0, -, n}.

Since @, C A there do not exist a,be P, with 0 < |a — b|e Q,. Thus
if 0=<k<mn then 3" — ke Q,;, — ke P,. It follows that 3"' is con-
nected in G to every member of F, and to no member of F..

Suppose next that G admits K,. It follows that there exist
0 < a<b such that G|{0, a, b} = K,. That is, a, b and b — a are in
A. Let n be the smallest integer for which ac@,. If beQ, then
n=1, and a, beQ, — Q,_, (since a <b.) But then a = 3" — ¢ and
b=3"—d, for some ¢,deP,_,. Moreover ¢ —d=b—acA and
0<d<e¢<n—1 so that |[¢ — d|e @,_, contradicting the definition
of Q,. Therefore b¢ @,, and there exists k£ = n such that be Q,.,—Q,.
If b—ae@,.,— @, we obtain a contradiction as above, by considering
¢, de P, with b = 3** — ¢ and b — a = 3%+ — (.

Since b —a<be @, and b — ac A, it follows that b — ¢ must
be in Q,. Thus @ and » — a are both < 3* and therefore

b<2.3° <3 — L.

But since be Q,,, — Q,, which implies that 3 — k < b < 3", this is
a contradiction. That is, G does not admit K..

This shows that G satisfies the condition (A4,) and therefore G is
isomorphic to G,, completing the proof.
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As in the Remark following Theorem 1.7, it can be shown that G,
has a totally symmetric, two-way Hamiltonian path. In particular,
G, has an automorphism with a single orbit. In contrast, for the
graphs G, with » =4 we have the following result.

THEOREM 2.7. If p =4, then there is no automorphism of G,
with a single orbit.

Proof. If otherwise, we can construct a graph G with an auto-
morphism f such that G = G,, |G| = Z and f(¢) =a + 1 for all ae Z.
We let

A ={al(a, 0)c R(G)} .
It then follows that
R(G) ={(a,b)|[a —ble A}.

Since G, admits K,_,, there exist a, < --- < @,_, in |G| so that
Gl{ay *++,a,} = K, ,. Thatis, if 1<1<j<p—2 then a; —a;c A.
Since G satisfies condition (A4,) there exists a e |G| which is connected
in G to 0 but is not connected to any of the vertices a; — a; (Where
i 7 j) and is distinct from them.

If @; is connected in G to a; + a, so that [a; + @ — a;| is in A,
it follows that @ is connected to a; — a;. Thus ¢ =j. (Conversely,
la|e A, so that a; is connected to a; + a.) If we let

B:{au cecy Uy @ t+ 4, "’yap—2+a}7

it follows that G| B admits K,_, but not K, , (recall that p = 4).
Thus there exists a vertex & which is connected in G to every
member of B.

Consider C ={0,a, k — a, *++, k — a,_,}. If ¢+ 75 then

[k —a) — (k—ay)| =la; —a;|eA,
so that
Gllk—ay, " k—a,}=K,,.
By the choice of k, |k —a;|e¢A and |k — a; —a|e A. Thus each
k — a; is connected in G to 0 and to a. Since a is connected to 0 in

G by choice, it follows that G|C = K,. This contradicts the fact
that G = G,, and completes the proof.

REMARK. It i_s easy to show that if G is a homogeneous
graph, then so is G. Thus the graphs G, are all homogeneous, and
evidently distinet from the graphs U and G,(p =3.) If G is a homo-
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geneous graph, but not connected, the components of G must be
complete (consider the induced subgraphs with two vertices which are
not connected) and pairwise isomorphic (since G is vertex symmetric.)
It is an interesting and apparently open question if there are any
homogeneous graphs G (with ¢(G) = Y,) which have G and G con-

nected, other than U, G, and G, (p = 3.)

The existence of the graphs G, may be approached indirectly,
by noting that the class .27, of all graphs which do not admit K,
satisfies the amalgamation property of [7] (property D in [4].) Thus,
in the language of [7], G, is the .2;-homogeneous universal structure
of cardinality W,

3. This section is concerned with the problem of embedding an
infinite graph H in U (or in one of the graphs G,) in such a way
that automorphisms of H extend to automorphisms of U (G,.) In ad-
dition it is shown that each of these graphs has a maximal inde-
pendent set M whose permutations all extend uniquely to automor-
phisms.

THEOREM 3.1. Let H be a graph with c(H) = W,. There exists
an embedding of H onto an induced subgraph H' < U such that each
automorphim of H' extends uniquely to an automorphism of U.

Proof. Let n, < m,< +-- be an increasing sequence of positive
integers. Construct a chain of graphs H,C H Cc H,C --- by letting
H, = H and continuing as follows. For k& =1 obtain | H,| by adding
to | H,.,| a new vertex v(A, k) for each finite set AC|H, | such
that A | H,| has exactly n, elements. Each new vertex »(4, k) is
connected in H, to the vertices in 4 and to no others. {Recall that
H,_,c H, is also required.) Define K to be the union of the chain
{H,|k = 0} so that H,c K for each £ = 0 and, in particular, H < K.

If F, F, are disjoint, finite subsets of | K |, choose k large enough
so that FF\UF.c|H., | and F, (| H,| has at most =, elements.
Since | H,| is infinite there is a set B | H,| such that B\ F., = &,
F,N|H,|c B and B has exactly n, elements. Letting A = F,J B,
it follows that v(A4, k) is a vertex in H, which is connected in H,
(and thus in K) to every vertex in F, and to no vertex in F,. This
shows that K satisfies condition (A). Since only countably many
vertices are added at each stage of the construction of K, it follows
that K = U.

Any automorphism f of H,_, which satisfies f(|H,|) = |H,| can
be extended to an automorphism of H, by setting [f(v(4, k) =
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v(f(A), k) (for each new vertex.) Moreover, since f(v(A4, k)) must be
connected in H, to the vertices in f(A4) and no others, this is the
only possible way to extend such an f. Therefore, each automorphism
of H, can be extended to an automorphism of K, and this extension
is unique among automorphism of K which leave each set | H,| in-
variant (k£ > 0.)

But the members of | H,| are distinguished, among vertices of
K, by virtue of being in | H,| or being connected in K to at most
n, elements of | H,|. Thus any automorphism of K which leaves |H,]|
invariant must also leave | H,| invariant, for each k& > 0. That is,
each automorphism of H(=H, has a unique extension to an auto-
morphism of K = U, completing the proof.

COROLLARY 3.2. There is a maximal independent set of wvertices
Mc |U| such that every permutation of M extends uniquely to an
automorphism of U.

Proof. Let H be a graph with Y, vertices, no two connected,
and carry out the construction in the proof of Theorem 3.1. Set
M= |H'|c|U| and note that every permutation of the set M is
an automorphism of H’, and thus extends uniquely to an automor-
phism of U. Since n, >0 (for £k = 1) each vertex in |K|— |H| is
connected to at least one member of | H| in K. It follows that M
is a maximal independent set of vertices in | U | as desired.

To extend Theorem 3.1 to the homogeneous graphs G, requires a
modification of the construction given above. Fix p =3 and let H be
any graph, with ¢(H) = ¥W,, which does not admit K,. Construct a
chain {H,|k = 0} by letting H, = H and proceeding as above, except
that v(4, k) is a vertex in |H,| — | H,_,| only when A |H,| has
1, elements and H,_,|A does not admit K, ,. (A any finite subset of
|H,_,|, k=1.) Letting K be the union of the chain {H,}, it is easy
to see that the restriction on adding new vertices at each stage in-
sures that K does not admit K,. DMoreover, the same argument as
above shows that each automorphism of H (= H,) extends uniquely to
an automorphism of K.

It is not always true, however, that K satisfies condition (A4,).
This difficulty can be overcome if we assume that H satisfies

(B) if F c| H]| is finite, then there exists an infinite independ-
ent set AC|H|— F, such that no vertex in F)| is connected in H
to any vertex in A.

Assume now that H satisfies (B) and let F, F, be disjoint, finite
subsets of |K | such that K |F, does not admit K,_,. Choose k large
enough so that F, J F.C | H,_, | and F, [ | H, | has at most »n, elements.
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Let F,C | H,| consist of F', | H,| together with every vertex in | H, |
which is connected to some member of F, — | H,|. Since F, is finite
and each vertex in | K | — | H,| is connected to only finitely many mem-
bers of | H,|, it follows that F, is a finite set. Applying condition (B),
there exists an infinite independent set A’ in H, such that A’ F,= @
and no vertex in F) is connected in H, to any vertex in A’. In par-
ticular, K |F,|J A’ does not admit K,_,. Since A’ is infinite, we may
choose a set B (F,UA4')N | H,| such that BOF,= @, F.N|H,|cB
and B has exactly n, elements. Letting A = F,|J B, it follows that
K| A does not admit K, , and A | H,| = B has n, elements. Thus
v(4, k) is a vertex in K which is connected to every member of F|
and to no member of F,. That is, K satisfies condition (4,) whenever
H satisfies condition (B).

THEOREM 3.3. Let p =3 and suppose H is a graph with ¢(H) =
W which does not admit K,. Then there is an embedding of H onto
an induced subgraph H' C G, such that each automorphism of H' ex-
tends uniquely to an automorphism of G,.

Proof. If H satisfies (B) then the proof has been given above.
Otherwise, extend H to a graph H"” by adding a vertex v” for each
ve |H|, connecting v” only to v in H”. Then HC H" and H" clearly
does not admit K,. If F, is a finite subset of |H" | then letting
A={v"|ve|H|— F\} — F, shows that H"” satisfies condition (B). Finally,
note that each automorphism f of H extends uniquely to an auto-
morphism of H” (by setting f(v”) = (f(v)”".) The desired embedding
of H into G, is thus obtained by restricting to H an appropriate
embedding of H" into G,.

COROLLARY 3.4. For each p =3 there exists a maximal inde-
pendent set of wvertices M C|G,| such that every permutation of M
extends uniquely to an automorphism of G,.

Proof. Prooceed as in the proof of Corollary 3.2, noting that the
graph H with W, vertices, no two connected, satisfies condition (B).

THEOREM 3.5. Let G be U or G, for some p = 3 and let
a, "')a’ne‘Gl .

There is an automorphism f of G which has a, -+, a, as its only
Sized points.

Proof. Let H' be G|{a, +--, a,}. Obtain H from H’ by adding
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a set C={v,|neZ} of new vertices, but without adding any new
edges. Obviously H can be embedded in G and H satisfies (B). Let
c(H") < n, < n,< ++- and using the sequence {m,} carry out the ap-
propriate construction (as in the proof of Theorem 3.1 or Theorem 3.3.)
We obtain a graph K which is isomorphic to G and satisfies HC K.
Moreover, K has an automorphism f which satisfies f(v) = v(if v is
one of a, +-+,a,) and f(v,) =, (f neZ). If v=wv(4,k) is any
member of | K| — | H|, suppose f(v) =w». It follows that f(4) = A4,
and hence that fF(AN|H|) =AN|H|. Now AN |H| has n, > c(H')
elements, so that AN C = @. Moreover, f(ANC)= AN C, which
implies that 4 D C, contradicting the fact that A is a finite set. Thus
f has no fixed points in |K | — | H| and therefore has only a,, -, a,
as fixed points. Finally note that there is an isomorphism g of K
onto G so that g(v) = v if ve{a, +--, a,}. The automorphism go fog™
of G has as its fixed points only a,, -+, @,, and is therefore the desired
function.

4, It is well known that there are finite graphs of arbitrarily
large chromatic number which do not admit K;(eg. [1].) Thus for each
p = 3 the graph G, has chromatic number ¥,. This may be expressed
by saying that if |G,|=A,U---U A, then for some j =1, .-+, n
G,| A; admits K,. The results of this section amount to a streng-
thening of this fact.

THEOREM 4.1. Let p =3 and suppose |G,|= A, U A;.. Then
either there exists BC A, such that A, — B 1is finite and G,|B = @G,
or G,| A, admits every finite graph which does not admit K,.

Proof. Let A, A, be as above for G, and suppose that the
desired set B does not exist. Construct a sequence {(C,, D,)|n = 1},
where C,, D, are disjoint, finite subsets of A, (for each n>1) as
follows. Since G,| A, is not isomorphic to G,, it fails to satisfy con-
dition (4,). Thus there exist disjoint, finite subsets (C,, D, of A4,
such that G,|C, does not admit K,_, and every vertex in |G, | which
is connected to every member of C, and to no member of D, lies in
A,.

Assuming that (C, D), ---, (C,, D,) have been constructed, let
E =U{C;UD;|j=1,---,n so that E, is a finite subset of A,.
Since G, | A, — E, is not isomorphic to G, there exist disjoint, finite
subsets (C,.,, D,.,) of A, — E, such that G,|C,., does not admit K,_,
and every vertex in |G, | which is connected to every member of C,.,
and to no member of D,,, lies in 4, E,.

Now let H be any finite graph which does not admit K, and



&2 C. WARD HENSON

suppose | H | ={a,, +++, a,}. For convenience assume that |H | |G, | =
@. Construct a graph G with vertex set |G| = |H|U E, so that
G|(|H) =H,G|E, =G,|E, and each a; in | H| is connected in G to
every element of C; and to no element of K, — C;. If G|F = K,
then FN|H|+# @ and F E, * @. Since each vertex in E, is
connected in G to at most one member of | H| it follows that

FN|H| = {a;} (for some j =1, +--,m) and FNE,CC;.

That is, G|C; (= G,|C;) admits K, , which is a contradiction.
Therefore G does not admit K,.

Since G, is homogeneous, there is an embedding f of G into G,
such that f(v) = v for each ve E,. Therefore f(a;) ¢ E,(for each j =
1, .-+, n) and f(a;) is connected in G, to every vertex in C; and to
no vertex in D;. By the construction of (C; D;) it follows that
fla;)e A,. That is, f maps H into G,|A. showing that G,|A4,
admits every finite graph which does not admit K,.

COROLLARY 4.2. Let p = 8 and suppose that |G, |= A, U -+ UA4.,.
Then for some 7 =1, +-+, n the graph G,|A; admits every finite graph
which does not admit K,.

Proof. By induction on n, using Theorem 4.1.

We raise the question of whether or not the conclusion of Corol-
lary 4.2 can be strengthened to read: “G,|A; admits G,, for some
G=1, eee, 7

COROLLARY 4.2 is equivalent to the following result of Folkman
[5] concerning finite graphs, which he proved by entirely different
methods.

COROLLARY 4.3. (Folkman) Let p =3, n=2 and suppose G 1is
any finite graph which does not admit K,. There exists a finite graph
H, which also does not admit K,, such that if |H|= AU ---U 4.,
then for some j =1, --+, m, H| A; admits G.

The proof of this equivalence is a standard application of (for
example) Konig’s Infinity Lemma, as in the proof of the Erdos-de
Bruijn Theorem which states that an infinite graph G has chromatic
number = k if and only if it has a finite induced subgraph with
chromatic number = k(ke N). Thus the details will be omitted.

F. Galvin has raised the question of whether or not an “edge
coloring ” version of Corollary 4.3 holds when p = 3. (See [3] for a
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discussion of this and related problems.) It seems possible that
further investigation of G, might shed some light on this problem.

The author is indebted to Fred Galvin for his useful comments
on an earlier version of this paper.
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