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BANACH ALGEBRAS WHICH ARE IDEALS
IN A BANACH ALGEBRA

BRUCE A. BARNES

In this paper Banach algebras A which are ideals in a
Banach algebra B are studied. The main results concern the
relationship between the norms of A and B and the relation-
ship between the closed ideals of A and B.

There are many examples of Banach algebras in analysis which
are ideals in another Banach algebra. When G is a locally compact
group, then the Segal algebras which are studied in H. Reiter’s book
[7] are ideals in L*G). J. Cigler considers more general Banach
algebras which are ideals in L'(G) in [2]. In the theory of operators
on a Hilbert space 5%, the C, algebras discussed in [4, pp. 1088-
1119] are ideals in the algebra of compact operators on =7Z (C, is
the ideal of trace class operators and C, the ideal of Hilbert-Schmidt
operators). Also as we point out in §4, every full Hilbert algebra
is a dense *-ideal in a B*-algebra.

When A is a Banach algebra which is an ideal in a Banach
algebra B, we consider the relationship between the algebras A and
B. First we prove that the norms of A and B are related by certain
inequalities. As a consequence, if B is semi-simple, then A is a left
and right Banach module of B [Theorem 2.3]. Also in this case our
results show that A is an abstract Segal algebra with respect to B
as defined by J. T. Burnham in [1]. Secondly we relate the closed
left and right ideals of A4 to those of B. Of special interest here
is the case where A contains a bounded approximate identity of B
[Theorem 3.4]. Finally in § 4 we consider the special case where A
is a *-ideal in a B*-algebra B. The results of this section apply to
full Hilbert algebras.

1. Preliminaries and notation. When B is any Banach algebra,
we denote the Banach algebra norm on B by ||« ||z. If M is a closed
left ideal in the Banach algebra B, B— M = {b + M |be B} is the
quotient module B modulo M. B — M is normed by the norm

1o+ M|l; = inf{|[|b — m|l; [me M} .

Throughout this paper A is a given Banach algebra. We always use
the term “ideal” to mean two-sided ideal. A is usually an ideal in
a Banach algebra B. In this case when E is a subset of A4, cl(E) is
the closure of F in B.



2 BRUCE A. BARNES

At this point we prove a proposition of a purely algebraic nature
which is useful in what follows.

PropPOSITION 1.1. Assume that R is a ring and I is an ideal of
R. Assume that M is a modular maximal left [right] ideal of R
such that I¢ M. Then

(1) I acts strictly irreducibly on R — M, and

(2) INMis a maximal modular left [right] ideal of I.

Proof. We prove (1) first. Assume w € R has the property R(1—
uyc M. Let K={beR|IbC M}. K is a left ideal of R, MC K,
and u¢ K (if we K, IC M, a contradiction). Therefore K = M. It
follows by the definition of K, that when be¢ M, Ib -~ M properly con-
tains M, and therefore Ib + M = R. This suffices to prove (1).

Now consider IN M. If ael and auec M, thenaecI N M. There-
fore INM ={acl|a(u+ M) =0+ M}. By (1) we can choose vel
such that v(u + M) = v + M. Then Il — v) 1IN M by the charac-
terization of I N M given above. Assume thatacl,a¢ IN M. Given
bel we can choose cel such that b — cae M by (1). Then b =
ca+ (b—ca)e la+ INM. Therefore I =Ia+ INM. Which proves (2).

2. The basic norm inequalities. In this section we assume
that A4 is a subalgebra of a Banach algebra B. There is a close
connection between certain inequalities involving ||- ||, and ||-||; and
the algebraic property that A is an ideal in some closed subalgebra
of B. The next proposition has been noted by other authors.

ProposiTioN 2.1. Assume that

(1) there exists D > 0 such that D ||all, = ||allz for all ac A,
and

(2) there ewists C >0 such that |labll, < Cmax{||lal,]bl
llalls |[b]l} for all a, be A.

Then A is an ideal in cl(A).

Proof. Assume that ac A and becl(4) are given. Choose {b,}C
A such that ||b, — b||lz — 0. Then [[ab, — ab,|ls < C|a|ls|[b, — bulls
so that {ab,} is Cauchy in A. Then there exists ce A such that
|lab, — ¢|l4— 0. By (1) |lab, — ¢|lz— 0, and since ||ab, — abl[z — 0,
we have ab = ¢. This proves that A4 is a right ideal of B. The

proof that A is a left ideal of B is similar.

Together the next two results establish a converse to Proposition
2.1.
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PROPOSITION 2.2. Assume that A is a dense ideal in a semi-
simple Banach algebra B. Then there exists D > O such that Dilalfl,
= |la]lz for all ac A.

Proof. We prove that the embedding (A4, ||+ ]l) — (B, ||+ |ls) is a
closed, and hence continuous, map. Assume that {a,}C A4, be B,
la,|ls— 0 and |la, — b|;— 0. Let M be a modular maximal left
ideal of B with Az M, and let € B have the property that B(1—u)C
M. Given ac A, let T, act on B— M by T, + M) = ab+ M. By
Proposition 1.1 (1), a — 7T, is a striely irreducible representation of
A on B— M. Let P be the kernel of this representation. P is a
primitive ideal of A, and therefore P is closed in A. A/P is a Banach
algebra with norm |ja + P|/,, ac A. Given ac A, define S,,,(b+M)=
ab + M,be M. Then a + P— S,,, is a faithful strictly irreducible
representation of A/P into the bounded operators on B — M. Then
a theorem of B. E. Johnson [6, Theorem 1, p. 537] implies that a +
p—S,.» is a continuous map. Since ||a,+ P||,—0, then ||a,u+ M |/;=
I1Se,+(uw + M)y — 0. Also ||(a, — b)(uw -+ M)/, —0. It follows that
bu + M =0, and thus b =bdu + (b — bu)e M. Then b must be in
every modular maximal left ideal of B, so that by the semi-simplicity
of B, b =0.

THEOREM 2.3. Assume that A is an ideal in a Banach algebra
B. Assume that there exists D > 0 such that Dllalls = ||all, for all
ac A. Then there exists C > 0 such that

(1) Jllablly = Cllalliiiblls for all ac A, be B, and

(2) llablly = Cllafls [[b]ls for all ac B, be A.

Proof. We prove only (1). Let L,, a € A be the operator mapping
B into A given by L,(0) = ab, bec B. We prove that L, is continuous
by showing that L, is a closed map from B into A. Assume that
{b} B, ce A, and ||b,|l; — 0, || Ly(b,) — ¢|l4— 0. Then |jab, —c|l,—0,
and since the A-norm dominates the B-norm, [lab, — ¢||,— 0. Also
llab, |z — 0, and therefore ¢ = 0.

Now since L, is continuous, for each aec A there exists M, > 0
such that |[ab||, < M,||[b|ls, be B. Given be B, let R, be the operator
mapping A into A defined by R,(a) = ab, ac A. We prove that R,
is a closed, and hence continuous, map from A to A. Assume that
{a,}© A, ceA, |a,ll,—0, and ||Ry(a,) — ¢||,— 0. Then lla,l|;— 0
and [|a,b — ¢l — 0. Thus ¢ = 0. Therefore for each be B, R, is a
continuous operator. Set |R,| = sup{||R,(@)]|,]ac A4, |la]|, =1}. Let
& ={R,|be B, ||blj; £1}. We have that ||R,(e)|l; < M, for each
ac A and R,e. &% Then by the Uniform Boundedness Theorem there
exists C > 0 such that |R,| < C for all R,e .92 Thus
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IR@s < ¢
lalle =

for all ac A, a # 0, and all be B, ||b|[; < 1. Finally it follows that

llablls = Cllally [1b]ls

for all ae A and be B.

We remark that if A satisfies the hypotheses of Theorem 2.3,
then by (1) and (2) A is a left and right Banach module over B; see
[5, Definition (32.14), p. 263].

3. Closed left and right ideals. Now assuming that A4 is an
ideal of B, we relate the closed left and right ideals of A to those
of B. The most comprehensive results in this direction are obtained
when A has an approximate identity. However in the general case
we do have the following theorem concerning modular closed left
and right ideals of A.

THEOREM 3.1. Assume that A is a dense ideal of a Banach
algebra B and that there exists D > 0 such that Dllall, = ||a|lz for

all ac A. Let M be a closed modular left [right] ideal of A. Then
M= AnNclM).

Proof. By Theorem 2.3 there exists C> 0 such that |jabd||,< C|la||s[0]|
for all a, be A. Assume that M is a closed modular left ideal of
A. Then there exists ue€ A such that AQl—u)cC M. Given ac A,
a=au + (¢ —au) and ¢ — au € M. Therefore ||a+ M| = |lau+M]|[,.
Also |law + M|, < |law — bu]|, for any be M (note that when be M,
then bue M). Therefore for all be M,

lla + M|y = llaw — bulls = Clla — bl |[u]ls .

Then [la + M|} = (Cllully) lla + M|[5.

Assume that ae ANcl(M). Choose {a,} M such that ||a,—a|;—
0. Then |/(a, —a) + M||5— 0, and therefore ||(a, — a) + M|/, — 0.
Thus there exists {b,}< M such that ||(@, — a) — b,||l.— 0. Since
{a, — b} M, we have ac M. Thus ANecl(M)c M. The opposite
inclusion is immediate, so that M = A N el(M).

The next theorem provides a sufficient condition on A that every
closed left [right] ideal of A is the intersection of A with a closed
left [right] ideal of B. This theorem is proved by J. T. Burnham in
[1, Theorem 1.1] (Theorem 2.3 removes one of Burnham’s hypotheses).

THEOREM 3.2. Assume that A is a dense ideal of B with the
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property that there ewists D >0 such that Dl|all, = ||a|lz for all a e A.

Furthermore assume that for all ac A, acAa [acad] where “—”
denotes closure in A. Then

(1) #f N s a closed left [right] ideal of B, then NN A is a
closed left [right] ideal of A, and

(2) f M s a closed left [right] ideal of A, then M=A N cl(M).

In many of the examples in harmonic analysis A is an ideal in
LYG) which contains a bounded approximate identity of L'(G). We
prove that under these circumstances 4 has an approximate identity.

PROPOSITION 3.3. Assume that A 1s a dense ideal in a Banach
algebra B and that there exists D > 0 such that Dlla||l, = ||la|lz for
all aec A. Then if {e,} is a left [right] bounded approximate identity
Jor B and {e,} C A, {e.} is a left [right] approximate identity for A.

Proof. By Theorem 2.3 A is a left Banach module of B. There-
fore by Cohen’s Theorem [5, Theorem (32.22), pp. [268] given ac A
there exists be B and ce A such that ¢ = be. Then

e — esbells = Cllb — ebllzllelli—0 .

Therefore {e,} is a left approximate identity for A.
Combining several previous results, we have the following theorem
which applies to many interesting examples in harmonic analysis.

THEOREM 3.4. Assume that A is a dense ideal i1n a semi-simple
Banach algebra B. Assume that A contains a bounded approximate
identity of B. Then

(1) for every closed left [right] ideal M of A, M = AN cl(M),
and

(2) if B has the property that every proper closed left [right]
ideal of B is contained in a modular maximal left [right] ideal of
B, then A has the property that every proper closed left [right] ideal
of A is contained in o modular maximal left [right] ideal of A.

Proof. (1) follows from Proposition 2.2, Proposition 3.3, and
Theorem 3.2. Then (1) and Proposition 1.1 imply (2).

4, *.ideals in a B-*algebra. Assume that A is a full Hilbert
algebra; see [9]. Then A is a pre-Hilbert space with the corre-
sponding (linear) norm ||-|, on A. Also given ac A, the operator
U, defined by U,(b) =ab for be A is a bounded operator on (4, ||-|).
For ae A left |a| denote the operator bound of U,. Then |-| is an
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algebra norm on A with the B*-property. Let [lall, = [la|, + |al.
M. Rieffel proves that |||, is a complete algebra norm on A [9,
Proposition 1.15, p. 270]. Certainly |jall, = |a| for all ae A. Also
for all a, be A4,

llablls = [labll, + |ab]
= falfioll + [a]]b]
= lal|[bfls-

Similarly |jabll, < ||a]|l, |b] for all a, be A. Let B be the completion
of A in the norm |-|. B is a B*-algebra and A is a *-subalgebra of
B. Then by Proposition 2.1 A is a *-ideal in B. Therefore every
full Hilbert algebra is a *-ideal in a B*-algebra. In this section we
consider briefly algebras A which are *-ideals in B*-algebras.

The next proposition is true in much more generality than we
present here. When C is a Banach algebra, we denote the spectrum
in C of an element ac C by Sps(a). Also for ac C we let

Vo(a) = inf(fja" |[f") .

ProPOSITION 4.1 Assume that A is a dense *-ideal im a semi-
stmple Banach *-algebra B. Then every *-representation of A on a
Hilbert space 57 extends umiquely to a *-representation of B on S5

Proof. TFirst note that by Johnson’s Uniqueness of Norm Theorem
[6, Theorem 2, p. 539] there exists K > 0 such that

16* (|, < K*||b]|, for all be B.

Assume that a — m(a) is a *-representation of A into the bounded
operators on a Hilbert space 52 If T is a bounded operator on
27, we denote the operator norm of T by |T|. By [8, Lemma (4.4.6),
p. 208] |7w(a)f = v,(a*a) for all ac A. Since A is an ideal of B,
then Sp.(a) U {0} = Spz(a) U {0} for all ae A. Then |z(a)|* < vi(a*a) =
y,(a*a) < |la*all; < K*|la|z for all ae A. Thus |n(a)| £ K ||a]|; for
all e A. Therefore 7 extends uniquely to a *-representation of B
on Sz~

Now we prove the main result of this section.

THEOREM 4.2. Assume that A s a dense *-ideal in a B*-algebra
B. Then

(1) A has an approximate identity comsisting of self-adjoint
elements.

(2) For every closed left [right] ideal M of A, M = A N cl(M).

(3) Ewery proper closed left [right] tdeal M of A in the inter-
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section of modular maximal left [right] tdeals of A.
(4) Ewery *-representation of A on a Hilbert space 57 extends
uniquely to a *-representation of B on S#

Proof. Construct the net {d;}, »e4, in A as in the proof of
[8, Theorem (4.8.14), p. 245]. Then by this theorem and the fact
that A is dense in B, {d;}, M€ 4, is a self-adjoint bounded approximate
identity for B. Then by Proposition 3.3, {d;}, A € 4, is an approximate
identity for A. This proves (1). (2) follows from (1), Proposition
2.2, and Theorem 3.2.

Assume that M is a closed left ideal of A. Then by (2) M =
Anel(M). By [3, Theorem 2.9.5, p. 48] cl(M) = ,r N, where I”
is an index set and each N, is a modular maximal left ideal of B.
By Proposition 1.1 A N N, is a modular maximal left ideal of A for
each vel'. Then M = AN (cl(M)) = Nyer (AN N;). This proves (3).
Finally (4) follows from Proposition 4.1.
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