PACIFIC JOURNAL OF MATHEMATICS
Vol. 38, No. 1, 1971

CLASSIFYING SPECIAL OPERATORS BY MEANS
OF SUBSETS ASSOCIATED WITH THE
NUMERICAL RANGE

MARY R. EMBRY

Let A be a continuous linear operator on a complex
Hilbert space X, with inner product <, > and associated norm
|| '|l. For each complex number z let M, (A) = {x: {Ax, x> =
z||«||?}. The following classifications of special operators
are obtained: (i) A is a scalar multiple of an isometry if
and only if AM,(A) c M.(A) for each complex z; (ii) A is a
nonzero scalar multiple of a unitary operator if and only if
AM(A) = M.(A) for each complex z; and (iii) A is normal if and
only if for each complex z {x| Ax e M,(A)} = {x| A*x € M.(A)}.

1. Introduction. The sets, M,(A), are closely associated with
the numerical range of A: W(A) = {{Aw, «): [|z] = 1}. These sets
were introduced in [1] and used to characterize the elements of W(A)
as follows:

THEOREM A. If ze W(A), then
(1) =z1s an extreme point of W(A) if and only if M.(A) is linear,
(ii) 4f = is a nonextreme boundary point of W(A), then

vM,(A) = U{M,(A): we L}

where L is the line of support for W(A) passing through z,
(iii) of W(A) is a convexr body, then z is an 1interior point of
W(A) if and only if vM,(A) = X.

It was also shown in [1, Theorem 2] that N{maximal linear sub-
spaces of M,(A)} plays a special role in determining the normal
eigenvalues of A.

With the aforementioned evidence concerning the sets M,(A4) in
mind, it seemed natural to ask whether these sets behave in a par-
ticular fashion if A has special characteristics or whether the action
of A on these sets determines special properties of A. Obviously 4
is Hermitian if and only if M,(A) = M,.(A) for all complex z. The
first question which came to mind was: when is it the case that each
of the sets M,(A) is invariant under A. The techniques developed to
answer this question in Theorem 1 led to the other theorems in this
paper.
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The following elementary facts can be noted about the sets, M,(4).
1. Each set M,(A) is homogeneous and 2. either M,(4) N M,(A4) = {0}
or M. (A) = M,(A) .

2, Notation and terminology. The notation and terminology
used in this paper are the same as that found in [1] with the following
additions. f is a bilinear functional on a complex vector space X if
and only if f: X x X — {complex numbers}, f is linear in the first
variable and conjugate linear in the second wvariable.

Throughout the paper A is a continuous linear operator on a
complex Hilbert space X; A is an isometry if A*A = I; A is unitary
if A*A = AA* = I; A is normal if AA* = A*A; and A is hyponormal
if AA* < A*A. ker A denotes the null space of A: {x: Az = 0}.

3. Classification theorems. The following lemma plays a fund-
amental part in the proofs of Theorems 1-4.

LemmA 1. If f, g, b and k are bilinear functionals on a complex
vector space X, satisfying
(1) flz, v)g(z, x) = h(x, 2)k(z, ) for all x in X, then
(2) Sz, y)g(@, y) = k@, Ykx, y) for all © and y in X.
Indication of proof. Let x, ye X and let z be an arbitrary com-
plex number. By substituting y + 2o for z in equation (1) and

equating coefficients, one arrives at equation (2) by means of the
coefficients of z°.

THEOREM 1. A 1s a scalar multtple of an isometry if and only
of AM,(A) C M,(A) for each complex z.

Proof. M,(A) is invariant under A for each complex z if and
only if
(3) (A, Ax)||z | = (Ax, x)|| Az |} for all x in X .

Obviously if A is a scalar multiple of an isometry, then equation (3)
holds for all x in X. Thus we assume that equation (3) holds for
all x in X and by Lemma 1 have

(4) <A, Ay)> <z, y> = {Az, y) {Awx, Ay) for all z and ¥ in X.

It now follows that {z}* C {Ax}* U {A*Ax}*. Moreover with « and y
interchanged in (4) we see that {x}*c {A*x}* U {A*Ax}*. Since {y}*
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is linear, we have either {x}* C{4A*Ax}* or ({x}'c{dx}* N {4*z}".
Either case implies that there exists a scalar », such that A*Ax =
(r)x. This is sufficient to imply that A is a scalar multiple of an
isometry.

If A is a nonunitary isometry, the only complex z in W(A) for
which AM,(A) = M,(A) are the extreme points of W(A). To prove
this we make use of results from [2] and [3] which assert that in
this case g(4) = W(A) = {z: |z| £ 1}. Thus the elements of W(A) are
either extreme points z with |z| = 1 or interior points. If z is an
extreme point of W(A4), then since A is hyponormal,

M.(A) = {x: Az =z and A*z = z*x}

by [4] and thus M,(A) = AM,(A) = A*M.(A). Conversely if M, (A) =
AM(A), then vM,(A) = A(vM,(A)). By Theorem A, (iii) if z is an
interior point of W(A), then X = AX, implying that A is invertible
and hence unitary. Therefore if M,(A) = AM,(A) and ze W(A), then
z is an extreme point of W(A4).

THEOREM 2. A* is a scalar multiple of an isometry if and only
if A*M(A) < M,(A) for each complex z.

Proof. Apply Theorem 1 to A* and note that M,(A*) = M..(4)
for each complex z.

THEOREM 3. A 1s a nonzero scalar multiple of a unitary operator
of and only if AM,(A) = M,(A) for each complex z.

Proof. By Theorems 1 and 2 A is a scalar multiple of a unitary
operator if and only if AM,(A) C M,(A) and A*M,(A) C M,(A) for each
complex z. Thus if A is nonzero, this is equivalent to AM.(4) < M.(A)
and M,(A) C AM,(A).

The proof of Theorem 4 which classifies normal operators in terms
of the sets M,(A) appears to depend upon the following lemma.

LeEmMA 2. If A and E are operators on X such that ker A C ker E
and for each x wm X either

(1) [[Az|| = || Ex||
or

(ii) there exists a real number r, such that

A*Ax = (r))E*Ex ,

then A*A is a scalar multiple of E*E.



64 MARY R. EMBRY

Proof. Assume that A*Ax = aE*Ex and A*Ay = bE*Ey where
E*Ex and E*Ey are linearly independent. Let ¢ be real, 0 < ¢t < 1.
Either ||A(tz + 1 — t)y|| = || E(@x + (1 — t)y|| or there exists a real
number ¢ such that A*A(tx + (1 — t)y) = cE*E(tx + (1 — t)y. In this
last case since 0 < ¢t < 1 and E*Ex and E*Ey are linearly independent,
we have ¢ = ¢ = b. Thus if a = b, then

lAte + (1 — )il = || E(te + 1 — Do)l

for all ¢, 0 < ¢ < 1. Letting ¢t approach 1 and 0, we have || Az || = || Ex||
and ||Ay|| = ||Ey||. Therefore |a| = |b] = 1 and since E*Ex = 0 and
E*FEy + 0, necessarily a = b = 1. Thus we must have a = b if E*Ex
and E*Ey are linearly independent.

Secondly if E*Ex and E*Ey are linearly dependent and A*Ax =
al*Ex and A*Ay = bE*Ey, then it follows from the hypothesis ker 4
Cker E that a and b can be chosen to be the same real number.

The arguments in the two preceding paragraphs show that there
exists a real number » such that if x € X, then either A*Ax = rE*Ex
or ||Az|| = || Ex||. Thus either ||Az|| < || Ex|| for all z in X or || Az|| =
|| Ex|| for all « in X. In either case {x: || Axz|| = || Ex|| Ex||} is linear
by Theorem A, (i). proving that X is the union of the two linear
subspaces:

{x: A*Ax = rE*Ex} and {x:| Az]|| = || Ez||}.
Therefore either A*A = rE*E or A*A = E*E.

THEOREM 4. A is normal if and only if for each complex z

{x|Axe M,(A)} = {x]| A*x € M,(4)} .

Proof. If A is normal it follows that Axe M,(A) if and only if
A*re M,(A). Assume now that this condition holds. Then

(5) (A%, Ax)l| A*x|]? = CAA*w, A*x)|| Ax| for all © in X
and
(6) ker A = ker A* .

This last assertion can be proven as follows: xzecker A —Axec M,(A)
for all complex z — A*xe M,(A) for all complex z — x € ker A*.

Using the same techniques as in the proof of Theorem 1, we show
that if x ¢ X, either their exists a number b such that AA*x = bA*Ax or
there exist numbers ¢ and d such that AA** ¢ = cAA*x and A*A’r =
dA*Ax. These last two equations combined with (5) and (6) imply
that either Az = A*xz =0 or ¢ = d*. They also imply that A**z =



CLASSIFYING SPECIAL OPERATORS 65

cA*x and A’rx = dAx. Again using (6), we have AA*r = cAx and
A*Ax = dA*x. Thus if Ax = 0, |[|A*x|]?® = ¢ {Az, x> = d*{x, A*x) =
[|Az|[?. Therefore A and A* satisfy the hypotheses of Lemma 2 and
there exists a real number » such that AA* = rA*A. This is sufficient
to imply that A is normal.

COROLLARY 5. Let A be an invertible operator on X. The follow-
ing statements are equivalent:

(i) A is normal,

(ii) A7'M,(A) = A*'M,(A) for each complex z,

(iii) A7M(A*A™"y = A* M, (A*A™) for each complex z.

Proof. The equivalence of (i) and (ii) is a restatement of Theorem
4 for the case in which A is invertible. The equivalence of (i) and
(iii) is obtained by applying Theorem 3 to the operator A*A~".

I should like to express my appreciation to the referee of this
paper for his helpful suggestions.
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