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ON THE NONEQUIVALENCE OF CONSERVATIVE
HAUSDORFF METHODS AND HAUSDORFF

MOMENT SEQUENCES

J. R. EDWARDS AND S. G. WAYMENT

In this paper we give a counter example to the theorem:
A Hausdorff method is convergence preserving if and only
if it is generated by a moment sequence as stated in "vector-
valued summability methods on a linear normed space" by L.
C. Kurtz and D. H. Tucker, Proc. Amer. Math. Soc. 16 (1965)
419-428.

New results are also obtained which extend those known
on the equivalence of the generalized Hausdorff moment
problem with a generalized Riesz Representation Theorem,
and a class of normed spaces is given in which the above
mentioned does hold. The key tool in establishing these is the
^-integral.

1* Introduction* In [4] Kurtz and Tucker consider summability
methods in the setting of linear normed spaces. In that paper they
establish an equivalence between a form of the Hausdorff moment
problem and an integral representation theorem (Tucker [8]). In this
paper we give a stronger formulation of the Hausdorff moment pro-
blem and establish its equivalence to the ^-integral representation
theorem in [1] in the setting of convex spaces. Also in [4] the
authors claim to show that a Hausdorff method is regular if and
only if it is generated by a moment sequence. However, the proof
of sufficiency establishes only that a Hausdorff method generated by
a moment sequence is weakly convergence preserving. Goodrich [3]
and Remanujan [6] have shown, independenty, in the setting of convex
spaces that a Hausdorff method is weakly convergence preserving if
and only if it is generated by a weak moment sequence. In §4 of this
paper we give an example which shows that in general it is not the
case that a Hausdorff method generated by a moment sequence is
convergence preserving. The remainder of the paper is devoted to
obtaining sufficient conditions for a Hausdorff method to be conver-
gence preserving, and we conclude by defining a class of normed
spaces in which being generated by a moment sequence is both neces-
sary and sufficient for a Hausdorff method to be convergence pre-
serving.

In the first three sections of this paper, X will denote an F-space
and Y a convex space unless otherwise stated. L[X, Y] will denote
the collection of continuous linear operators from X into Y, and C
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denotes the space of continuous functions from [0, 1] into X with the
topology of uniform convergence.

We shall use the analogues of the definitions given in [4] for the
following: matrix summability method from X to Y, convergence
preserving method, regular relative to L, and Hausdorff summability
method. It will be convenient to refer to the following form of the
generalized Toeplitz Theorem, proofs of which can be found in [3],
[4], [5].

THEOREM 1.1. (Kurtz-Tucker, Ramanujan, Goodrich). A sum-
mability method Φ = (φnj) is convergence preserving if and only if the
following conditions are satisfied.

(RN) There is a pairing (p, q) (Swong's notation [7]) and con-
stants kp_q such that for each bounded sequence {xn} c X, #(ΣΓ=0 ΦnΛχ»))
^kp_q sup p(xu).

(RS) For each xe X the sequence {ΣΓ-o Φn»(χ)}7^ is Cauchy.
(C) For each xe X and for fixed v the sequence {φnv(x)}~=1 is

Cauchy.
Furthermore a summability method Φ is regular relative to L if and
only if (RN) and the following conditions hold.

(RSO For each xeX, limΛΣΓ=o ΦnΛχ) = L(χ)
(Co) For each xe X, \imnφnu(x) = θx.

We use the concept of moment sequence defined by Kurtz and Tucker,
i.e., a moment sequence is a sequence of transformations {μn} c L[X, Y]
such that the Hausdorff method generated by {μn} satisfies (RN).
We emphasize that the above definition of moment is in general a
stronger condition than Ramanujanys weak moment sequence and
also that the convergence in 1.1 occurs in the topology of Y and not
in the weak topology of Y.

2* The ^-integral* The purpose of this section of the paper is
to present the basic properties of the ΐ -integral as given in [2]. A
set function K on the half-open intervals J^ = {(α, b] c (0, 1]} with
values in L[X, Y] is said to be convex with respect to length or more
briefly convex if Σ?=i λ; K(Ii) = K(I) for each lej? and disjoint
partition {I{} of I over J^, where λ̂  is the ratio of the length of /;
to that of I. If K additionally satisfies the property that there is
a pairing (p, q) and constants WKp_q such that each finite disjoint
collection {/;} in ^ and corresponding collection {x,) in X implies
q(Σ[k(Ii)] (Xi)) ̂  WKp__q maxy p(ΣiUι cc*), then K is said to be of bounded
(Pi O) convex variation. Suppose / is a function from [0, 1] into X.
Then to say that a convex set function K is v-integrable with respect to
/ means that \\ma^oK(Ii)(f(xi+^—f(x^) exists in Ϋ the completion of
Y, where the limit is taken over the net of all partition a of (0, 1],
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and we denote this limit by v \ Kdf.
Jo

3* A Moment Problem* In this section of the paper we for-
mulate a moment problem analogous to that given in [4]. Our goal
is to show the equivalence of the following two statements, S2 being
a formulation of the Hausdorff Moment Problem and Sλ being a
generalized integral representation theorem. We shall assume Y is
complete.

Statement S2. The sequence {μn} c L[X, Y] is a moment sequence
if and only if there exist a ψ e L[X, Y] and a convex set function K
with values in L[X, Y] which is of bounded (p, q) convex variation

such that for each x e l , μQ(x) = φ(x) and μjx) = v\κd(tn x) for n
j

Φ 0.

Statement Slβ The linear transformation T: C—> Y is continuous if
and only if there is a ψ e L[X, Y] and a convex set function K with
values in L[X, Y] which is of bounded (p, q) convex variation such

that T(f) = ψ(f(0)) + v[ K df.
Jo

Observe that sufficiency always holds in the case of Sx [1]. Suf-
ficiency also holds in Statement S2. This can be seen by the follow-
ing argument. Let (φnv) denote the Hausdorff method generated by
{μn}. Since K is of bounded (p, q) convex variation, then by Theorem
3 in [1] there is a pairing (p, q) with constants WKp_q and
such that for fe C

q(v[ Kdf) ^ WKp_q sup p(f(t)-f(O)) + \ψ\p_g p(/(0)) .
Jo

Therefore,

^ WKv_q sup p ( Σ (?) t" (1-0 Λ "X) +

and, hence, {μn} is a moment sequence.

REMARK 3.1. In the formulation of Statements Sx and S2 in [4]
sufficiency does not hold. This is because the integral representation
theorem of Tucker requires that the function K which is of bounded
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semi-variation must take its values in L[X, Γ+], the bounded linear
operaters from X into Y+, the weak sequential extention of Y [8].
The reason that we are able to give these sufficient conditions is that
the convex set function K given in the representation theorem in [1]
does not suffer this complication.

THEOREM 3.2. The Statement (&ι is equivalent to Statement S2.

To prove this theorem we adapt the argument presented by Kurtz
and Tucker in [4] to the present setting.

Proof of 3.2. Suppose that Statement SL holds, and that {μn} is
a moment sequence. Define the linear transformation ^ from the real
polynomials into L[X, Y] by ^"(Σ!ί=o^^) = Σv=o ̂ , , and define T
from the polynomial with coefficients in X by T(ΣΓ=o tux) — Σ ^ o [ ^ ~
(tv)\ (x). Our goal is to show that T is continuous on the polynomials
with coefficients in X from which it follows it can be extended con-
tinuously to C. (That the polynomials are dense in C follows from
Lemma 3 [6]). Suppose that q is a semi-norm on Y. Let P denote
an X-valued polynomial. Then,

T(BnP)(t) - Σ (!)

where BnP denotes the nth Bernstein Polynomial of P.
Since {μn} is a moment sequence, then it follows that there is a semi-
norm p on X and a constant kp_q such that

q{T{BnP) ^ *;„_, max p[P{ —

^ kp_q sup p(P(t)) .
t

Lemma 10 in [4] implies that P(t) = (BnP) (t) - Σί=ί Ptf)/™? where
Pv is a polynomial, with coefficients in X, which is independent of m,
and k is the degree of P. Therefore,

q(T(P)) 5Ξ q(T(B%P)) + A<

^ *;,_, sup p(P(ί))
ί

for any ε > 0 for large enough n. Therefore, T is continuous on the
polynomials hence on C, and Theorem 3 of [1] implies that Statement
S2 holds.
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Suppose that Statement S2 holds and suppose T:C—> Y is a con-
tinuous linear transformation. Then T induces a continuous linear
transformation from CR, the real-valued continuous functions from [0,1]
with sup-norm topology, to L[X, Y] which is defined by [J?~(f)](x) =
F(f x). Define the sequence {μn} in L[X, Y] by μn = ^~{tn) for each n.
Observe that for a bounded sequence {xn},

± {f) Δ-Ίκ fo) = Σo

Since T is continuous and since XΓ=o ( ^ ) (^(1 - t)n~* = 1 ίor each t,

it follows that the (RN) condition is satisfied for the Hausdorίf method
generated by {μn} and therefore {μn} is a moment sequence. Statement
S2 implies that there exist ψ e L[Xy Y] and a set function which is of
bound (p, q) convex variation such that μo(x) — ψ(x) and μn(x) =

v\κd(tnx) for each xeX. Suppose P(t) = Σ?=o *X Then

Σ Γ(ίX) = Σ ^(^) = Σ

μ{xv)
/

- v[ KdP+

S I

iΓd/ + ψ(f(0)) is
o

continuous, and since the polynomials with coefficients in X are con-

tinuous, then T(f) = v\1Kdf+ψ(f(0)) for all feC and Statement
Jo

Sx is established.
4* The nonequivalence of the moment problem and conver-

gence preserving* In [4] Kurtz and Tucker stated the following
theorem in the setting of linear normed spaces: A Hausdorff method is
convergence preserving if and only if it is generated by a moment
sequence. However, the proof given succeeded only in establishing
that a Hausdorίf method generated by a moment sequence is weakly
convergence preserving. We now give an example which shows that
the stated theorem is incorrect.

EXAMPLE 4.1. Define X to be R, the real numbers and Y to
be l°°, the set of all bounded sequences, (a19a2y ,tf%, •)> with sup-
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norm topology. Let en denote the element of I00 all of whose terms
are o except the nth term which is 1. Define the function /m(t) =
mt(l — t)m~ι. Let tγ = 1, and t2 = 1/2. There is an integer m3 > 2
such that /m a (l/m3) - fm, (1/2) > 1/2. Define ί3 - l/m3. We next define
the sequences {mj and {tn} inductively. Suppose that t{ has been
defined i = l, ,n. Then, there is an integer mΛ+1 > l/ίn = mn such
that / Λ w + l (l/mn+1) - fmn+1 (tn)>l/2. Define ίβ+1 = l/mw + 1. Define
the point function K:[0, 1]-*B[X, Y] = l°° by

K(t) =
eΛ if tn+1 < t ^ tn for n = 1, 2, •

0 if £ = 0 .

Observe that ϋΓ is of bounded semi-variation (has the co-property [8])
and in fact has semi-variation 2. Furthermore, if / is continuous

then Γ dkf = ΣΓ=2 [/(^) - /(ί*-i)] v̂ + /(l)βi. Let (φn>) denote the
Jo

HausdorfF method which is generated by the moment sequence which

S I

dktn. We observe that the sequence {pn91} fails
0

to converge. This is seen by the following argument. Suppose M
is an integer, then there is an n > M such that mn(tM) (i — ίjlf)

mw""i

< 1/4. Then,

Γ1

Jo
dkmntn(l ~-

- mm

Thus we conclude the sequence fails to be Cauchy. Therefore, Theorem
1.1 implies that (φnj) fails to be convergence preserving.

The question of what in addition to being a moment sequence
must {μn} satisfy in order to generate a convergence preserving method
naturally arises. We chose to pursue this question by examining the
behavior of the convex set function which generates {μn}, and we give
a condition which is sufficient to guarantee that {μn} generates a
convergence preserving method.

DEFINITION 4.2. A convex set function K is said to have the
Limit Property at 0 if for each xeX the limδ_0 [K(a, b]](x) exists. If
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for each x e X Iim6_o [K(a, b]] (x) = θγ then K is said to have the 0-
Limit Property.

THEOREM 4.3. Suppose {μn} is generated by a set function K
which is of bounded (p, q) convex variation. Then for the Hausdorff
method (ψnu) generated by {μn} to be convergence preserving, it sufficient
that K have the limit property at 0.

Proof. First observe that (RS) is satisfied by any Hausdorff
method (ΣUΦnM = Σ Γ = o ( j ) ^ f t ( » ) = #>(&)) and that {μn} is a
moment sequence by 3.2 and hence (RN) is satisfied. Therefore, it is
only necessary to establish condition (C). Since iΓis of bounded (p, q)
convex variation, then {K(a, b](x): (α, b] c (0, 1]} is bounded. There-
fore, it follows from the Banach-Steinhaus Theorem that there is an
^ e L[x, y] such that k(a, b]—>Sf uniformly on compact subsets of
X as &->0. Let Kr. ^ - > L [ X , Γ], be defined by Ky(I) - ύ? for all
I^J^. Then K is of bounded (p, q) convex variation as is K* =
K — K_, . Suppose v Φ 0. Choose xe X, and suppose K is p-q
related, where p and q are semi-norms in X and Y respectively.
Choose δ such that for (a, b] c (0, 5], q([K(a, b] (x) - L(x)) < ε/4. Since
fn(t) = £v(l — ί)w~v a; converges uniformly on [δ, 1] to θx, then choose
ΛΓ such that n > N implies sup< p(fn(t) < ε/2WK. Then, for n> N,

= q(v\ Kd(P(l - t)n~ux)

^ q(v\° Kd(tu(l - ψ^

£ q(v\* K*d(t» (l - ty

+ WK sup q(V{l - t)vx)

£ Vo

δ (t(l - ty-) sup [K*(I)](x) + ε/2
/C(0,(5]

^ 2 (ε/4) + ε/2 = ε .

Where in the above Vo

δ (ίv(l — t)n~~v) denotes the variation of / over
[0, o]. Hence, q{ψnv{x))—»0 as n—>ooy and it follows that φn»{x)-+θγ as
n—> cc. Suppose i; = 0, and xeX. Further, suppose that K is p-q
related. Then,

K*d{l -
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- t)nx) - S/r(%) .

By an argument similar to the previous one it follows that v\ K*d
Jo

(1 — t)nx converges to θγ as n—+ ©o and hence that φn0(x) —> — S^{x)
as n—> co. Therefore, (0ΛV) satisfies (C) and by 1.1 is a convergence
preserving method, and the theorem is established.

In the preceding proof observe that if ._<5f is the identically θγ

map, then φnji,(x)—>θγ for all v. Hence, we have the following corol-
lary to 4.3.

COROLLARY 4.4. Suppose {μn} is generated by a set function K
which is of bounded (p, q) convex variation. Then for the Hausdorff
method generated, by {μn} to be regular with respect to Sf e L[X, Y]
it is sufficient that μ0 = .._ζf and that K have the 0-Liτnit Property.

5* Concluding remarks* It is not known if the condition that
{)"*} be generated by a if which has the limit property is necessary
for the Hausdorff method generated by {μn} to be convergence pre-
serving. If Y is a Banach space satisfying the condition that there
is a q>l such that max(|| x + y ||, \\x — y\\)^q min(|| a; ||, \\y\\),
then a K which is of bounded convex variation has the limit property.
Hence under this additional condition on Y we conclude that a Haus-
dorff method is convergence preserving if and only if it is generated
by a moment sequence. We note that if Y is a generalized Euclidean
space, for example Y = L2[0, 1], then the above condition holds with
q = i/~2. However, if Y = Ld[0, 1] or ^ [ 0 , 1] then the above con-
dition does not hold.

6. Addendum to the galley proofs. After this paper was sent
to the printer, it was observed that by using inequality (3) on page
400 of (Uniformly Convex Spaces, J. A. Clarkson, Trans. Amer. Math.
Soc, 40 (1936), 396-414) one can establish the above condition holds
for Lp and lp provided 1 < p < co. The number q is given by q = 2llP

when 2 < p < co, and by q = 2ι~ιlP when 1 < p < 2.
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