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INEQUALITIES FOR POSITIVE INTEGRAL OPERATORS

DAVID W. BOYD

The aim of this paper is to study integral inequalities of
the following form, where T is an integral operator with non-
negative kernel:

Classical examples of such inequalities include Hardy's inequ-
ality and OpiaΓs inequality. Our main result (Theorem 1) is
a minimax characterization of the best constants in such in-
equalities, under the condition that 1 S p + q S r. This
theorem allows us to deduce certain facts concerning the
uniqueness of the extremal functions. We then apply these
results to the explicit computation or estimation of the best
constants in inequalities of the form:

I y(x) \p\ y"{x) \*dx ^K\\\ 2/"0*0 \rd

w h e r e y(a) — y(b) = 0.

In a previous paper [7], we showed that, if T is a compact
mapping from Lr into Ls (s = pr/(r — q)), and 0 < p, 0 <Z q < r and
1 < r, then the best constant in such an inequality is the largest
eigenvalue of a certain nonlinear integral equation, the "variational
equation".

The method which we develop here allows us to show that, in
fact, the variational equation has at most one eigenvalue, if 1 <J p +
q ίg r, (and exactly one if 1 ^ p + q < r, and 0 <^ (p — l)r + q). This
means that it is not, a priori, necessary to know of the existence of
a solution to the variational equation as was the case in [7]. Our
theorem is thus more closely related to the techniques used by Beesack
in [2], [3], and to the results of Wilf ([12], p. 70) and Tomaselli
[11]. The uniqueness results we obtain give us the opportunity to
clear up some confusion concerning the results in the paper of Boyd
and Wong [8].

One advantage of our approach via integral operators is that we
obtain a uniform treatment of inequalities involving functions and
derivatives higher than the first, which would not be the case if we
reduced immediately to differential operators. The existence and
uniqueness theorems which result may be of some interest in the
theory of non-linear boundary value problems.

In § 6, we discuss a number of special situations in which the
variational equation can be reduced to a simpler form, or the uni-
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queness results can be used to improve upper bounds for the best
constants.

I* Preliminaries* We shall follow the notation of [7] for the
most part. Let [a, b] be a finite, or infinite, interval of the real line,
and let m be a measurable function of [α, 6], which is positive almost
everywhere. We write dμ(x) = m(x)dx, and

for 0 < s < - .

We could equally well allow dμ to be any σ-finite measure on [α, 6].
The space Ls is the set of measurable functions with | | / | | s < °° with
the usual identification; L°° is defined as usual. Convergence in Ls

means \\fn — f\\s—* 0, which we denote by fn—•>/. If 1 <£ s < co, Ls

is a Banach space with dual Ls, (s' = s/(s — 1)), and we write fn >f
for weak convergence in Ls.

We consider integral operators T of the form

(1) Tf(x)= [ k(x, t)f(t)dμ(t) ,
Ja

where k(x, t) >̂ 0 a.e. A function / is in the domain of T if and only if
T\f\ < oo a.e.; and, T maps Lr into Ls if and only if T\f\eLs for
each feLr. Such an operator is necessarily continuous ([13], p. 228)
and we define its norm by

(2) | |2Ί| = | | Γ | U = sup{| |Γ/| | . : | |/ | | r = l } .

We assume that p, q, r are real numbers which satisfy 0 < p,
0 <̂  q ^ r, 1 g r, and further restrictions to be imposed from time
to time. If T maps Lr into Ls for s = pr/(r — q), then we can define
the functional J on Lr by

( 3 )

Holder's inequality then shows that

(4) j(/)^ιιτi

We are interested in determining the numbers

(5) K* = iΓfe g, r) = sup{J(/):

and investigating the functions /, (if there are any) for which /(/) —
K*\\f\\ζ+q. Such / will be called extremals. We notice immediately
that we may restrict consideration to nonnegative /, since
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We define a normalized extremal to be an feLr with /;> 0, for
which | | / | | r = l, and J(f) = K*.

Given a T of the form (1), we define the adjoint of T to be the
operator with kernel k*(x, t) — k(t, x). Note that in case r ;> 1, s ^ 1,
if T:Lr~->Ls continuously, then T*:Z/S—•!/" continuously, and

We should point out that inequalities of the form

S b (Γb ΛiV+q)lr

I Tf\>\f\<w{x)dx ^ ifj) \f\rm(x)dxj
are included in our formulation, simply by using a different operator
2\ = (w/m)ίlpT, in place of T.

2* The variational equation*

LEMMA 1. Suppose that f is an extremal for which feLr, / > 0
α.e. and Tf>0 a.e. Then f satisfies the following equation a.e.,
with λ = if*.

(6) pT*{{TfY~T) + q{TfYf^ = (p + 0)λ/'- ι | |/| | r

+ f f- r .

Furthermore, if (/, λ) is any solution to (6) with / < 0 a.e. and
Tf > 0 a.e., then J(f) = λ| |/| |?+ g, so λ = K* is the largest eigenvalue
of (6), and all solutions of (6) with λ = K* are extremals.

Proof. See Lemma 2(b) of [7] for details concerning the differ-
entiability of the functionals involved. We notice that if \h\^f,
then J(f+ eh) and \\f + εh\\v

r

+q are differentiate at ε = 0, and the
derivative of the ratio J(f + sh)/\\f + εh\\p

r

+g vanishes at ε = 0. This
gives

( 7) [{piTfy-^Th + qiTfrf^h - (p + q)K*r~'h\\ f \ \ r
Ja

We may write

by Fubini's theorem. Then choosing h appropriately, we obtain (6)
with h = if*.

If (/, λ) is a solution of (6), then multiply by / and integrate
reversing the above steps to arrive at (7) with h — f and if* replaced
by λ. This shows J(f) = λ| |/ | |?+ ?.
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We call (6) the variational equation, and when we wish to em-
phasize the (p, g, r) in question we will denote (6) by V(p, g, r).

3* The minimax theorem* The next theorem is the main result
of this paper. It generalizes a result stated by Wilf ([12], p. 70)
for the case p = r, q = 0. A more special result for p = r, q — 0 was
proved by Tomaselli in [11].

In the statement of the theorem, the following functional will
appear:

(8) M(f) = ess sup
(V + q)Γ-ι{%)\\f\\l+q-r

If we allow co as a possible value, we can define the domain of M,
) , as follows:

(a) if p + q = r, p ^ 1, ^(ilf) = {/:/> 0 a.e.}
(b) if p + g = r, 0 < p < 1, &{M) = {/:/> 0 a.e. and T/ > 0

a.e.}
(c) if 2> + g ^ r, p ^ 1, ^(Λf) - {f:fe Lr, f > 0 a.e.}
(d) if p + q Φ r, 0 < p < 1, ^(ikf) - {f:felf,f> 0 a.e., Γ/>

0 a.e.}.

Note that ^(Λf) is empty only if 0 < p < 1 and Γ / = 0 o n a set of
positive measure for all / > 0. This would mean that k(x, t) = 0 a.e.
on a set i? x [α, 6] where μ(i7) > 0.

THEOREM 1. Lei p, q and r satisfy l ^ p + g ^ r , 0 < p , O^g.
Lei Γ be an operator of the form (1). Define M(f) by (8), for fe

) , as explained above. Then

( 9) K*^ M(f), for all fe

If p + q < r, then equality holds in (9) (for finite K*) if and only
if f is a solution of (β) with λ = if*.

Proof. Let a = p/(p + g), /5 = g/(p + g). Let / > 0 in [α, 6], so
that by (8),

(10) at*-^ιT*{{Tfy-ψ) + βf-p(Tf)* g Af(/)/r-*-ff||/||?+ff-r .

Now suppose that g e Lr and # ̂  0 a.e. Holder's inequality with
exponents p + g and ϊ"1 = (p + g)/(p + g — 1), and weight &(E, ί),
shows that

(11) (Γflf)»+t = {^(x, t)g(t)f(t)-ιf(tydμj
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= T(g*+'f-*-'+ι)(Tf)*+q~ι .

Raise (11) to the power a, and we have

(12) (TgY S {T(gp+qf-p-q+1)}a(Tfy~a .

Now, we will use the inequality cadβ g ac + (3d, for c ^ 0, d Ξ> 0,
after inserting certain factors into (12), as follows:

(13)

Integrate (13) from a to 6, and use Fubini's theorem, as in the proof
of Lemma 1, to introduce a T* into the first integral, then use (10)
to obtain:

\ \ ψ ) + βf~v{Tfy}dμ
J a J a

(14) ^

where, in the last step, we use Holder's inequality with exponents
r/(p + q), and r/(r — p — q). Thus, we have proved that for any
g ^ 0, g e Lr, we have

(15) J{g) ^ M{f)\\g\\*+' ,

which proves that K* ^ M{f).
It is clear that if (/, K*) is a solution of (β) with / > 0, then

M(f) — Kλ% so equality holds in (9), (and this is true even if p + q =
r). '

Conversely, suppose equality holds in (9) so M(f) = K*, and yet
that (/, K*) is not a solution of (β). Assume, without loss of gener-
ality that | | / | | r = 1. Then, for some K < K*, and some set E of
positive measure, we would have

(16) vT*{{Tfy~ψ)(x) + q(TfY(x)p"1{x) ^ (p + q)Kfτ-ι{%) ,
for & G JS; .

Examining the inequality (14), with (16) in mind, we write / = fι + /2

where /x > 0 if and only if xe E and /2 > 0 if and only if x£ E. We
write c = 11 /i I £ > 0 so 1 - c = 11 f2 \ \r

r. Similarly, write g = g^ + g2 and let
d= H^(|ί, andl-d=[[ f l r 2 | | ; , (assuming ||flr(|r = l) . Let 7 = (p
Then (14), (10) and (16) give
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+ K\\τg)'gPdμ ̂  κ\*gξ+'fΓ'-'dμ
J a J a

(17) ^ KΦ&-1 + K*(l - dY(l - of"?

^ 7(Kd + #*(1 - d)) + (1 - 7)(Xc + K*(l - c))

+ i P ( l - c)) = K2<K* ,

where iΓ2 is a constant which is strictly less than ϋΓ*, since 1 — 7 > 0
and c > 0. But (17) contradicts the definition of K*, since now

for all geLr; thus, (/, K*) is a solution of (6).

COROLLARY 1. With the assumptions of Theorem 1, the equation
(6) Aαs ?ιo solutions (/, λ) wiίΛ, / e Lr, / > 0 α.β. α^cί λ Φ K*.

Proof. If (/, λ) is a solution of (6) with / > 0 a.e., then M(f) =
λ, so by Theorem 1, K* ^ λ. But, by Lemma 1, λ ^ K*. Hence,
we have λ = K*.

COROLLARY 2. Suppose that 0 < p, 0 ^ q, and 1 <g p + q < r.
If 0 < p < 1, suppose that Tf>0 a.e. whenever / > 0 α.β. Suppose
that feLr, \\f\\r = 1, / > 0 α.e. α^d J(/) = JSΓ*. Γfeβ^ / is ίfeβ o^τ/
normalized extremal.

Proof. By Lemma 1, such an extremal would satisfy (6), and
hence M(f) — K*. Referring to equation (14) in the proof of Theorem
1, we see that if g ^ 0, \\g\\r = 1 and J(g) = ίΓ*, then

(18) if* = \\τg)pgqdμ ^
Ja

^ K*

For equality to hold in the last application of Holder's inequality, we
must have gr = cfr a.e. for some constant c, and | | ^ | | r = | | / | | r = 1
implies c = 1. Thus g — f a.e., proving uniqueness of /.

COROLLARY 3. Suppose that 0 < p, 0 ^ q and 1 < p + q = r.
Suppose that k(x, t) > 0 /or all (x, t) satisfying a ^ t ^ ίc g 6. Suppose
that / > 0 α.β., H/llr = 1, «/(/) = ϋΓ*. T%β^ / is ίfeβ (mfo/ normalized
extremal.

Proof. If / is such an extremal, and g ^ 0, \\g\\r = 1 and /(#) =
K*, then equality must hold in all of the inequalities (11), (13) and
(14). In particular, if equality is to hold in (11) for a given xe [α, 6],
then there is a constant e(x) such that g{t)rf(t)~r~ι = c(x)rf(t), for almost
all t for which k(x, t) Φ 0. Letting E(x) = {t: k(x, t) Φ 0}, we see that
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our assumption implies that μ{E{x) Π E(y)) > 0 for almost all x and
y in [α, 6]. Thus, for a set iVc [α, b] of measure zero, c(x) — c(y)
for x, yg N. Thus c(x) is constant a.e., and since g and / have norm
1, 9 = f a.e.

REMARKS.

1* The result of Corollary 1 gives us the opportunity to clarify
the result obtained by Wong and I in [8]. We gave a result concerning
the best constants in the inequality

\a\y'{t)y»{t)\w{t)dt ^ κAa\y"{t)\p+1rn(t)dt ,
Jo Jo

where y(0) = 0, and p > 0. There, we stated that K* = l/a(p + 1),
where a is the smallest positive eigenvalue in a certain differential
boundary value problem. In the review in Mathematical Reviews,
by J. V. Ryff (MR 35, #3021), and the review in the Zentralblatt
fiir Mathematik, by P. R. Beesack (173, p. 57), it was suggested
that this eigenvalue should be taken to be the largest such eigen-
value. Our reasoning, (which was not stated), was that since the
inequality is attained for any eigenfunction (satisfying the stated
conditions), then, in order to be correct, the inequality must include
the worst possible case: that is, when a is the smallest. The revie-
wers' reasoning was, no doubt, that the inequality could be proved
for any eigenfunction, and hence the best constant is obtained when
a is largest. In fact, the reasoning is correct in both instances,
showing that a is, in fact, unique. This is a special case of Corollary
1, taking

Tf(x) = (w(x)/m(x)y'AXf(t)dt .
Jo

2* The result of Corollary 3 could easily be strengthened to
include kernels which vanish on larger sets. All one really requires is
that for almost all x,ye [α, &], that there be a chain x = xlyx2, , xn — y
such that μ(E(Xi) Π E(xi+1)) > 0 for i = 1, 2, , n — 1. However, all
our examples will satisfy the stronger condition stated in Corollary 3.

4* Existence of extremals* It is not necessary, for the applica-
tion of Theorem 1, to know in advance that extremals exist. Thus,
this method differs in principle from the method used in [7] where
it was essential to show the existence of extremals. The knowledge
that extremals do exist can be useful, nevertheless, so we quote some
results in this area, from [7].

LEMMA 2. Suppose that p > 0, r > 1, 0 <£ q < r, and that T is



16 DAVID W. BOYD

a compact operator from Lr—* Ls (s = pr/(r — q)). Then normalized
extremals exist, and the set of normalized extremals is a (strongly)
compact subset of Lr.

Proof. The existence is Lemma 1 of [7]. An examination of
the proof of that Lemma shows that if S — {/} is a set of normalized
extremals then there is a weakly convergent subsequence fn of S

w
such that fn >/0, and J(f0) — K*, \\fo\\ = 1. But, by the uniform

ΊJO

convexity of Lr for r > 1, fn >/0 and | | / J | -> \\fo\\ implies /«->/
(strongly). Thus, S is sequentially compact.

REMARKS. A sufficient condition for T: Lr —»Ls to be compact,
which was mentioned in [7], is that k have finite double norm. That
is,

f f δ Γ δ Πs/r/ Λl(s

(19) HI T||] = < \ k(x, t)r'dμ(t) dμ(x)\ < oo .

The following result due to Andδ, is also very useful. He proves
)r Orlicz spaces.

g
it for Orlicz spaces

LEMMA 3. If T is an integral operator which maps Lr —* L%
where r > s Ξg: 1. Then T is compact.

Proof. See Ando [1] for the case in which [α, b] has finite measure.
Andδ's proof is valid even when [α, b] has infinite measure as one
can check by using the results of Luxemburg and Zaanen [10].

The following result is a simple sufficient condition for all ex-
tremals to satisfy / > 0 a.e.

LEMMA 4. Suppose k(x, t) > 0 for almost all (x, t) which satisfy
a <J t ^ x <J b. Suppose f is an extremal. Then / > 0 a.e.

Proof. This is Lemma 2(b) of [7].

Combining Lemmas 2, 3 and 4 with Corollaries 1 and 2 we have
the following.

THEOREM 2. Suppose that 0 < p, O ^ g , 1 ^ p + q < r and that
(p — l)r + q ;> 0. Suppose that k(x, t) > 0 for almost all (x, t) which
satisfy a <̂  t ^ x ^ b. Then there is a unique normalized extremal
f. The function f satisfies / > 0 a.e. and (/, ϋΓ*) is the only solution
of (6) which satisfies / > 0 a.e.
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Proof. The conditions on p, q and r imply that

1 ίg s = pr/(r — q) < r .

Thus, by Lemma 3, T is compact. By Lemma 2, a normalized ex-
tremal exists which satisfies / > 0 a.e., by Lemma 4. By Corollary 2,
/ is unique, and by Corollary 1, (6) has no other solutions (g, λ) with
g > 0 a.e. and λ Φ K*.

5* The inequalities of Bliss* We can use an interesting class
of inequalities due to Bliss [5] to show that Theorem 1 cannot be
extended to p + q > r, in general, and to show that one should not
expect unique normalized extremals when p + q > r. The inequality
is the following*.

Let 1 < r < p, and c = (p — r)/r. Then for / ^ 0

(20) ^x~^y(t)dtjdx ^ K(p,

where

(21) K(p, τ)^(p-c- l)-Vΰ(l/c, (p -

and J5(.τ, y) is the Beta function. (This constant is given incorrectly
in Hardy, Littlewood and Polya ([9], p. 195). In their notation, the
bracketed term should be raised to the r-th power).

Equality is attained in (20) for multiples of

(22) fa(x) = {xc + α)-"**- ' ,

where a is any positive constant.
Writing ga(x) = / β ( α ) / | | / α | | r , we have

(23) ga(χ) = Aa{p-l)l{p-r)(xc + α ) - W ( p - r ) ,

where A depends only on p and r but not on α.
Notice that {ga} is not a compact subset of Lr. For, ga{x) —> 0

as a —* co, and if g were a strong limit point of {gn} it would be a
limit point under a.e. convergence; and g(x) = 0 is the only such
limit point. But \\g\\ = 1 if g is the strong limit of gan, which is a
contradiction. Thus, the conclusion of Lemma 2 does not hold here.
It follows that the operator

(24) Tf(x) = χι-*+*ι*['f(t)dt
Jo

is not compact from Lr —• ZΛ
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The functional M(f) of Theorem 1 becomes

(25) M(f) = sup

It is easy to check that if f(x) — %~ι]r, then there is a constant λ
such that T*{{Tf)p~ι){x) = Xp-\x). This / is not in Lr, but taking
fn(x) — min (nιlr, x~ιί% nllr'x~ι), we obtain a sequence of fn for which
M(fn)—>0. Thus, the conclusion of Theorem 1 does not hold.

Clearly the conclusions of Corollary 2 do not hold either, since
the normalized extremals are far from being unique.

b* Applications of the main theorem* Our next result is sug-
gested by the well-known theorem that, if T = T*, then the best
constant in

μ^K(2, 0,

is the square of the best constant in

We use the notation K(p, q, r) from (5), and designate (6) by V(p, q, r).

THEOREM 3. Suppose that 1 < p, 0 fg q, that p + q fg 2, and that
r = (p — q)l(p — 1). Suppose that T — T*, and that V(l, 1, r) has a
solution / > 0 a.e. Then

(26) K(p, q, r) = JBΓ(1, 1, r ) ' .

Proof. Since p + q <£ 2 and p > 1, it follows that

so by Corollary 1, there are no solutions of V(p, q, r) with / > 0 a.e.
and λ Φ K* — K{p, q, r). By assumption F(l, 1, r) has a solution
/ > 0 a.e. That is

(27) Γ/ - i(T*f + Γ/) - ap~" ,

where α = ϋΓ(l, 1, r). But, using T* = T and r — {p — q)j{p — 1), we
have

pT*((Tf)*-ιp) + q{Tf)ψ~ι =

That is, (/, αp) is a solution of F(p, g, r), and by uniqueness, we must
have ap = jfiΓ(p, ?, r).
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The next four results give some simple upper bounds for K(p, q, r)
which are useful in cases when it is not possible to explicitly solve
V(p, g, r). One could of course use Theorem 1 directly, but the com-
putations involved are again rather formidable. We prefer, if possible,
to use Theorem 1 in a theoretical way, as in Propositions 3 and 4.
The idea which appears in Proposition 3 was used in [6]. Proposition
2 is an obvious generalization of Theorem 1 of the paper of Beesack
and Das [4].

P R O P O S I T I O N 1. Let 0 < p, 0 g q < r , 1 ^ r. Let \\\T\\\ be given
by (19), where s = pr/(r - q) and let K^p, q, r) = ||| T\\\p. Then

(28) K(p, q, r) <Z KJp, ?, r) .

Proof. Since || Γ | | ^ |[| Γ| | |, this follows from (4).

PROPOSITION 2. Suppose that 0 < p, 0 < q <Ξ r, 1 ^ r, and that
T is a Volterra operator, so that k(x, t) — 0 for a g x ^ t ^ b. Sup-
pose dμ(x) = dx. Then

<29) K(p, q, r) <Ξ K2(p, q, r) = (q/(p + q))<"\\\T\

Proof. For fe Lr, / ^ 0, ive have

Tf(x) = \"k(x, t)f(t)dt g h(x)z(x)llr ,
Ja

where

h(x) - {j*Λ(a?, tγdtγr' ,

and

«(a;) = \Xfrdt .

Thus,

J(f) = \*(Tf)>pdx g
J a

which is (29).

PROPOSITION 3. Suppose that 0 < p, 0 <Ξ, q, 1 ^ p + q <r, and
that V(p, q, r) has a solution with / > 0 a.e.

Let φ be a measure-preserving transformation of [α, b] into itself
and define Rf(x) = f(φx). Suppose that TRf = RTf and T*Rf =
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for all / ^ 0. Let U = 2rι(Ί + TR). Then,

(30)

Proof. By Corollaries 1 and 2, the equation V(p, g, r) has a unique
normalized solution (/, λ) with λ = K{p, g, r). However, since φ is
measure-preserving, we have | | i2/| | r = | | / | | r , and since R commutes
with T and Γ*, we have (TRfY~ι = R{TfY~\ and (Rf)Q = Rfq, etc.
Thus, by direct substitution, (Rf, λ) is also a normalized solution of
V(p, q, r), which means i?/ = /. But then,

(31) Tf - TRf = (Tf + TRf)/2 = Uf .

Thus,

(32) K(p, q, r) = J(/) = ί*{Uf)ψdμ ^ \\\ U\\f .
Ja

PROPOSITION 4. Suppose that 0 < p, 0 ^ q < r, 1 < r, α^d ίfeαί
V(p,q,r) has a solution (/, λ), with λ = iΓ(p, q, r), / > 0 a.e., | | / | | r = 1,.
and 0 ^ m ̂  /(a?) ^ Λf a.e. Suppose that 1 ̂  p + q ^l. Then,

(33) X(j), g, I) ̂  K(p, g, r ) | | / | | { - ^ max (M*-1, πΐ~ι) .

Proof. Since / solves F(p, g, r), we have

(34) vT*({Tf)*-ψ) + qiTfYf*-1 = K(p, q, r)(p + g)/^1 a.e.

Letting M(f) denote the functional given by (8), with parameters
(p, g, i), we see that (33) follows immediately from (34) and Theorem
1.

REMARK. If / ^ 0, | | / | | r = 1 is an extremal which attains K(p,q,r)r

then we have, for any I ̂  1,

(35) Kip, q, I) ̂  J(f) \\f\\TίM"1 = Kip, q, r ) | | /Hr" + ί ) / ί .

This gives a lower bound for K(p, g, I), (which may, of course, be
trivial).

7* Integral inequalities involving a function and its second
derivative. We shall consider inequalities of the form

\y"\rdx

where yr is absolutely continuous, and y(0) = y(l) = 0. Defining y" =••
—/, it is well-known, and easily verified, that
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(36) y(x) = Tf(x) = (1 - x)\*tf(t)dt + x[ (1 - t)f(t)dt .
JO Jx

Note that k(x, t) > 0 a.e., and that T = Γ*. In this case, T: Lr —> L s

is compact for any r ^ 1 and s > 0, since the kernel is bounded, and
hence of finite double norm. Thus, for r > 1 and 0 ^ q < r, the
equation F(p, g, r) has solutions, according to Lemma 2 and Lemma
1. Using the methods of proof of Theorem 2 of [7], one can show
that the extremals are in C°°(0, 1); whenever we need this fact here,
it is easy to prove directly.

With the idea of applying Theorem 3, we first determine K(l, 1, r).
Equation (6) becomes, (using a rather than λ),

(37) Γ/=α/- 1 , ! l/ i lr = l .

Note that Tf(x) > 0 for x e ]0, 1[, so / > 0 in ]0, 1[, and

Γ/(0) - Γ/(l) - 0

so that /(0) = /(I) = 0. Let us write g — fr~ι so / = grf~ι. Equation
(37) becomes T(gr'~ι) = ag which shows g" exists. Differentiating
once, we see that g'(Q) > 0 and g'(l) < 0. A further differentiation
gives

(38) ag" = -g^1

(39) flr(0) - g(ΐ) - 0

(40) II(7||,< = 1 .

An immediate integrating factor of (38) is g\ giving

(41) 2~ίa(g')2= -(rTV + c ,

for a constant c, which we evaluate as follows: integrate (41) from
0 to 1, use (40), then (38) and (39), to get

c - (r')"1 = 2-1a\\g')2dx
Jo

(42) = 2-1a\[g'(x)g(x)γ0 - \/'gd^

= 2-1|θ + [g"dx\ = 2-1 .

Thus, c = «>•' + 2)/2r'. Now (38) implies that g"(x) < 0 in ]0, 1[, so
flr' is strictly decreasing, and hence there is a unique x0 e ]0, 1[ with
flr'(«o) = 0. From (41), g(χo)

r' = cr' = (r' + 2)/2. Write

G = flr(ίBo) = ((r' + 2)/2)
1 ' "
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From (41), we see that

. ..,Λcrf{x) = (1 - (g(x)/G)rγ12 , for 0 ^ x g ®0 ,
( 4 3 ) - - ( 1 - (g(x)/Gyγ12 , for α0 ^ ® ̂  1 .

Using (43) and (39) we can compute x0 in two ways:

(44) x0 = -i/^ίV ~ (t/G)ryilιdt = 1 - / « Γ(l - (t/G)ryil2dt ,
r 2 c Jo r 2 c Jo

which shows that a?0 = 1/2. Now writing ί — Gu, we have

This gives

(46) α = K(l, 1, r) = ^ f l l d l l ) " 1 ^ ^ 1, I V ' r > 1 .

Observe that, according to (46), we have the following well-known
result

(47) JBΓ(1, 1, 2) - τr-2 .

From the above discussion, it is clear that F(l, 1, r) has a unique
solution for all r > 1. For r ^ 2, this also follows from the Coroll-
aries to Theorem 1. Note that, for 1 < r < 2, we must use Lemma
2 to show that K(l, 1, r) is an eigenvalue of (6), to justify (46).

Now, applying Theorem 3, we have

(48) K(p, q, (p - q)/(p - 1)) = K(l, 1, (p - q)/(p - ΐ))* ,

if Kp, O ^ g , p + q £2 .

In particular,

(49) K(p, q, 2) - K(l, 1, 2f , if p + g = 2

The equation (48) would also be valid for p + q > 2 if one could show
l̂ (p> #> (P — <?)/(# ~ 1)) had a unique eigenvalue with positive eigen-
function, as the reasoning of Theorem 3 shows. Another particular
case which is of interest is q — 0. Then (48) becomes

(50) K(r\ 0, r) - K(l, 1, τ)r' , if r ^ 2

We can now apply Proposition 4 to estimate K(p, q, I) when

Kp + q^l^(p- q)/(p - 1) .

Using the notation of t h a t result, we have M = Gr'~ι = ((r' + 2)/2)1/r,
and we must compute | | / | | z = \\9\\[^zl]lf where r' = (p — q)/(l - q)*
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We can compute \\g\\υ for v ^ 0, using (43), as follows:

S l/2 / f 1/2

g [xjdx — Δ-t — \ g yx)g \X)\± \g{X)/Lr) ) ax
o f 2c Jo

= 21ίKGv+ί[tv(l - tryιl2dt, using t - g(x)/G
V 2c Jo

(51)

r'r 2c

= ((r'

using (45). This can be used with (43), and Proposition 4, to estimate
K(p, q, I). A simple computation gives

' r " 2

( * ) where a — — 1 — 2p -\- (p -\- q)/l and β — 1 — (p + g)/i

provided 1 < p, O ^ g , l ^ p + g ^ i ^ 2 , where r = (p — q)/(p — 1).
For the estimate of Proposition 1, we have

(53) KJp, q, r) - (r' + l)~^B(s + 1, s + l)^/s, s - pr/(r - g) .

We can also apply Proposition 3 here, (if 1 <£ p + g ^ r) with
α?) - 1 ~ x. Then JB/(a?) = /(I - x), and

(54) D7(s) - [u(x, t)f(t)dt ,
Jo

where

(55) 2u(x, t) =

t , 0 ^ ί ^ a?

a; , α; ̂  ί ^ 1 - x , if 0 ^ x g 1/2

1(1 - ί), 1 - ^ ί ^ l

and u(l — ίi , ί) = u(x, t), if 1/2 ^ x ^ 1. Using this, we have

(56) h(x) = {Γw(», i)r'diV/ = 2~ιx{2x(rf

0 ^ a; ̂  1/2 .

Thus

(57) K2(p, q, r) = \\\ U\\\* = 4

It may be instructive to compare the estimates (53) and (57) with
the exact value (47) in case (p, q, r) = (1, 1, 2). Then
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K(l, 1, 2) = (9.8696)-1

(58) < K2(l, 1, 2) = (9.7980)-1

< 1^(1,1,2) = (6.3447)-1 .
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