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AXIOMATIC CONVEXITY THEORY AND RELATIONSHIPS
BETWEEN THE CARATHEODORY,
HELLY, AND RADON NUMBERS

DAVID C. KAY AND EUGENE W. WOMBLE

An axiomatic setting for the theory of convexity is
provided by taking an arbitrary set X and constructing a
family ^ of subsets of X which is closed under inter-
sections. The pair consisting of any ordered vector space
and its family of convex subsets thus become the prototype
for all such pairs (X, ̂ ) . In this connection, Levi proved
that a Radon number r for ^ implies a Helly number
h ^ r — 1; it is shown in this paper that exactly one addi-
tional relationship among the Carathέodory, Helly, and
Radon numbers is true, namely, that if ^ has Carathέodory
number c and Helly number h then ^ has Radon number
r ^ ch+1. Further, characterizations of (finite) Caratheodory,
Helly, and Radon numbers are obtained in terms of separa-
tion properties, from which emerges a new proof of Levi's
theorem, and finally, axiomatic foundations for convexity in
euclidean space are discussed, resulting in a theorem of the
type proved by Dvoretzky.

l Preliminary definitions. A family of subsets of a space X
which is closed under intersection yields a weak type of closure, or

hull, operator on the power set of X, producing concepts which may

be readily applied to convexity and topology alike. Our main interest

is, however, convexity theory and the abstraction of certain classical

concepts from that area. (See in this regard the papers by Danzer,

Grϋnbaum and Klee [1], Hammer [5, 6, 7], Eckhoff [3], Ellis [4],

Koenen [8], and Levi [9].) We shall, therefore, introduce the follow-

ing terminology: A family ^ of subsets of a set X is termed a

convexity structure for X, with the pair (X, <&) being called a

convexity space, whenever the following two conditions hold:

(a) 0 and X belong to <g%

(b) f l ^ " e & for each subfamily ^ ~ c <gf.

^ is designated 2\ iff the further condition

(c) {x} e ίT for each xeX

holds, and a subfamily & of ^ is called a basis of ^ iff each

member of ^ is obtainable as an intersection of members of ^ .

The hull operator generated by a convexity structure ^ , defined

in the usual manner by the relation

} , S c l ,
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enjoys certain properties identical to those of the closure operator in
topology, among which are: (i) S c g ' ( S ) for each S c l ; (ii) if
S.czS, the if (SO c %?(S2); (iii) &(<Zf(S)) = <Zf(S); and, (iv) S e ΐ f
iff <Sf (S) = S. The set ίT(S) will be termed the <tf-hull of S, and
a set will be called ^-convex iff ^ ( S ) = S. If S is finite and
consists of the points xu •••, xk we shall write simply ^(xu •••,%)
for its ίf-hull.

An important concept in ordinary convexity theory is that of
the "cone" or "join" of a point over a set. We may extend this
concept to our general setting by defining the ^-join of x and S
to be the set

U
seS

A useful condition involving this concept is the following (for xe X
and S c l ) :

(d) ^ u S ) c ^ X ( S ) .
Since the reverse inclusion can be easily proved, (d) is equivalent to
the condition

(d') &(x US) = x^(S).
It is interesting that (d) is also equivalent to assuming that the
^-join and ^-hull operators commute at xe X, that is, for each
S c l ,

(d") &(x9S) = xv&(S).
This may be seen by simply verifying the relation ^(x U S) = <g*(x&S).
A convexity structure satisfying either of the equivalent conditions
(d), (d'), or (d") will be called join-hull commutative at x, and if ^
is join-hull commutative for each x e X it will be said to be join-
hull commutative. Further, we say that ^ is finitely join-hull
commutative if (d), (d'), or (d") holds for each xeX and for each
finite subset SdX. (Condition (d) was introduced for finite subsets
by Ellis [4].)

The next property is the direct analogue of the classical
Caratheodory theorem on convex hulls in a vector space over an
ordered field, and will reveal a relationship between join-hull com-
mutativity and finite join-hull commutativity:

(e) ί f (S) = \J{^{T): T c S , I Γ | < 00} for each S c l .
After Hammer [6], a convexity structure <& having property (e) will
be termed domain finite.

The following two theorems will illustrate the application of
these properties.

THEOREM 1. If i f is a convexity structure for X which is domain
finite, then finite join-hull commutativity implies join-hull com-
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mutativίty.

Proof. It suffices to show that for xeX and S c l , ^(x U S) c
x^{S). Let y€c^{x U S); then there exists a finite set TaS such
that y e ctf(x (J Γ) and

U T ) c αvίf (Γ) c αvίf (S).

Hence, ?/e α

THEOREM 2. If ^ is a convexity structure for X which is join-
hull commutative and domain finite, then a set Ca X is ^'-convex
iff r^(%, y)c:C for each xeC, yeC.

Proof. Suppose C is ^-convex. Then if xeC and yeC,
(x, y) c ^ ( C ) = C. Conversely, suppose for each xeC and yeC,

, y) c C; we observe that the hypothesis implies by join-hull
commutativity that for any finite set Γ c C , ^ ( Γ ) c C . It follows
immediately that ^ ( C ) = C, for, by domain finiteness,

^(C) = \J{^(T)\ TaC, \T\< o o j c C

Finally, a convexity structure ^ is said to have Caratheodory
number c iff c is the smallest positive integer for which it is true
that the ^-hull of any set Sa X is the union of the ^-hulls of
those subsets of S of cardinality fg c. Further, a convexity structure
has Hetty number h and Radon number r iff h and r are the smallest
positive integers for which it is true that, respectively, a finite sub-
family J?~* of sets in ^ has nonempty intersection provided each h
members of ^ has nonempty intersection, and any set S with
I SI Ξ> r has a Radon partition, that is, may be partitioned into two
nonempty subsets (Sl9 S2) such that ^(S,) Π ^(S 2) Φ 0 .

These definitions imply that in general c ^ 1, Λ, ;> 1, and r ^ 2,
and that for any Tt convexity space having at least 3 points, c ^ 1,
Λ ̂  2, and r ^ 3. The least value for c in either case is attained
by taking ^ to be the largest possible convexity structure for X
(consisting of the power set of X), and the least values for h and r
are obtained when <g* is the smallest possible [ΓJ convexity structure
(consisting of 0 , [the singleton subsets of X], and X). If ^ is
the family of convex sets in euclidean space Ed of dimension d the
classical theorems of Caratheodory, Helly, and Radon imply that in
this case ^ has c — h — d + 1 and r = d + 2. It is easy to con-
struct examples to show that convexity structures can have a variety
of possible Caratheodory, Helly, and Radon numbers, but in general
there will be certain restrictions.
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2Φ Interrelationships between the numbers c, h, and τ\ Levies
theorem [9] shows that in any convexity space (X, ^ ) if ^ has
Radon number r then c^ has Helly number h ^ r — 1. To show
that no other possible relationships between the numbers e, fo, and r
exist (taken singly) we cite the following examples (also discussed in
part using different definitions by M. Breen in a related unpublished
paper communicated to the authors by W. R. Hare and J. W. Kenelly):
Take X — E2 and consider Hammer's example of the convexity
structure generated by X and sets of the form C = Hλ\J JSΓ2 u ( I Ί ~ L2),
where LL and L2 are any two perpendicular lines and JHΓX and H2 are
open half planes determined by them. As proved in [5], this con-
vexity structure has Caratheodory number 7 but no finite Helly or
Radon number. The example consisting of X — Ed and all closed
convex sets in X provides a convexity structure which has Helly
number d + 1, Radon number d + 2, but no finite Caratheodory
number (since no point on the boundary of an open convex set S is
contained in the closed, convex hull—and thus ^-hull—of any finite
subset of S).

The above two examples show that among the Caratheodory,
Helly, and Radon numbers c, h, and r, the existence of c does not
imply that of either h or r, and neither the existence of h nor r
implies that of c. It remains to show that the existence of h does
not imply that of r. To that end, consider the following example.

EXAMPLE 1. In the sequence space X— E~ = {(xly •••,#», -- ) :

XiSR] (R = reals), let ^ consist of 0 , X, and the collection of all
closed and bounded rectangular hypersolids with faces orthogonal to
the coordinate axes, explicitly defined as C = Πie^C* (N = positive
integers), where, for each i,

d = {x: a,i ̂  Xi g bi} , α< £ b{ ,

Xi denoting the ith coordinate of x. (This is Eckhoff s product
ΠΓ=i {Xi, c^i) with X{ = E1 and ^ = family of closed intervals; see
[3] and a related paper by Reay [10].)

It is clear that if (X, c^) is the convexity space defined in

Example

where

1 and ScX,
r^{S)

α . = inf Xi ,
xeS

bi — sup

From reasoning of a similar nature it follows that ^ has Helly
number 2. But we show that c^ has no (finite) Radon number. Let
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keN, k^2, and with n = Σ*=ί (*) = 2k - 2, construct the k x n

matrix Mk of zeroes and ones as follows: The first (A columns define

the characteristic functions of all one-element subsets of {1, •••,&},

the next ί g) columns define the characteristic functions of all two-

element subsets, and in general, the ( 7 ) columns 1 + Σί=ί ( A ) through

define the characteristic functions of all Z-element subsetsa-β)
of {1, , k), 1 ^ I ^ k — 1. Note that for k — 5 (in which case
w — 30), this process yields the 5 x 30 matrix

10000 1111000000 1111110000 11110"

01000 1000111000 1110001110 11101

00100 0100100110 1001101101 11011

00010 0010010101 0101011011 10111

.00001 0001001011 0010110111 01111.

Now let S be the fc-element subset of X defined by taking those
points whose first n coordinates are given by the rows of Mk and
whose remaining coordinates are each zero. If (Sly S2) is any nontrivial
partitioning of S then 1 ^ | Ŝ  | ^ k — 1 and there is an integer i
such that the ith coordinate of each member of Ŝ  is 1 and the ith

coordinate of each member of S2 is 0. Thus, the ith coordinate of
each member of ^(SO is 1, and the i-th coordinate of each member
of ^(S2) is 0, from which it follows that ^(S,) Γ\^(S2)=0- There-
fore, no ά-element subset of X has a Radon partition, and since k
was arbitary, ^ has no radon number.

The preceding examples show that Levies theorem is the only
one possible if we assume the finiteness of exactly one of the num-
bers c, h, or r; however a possible implication arises by considering
pairs of numbers c, h, or, r and this is answered conclusively by
the following theorem.

THEOREM 3. If ^ is a convexity structure for X which has
Caratheodory number c and Helly number h, then ^ possesses a
Radon number r ^ ch + 1.

Proof. Let S be a (ch + 1)-element subset of X, and define
to be the subsets of S having at least ch + 1 — c elements. By a
simple counting argument it follows that each h members of the
family gf = {^(F): Fe J?~) c c^ have nonempty intersection: Let
Gi = ^(F%) for each Ft e J^ i = 1, , h, and consider | \Ji(S~Gi) \ ^
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Since c(f has Helly number h there is a point x belonging to
and because SeJ?~ and ίf(S) e <& we have xer^(S). But i f has
Caratheodory number c and therefore we can find a subset T oί S
of cardinality c or less such that xe^(T). Since S~T has
cardinality at least ch + 1 - c then <gf (S - Γ) e & and a? e i f (S ~ Γ).
Hence, the pair (T, S ~ T) is a Radon partition of S, proving that
^ has Radon number r ^ ch + 1.

COROLLARY 1. In a convexity space having finite Caratheodory
number c, the existence of a Helly number h and a Radon number r
are equivalent, and the corresponding numbers satisfy the inequality

The following example due to Eckhoίf [3] sheds further light on
the general behavior of the Caratheodory, Helly, and Radon numbers.

EXAMPLE 2. With X = Ed and for a given integer k > 0 let i f
consist of all the convex subsets of X and all finite subsets S c X
such that \S\^k.

Since & contains the usual convex subsets of Ed it is clear that
^ has Caratheodory number c = d + 1. Eckhoff proves that if
2 <£ d <£ k + 1, then c^ has Radon number 2fc + 2, and by Levi's
theorem cέ? has finite Helly number h. By our Theorem 3,

2k + 2 = r ^ h(d + 1) + 1 .

Thus, by allowing fc —> co we have a class of convexity structures
in which the Caratheodory number is a constant (as small as 3)
while both the Helly and Radon numbers take on arbitrarily large
values.

3. A characterization of the numbers c, h, and r by separa-
tion properties. Since separation theorems bear prominently on
problems in convexity, it is of interest to know how they may be
related to the Caratheodory, Radon, and Helly properties in a more
general setting. If two members JÊ  and H2 of a convexity structure
^ for X partition X they are called complementary (tf-half-spaces.
If Si, S2 are respectively contained by a complementary pair H19 Uz

of ^-half-spaces, then Sγ and S2 are said to be ^-separated.
The existence of ^-half-spaces and the possibility of separating

disjoint members of ^ in general is a problem discussed by Ellis in
[4], where he introduces a property which, together with join-hull
commutativity and domain finiteness, will guarantee such separation.
For our purposes, let us say that a convexity structure & has the
separation property if it satisfies the axiom
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(f) Each two disjoint members of cέ? may be ^-separated.
Following Hammer, a closely related idea is the following: JET is

called a W-semispace iff it is a member of cέ? which is maximal
with respect to being disjoint from some other member of ^ . An
application of Zorn's lemma shows that for each two disjoint members
Ci and C2 of rέ? there exists a ^-semispace containing Cί and disjoint
from C2, provided & is closed under unions of chains of its members
(it can be proved that such is the case if cέ? is domain finite). Thus,
mere existence of ^-semispaces in ^ is no problem, but the comple-
ment of a ^-semispace may not be a member of ^ . It turns out
that an alternate way to handle the separation problem is to assume
the following property, which can shown to be equivalent to (f) above
in domain finite convexity structures:

(f') The complement of each ^-semispace is ^-convex.
It is then clear that whenever (f) [or (f)] is assumed in a

domain finite convexity structure ^ , with £f and £ίf denoting the
^-semispaces and ^-half-spaces of ^ , Sf a ^ c ^ moreover, if
W is Tι then £f and ^f are both bases for <g*, with the members
of Sίf being generated by those of £f.

We now proceed to the characterization theorems mentioned
earlier; the first two do not require domain finiteness.

THEOREM 4. In any T1 convexity structure cέ? on X having the
separation property, the following two conditions are equivalent:

( i ) cέ? has Helly number h ^ k.
(ii) If S is a (k + l)-element subset of X, k ^ 2, there exists

p e X such that every ^-half-space containing at least k elements of
S also contains p.

Proof, (i) —> (ii). If S is any (k + l)-element subset of X, form
the sets Si = S - {αj, where xi e S, and the family &~ = {<iT(Ŝ )} c <Sf,
for i = 1, , k + 1. Since each k members of ^ have nonempty
intersection and ^ has Helly number h ^ k, there is a point p e Γ\^~.
Hence if H is a ^-half-space containing k elements of S, H contains
one of the sets c^(Si) of ^ 7 and hence p.

(ii) —> (i). Suppose (ii) is satisfied for some k ^ 2, and that (i)
fails for that k. Then there is a smallest subfamily J?~ of ^ for
which it fails, with each k members thereof having nonempty inter-
section but Π ^ " = 0 Hence \&~ \ ̂ > k + 1, and it follows by
standard arguments and the minimal property of J?~ that | ̂  —
k + 1. Let CΊ, •• ,Cfc+1 be the members of _^7 and for each ί —
1, , k + 1, choose xt e Γ\{Cj'- 3 ̂  i} Then Xi Φ x3- for ίΦj, for other-
wise xje Π - ^ Hence let p be as in (ii) with S = {̂ , •••, x̂ +1} and
suppose p&Cι for some I. By the separation property there is a
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f-space H containing d but not p. But Clf and therefore H,
contains k members of S, so by (ii) H contains p, a contradiction.

THEOREM 5. In any Tx convexity structure r^ on X having the
separation property, the following two conditions are equivalent:

( i ) & has Radon number r Sk.
(ii) If S is a k-element subset of X, k ̂  3, there exists a proper

subset T of S and pe X such that every ^-half-space which contains
either T or S ~ T also contains p.

Proof. Obvious since <Sf (T) = Γi{He §ίf: HZDT) and <£f (S~T} =
Γ){He^:HnS~T}. Hence <ir(T) n <£f(S~ T) is nonempty iff
every ^-half-space containing T meets every ^"-half-space containing
S ~ T at some point p.

The Caratheodory number may also be formulated in terms of
separation properties, but the additional property of domain ίiniteness
is needed. Since the proof is a routine application of the definitions
it will be omitted.

THEOREM 6. Let ^ be a Tγ convexity structure for X which
has the separation property and is domain finite. Then the following
conditions are equivalent:

( i ) <& has Caratheodory number c g k.
(ii) If S is a subset of X having at least k + 1 elements and

pe^(S), there is a proper subset T of S such that every ^-half-
space containing T also contains p.

We now apply two of the above characterization theorems to
obtain an alternate proof of Levi's theorem (in a less general
setting).

THEOREM 7 (Levi). Let ^ be a Tγ convexity structure for X
which has the separation property. Then a Radon number r for ^
implies a Helly number h <£ r — 1.

Proof. Let S be an r-element subset of X. By property (ii) of
Theorem 5 there exists TaS and pe Xsuch that every ^-half-space
H containing either T or S ~ T contains p. Let H be any ^-half-
space containing r — 1 points of S. Then it follows that H contains
either T or S — T, and thus p, yielding property (ii) of Theorem 4.
Hence, cέ? has Helly number h ̂  r — 1.

REMARK. In view of the simple proof of Levi's theorem using
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separation properties one suspects there are additional relationships
among the numbers c, h, and r in convexity spaces satisfying the
above two properties (e) and (f).

The next result makes use of certain separation properties to
show that under certain conditions the existence of a Radon number
is a sufficient condition for the existence of a Caratheodory number.
The property needed is known to be true for X — Ed when d =
1, 2, 3, with <& the usual convexity structure (for a discussion of
related versions of generalizations of Radon's theorem, see [1, p. 118]).

(g) If S is a finite subset of X which has a Radon partition
(SUS2) and pe^(S) but p$<Zf(SJ n&(SJ, then S has a Radon
partition (Tlf T2) such that

Π{He β^: Hz) Tup$H} n T2 Φ 0 .

THEOREM 8, Let ^ be a ϊ\ convexity structure for X having
the separation property, domain finiteness, and the additional property
(g) mentioned above. Then, if ^ has Radon number r < oo, it has
Caratheodory number c ^ r — 1.

Proof. Let G be a subset of X and pe^(G); by domain finite-
ness there is a finite subset S c ( ? of minimal cardinality such that
p e ^(S). If ISI Ξ> r, then S has a Radon partition; so by hypothesis
S has a Radon partition (Tu T2) for which there exists a point
qe ΠίHe £ίf\ Hz)TupiH}n T2. Let H be any ^-half-space con-
taining S ~ q. Then T1aH (since qeT2), and if q&H, from the
choice of q it follows that pe H; but if q e H then Sa H and again
peH. Thus, pe <^(S — g), denying the minimal property of S.
Therefore, | S | < r, and ^ has Caratheodory number c ^ r — 1.

4. An axiomatic foundation for convexity in euclidean space*
It is of fundamental interest to derive the convexity structure of
euclidean space from an abstract convexity structure in the case
X — Ed. This can be done by assuming the axioms below [in addi-
tion to the previous conditions (a) and (b)]. Since the system is
independent it can be proved that this set of conditions is both
necessary and sufficient. A more difficult problem arises if we do
not assume a euclidean setting, or if the axioms themselves are stated
intrinsically—that is, solely in terms of the members of &. The
more general problem of deriving necessary and sufficient conditions
for a convexity space (X, c<^) to be a vector space over an ordered field
for which the members of & are the convex sets might be referred
to as the linearization problem for convexity.

A similarity transformation, or similitude, is any transformation
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/: Ed —> Ed having the dilation ("contraction-expansion") property

e(f(x)9 f(y)) = ae{x, y) , a > 0 ,

where β denotes the euclidean metric. The geometric properties
of such mappings are well known, and we do not state them here.
A direct similitude is one for which the matrix representing / in
the usual manner has positive determinant. Throughout the section,
we assume that X = Ed, and the usual topology will be understood.

Axiom 1: & is closed under similitudes in X.
Axiom 2: c^ has a member of cardinality ^ 2 which is bounded

in X.
Axiom 3: For every finite set S c l , if xίc\c^(S) then

Axiom 4: c^ has Helly number h^ d + 1 .
Axiom 5: ^ is domain finite.
The first four axioms are needed to prove that the members of

if7 are each convex. This constitutes a theorem of the type dis-
covered by Dvoretzky [2], in that, the classical Helly property for
Ed is used to derive convexity. The similarity ends there, for
while Dvoretzky uses the assumption that ^ is closed under affine
mappings (stronger than our Axiom 1) and the compactness of its
members (stronger than our Axiom 2), he does not assume the very
restrictive condition that c^ is closed under arbitrary intersection.
The closure of ^ under intersections coupled with closure under
affine mappings is quite strong indeed; for, it is not difficult to prove
that the only additional assumption needed to obtain the convexity
of each member of cέ? is, for example, that the ^-hull of two
points be connected in X or, alternatively, that the ^-hull of two
points contain a third and be closed in X.

The following quite different independent set of axioms charac-
terizing the usual convexity structure in Ed were given in Womble's
dissertation, the first three of which imply that the members of ^
are convex:

Axiom Γ: cέ? is closed under isometries in X.
Axiom 2': If xeC and Ce^ then [x] and C can be weakly

separated (in the ordinary sense) in the flat of least dimension
containing x and C.

Axiom 3': ^f is 2\
Axiom 4': ^ is finitely join-hull commutative.
Axiom 5': & is domain finite.
Axiom 6': For u e c^(x,y)andv e r^(x,z) then^(u,z) Π r^{v,y)ΦQ>

1 The restriction x £ cl ^(S) is contrived to achieve independence.
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(see Ellis [4]).
Now we prove the assertions made previously about Axioms 1-5.

We shall let L(x, y) denote the line (1-flat) determined by x and y
(if x Φ y), and xy the join (ordinary convex hull) of x and y. Recall
that any two corresponding- points of a direct similitude may be
specified in advance.

LEMMA 1. If & satisfies Axioms 1 and 2 then for any two
distinct points x and y,

1f(x, y) c L(x, y) ,

and <& is Tx.

Proof. First, note the two fundamental properties of any one-
to-one mapping f:X—>X having the property that for each CeίT,
f[C] and f-ι[C\ are members of <if:

(i) I f S c Z then fl^(S)] = <&(f[S\).
(ii) If f[S] U Γ c £f (S) then f[T] c <g>(S).

The first being routine, the second may be proved from the first by
writing

f[T] c fW(S)] = ίT(/[S]) c 9f [9f (S)] = 9f (S) .

In particular, (i) and (ii) hold if / is any similitude. Now suppose
C = ̂ {x, y) and zeC ~ L(x, y). Let / be a direct similitude which
takes x to x, y to z, and leaves the plane of z and L(x, y) invariant.
With 3_! = y and z0 = z, define

d Z(^_i, x, zn) = 0» .

for n = 0, 1, . An inductive application of (ii) proves that zneC
for all w. Note that θn = #0 for each w and that, therefore,
Z(«-!, «, «w) = (n + l)̂ o for all % such that (n + l)^0 ̂  π. Thus,
there is an integer n for which Z(^-i, x, zn) > π/2. Set u = zn

and let v be the reflection of u in the perpendicular bisector of xy.
It follows that ve C and thus C contains a (perhaps degenerate)
trapezoid (x, y, v, u) with e(u, v) > e(x, y). If g is a direct similitude
which maps α? to % and # to v, again define ^0 = w, v0 = ̂> and

W.+1 = fif(un) , v Λ + 1 = g{vn)

for n = 0,1, . It follows that uneC and xneC for all n ^ 0 and
e(w«, vΛ) — Xne(uQ, Vo), where λ = e(u, v)/e(x, y) > 1. Thus, C is un-
bounded. But if B is the guaranteed set of Axiom 2 and h is a
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similitude which maps the two guaranteed points of B onto x and
y then h[B] is a member of c<f containing x and y and therefore

C - £f (α>, y) c h[B] ,

contradicting the boundedness of B.

LEMMA Γ. If & satisfies Axioms 1 and 2 then for any two
distinct points x and y,

cέf(x, y) c xy .

Proof. Same proof as in Lemma 1, using a trapezoid of 0
height.

LEMMA 2. If ^ satisfies Axioms 1-3, then for any finite set of
points xu , xk,

i f (#!, , xk) c conv (x19 , xk) .

Proof. The assertion is true for k — 2 by Lemma 1', so suppose
it has been shown for any set of k — 1 points, k ^ 3. Let xιy •••, #*
be given and choose the notation so that xt is an extreme point of
conv (x19 •••,%) and put S = {x2, , xk}. Thus, ^ g cl conv S and by
the induction hypothesis ^(S) c conv S, so ^ g cl ̂ (S). By Axiom 3,

,»*) = ̂ "fe US)c (^)^^(S) c U conv fe, s)
s e conv5

— conv (xlt , ίϋfc) .

LEMMA 3. 1/ cg^ satisfies Axioms 1-4 cmd ^ denotes the members
of ^ lying in a fiat of dimension k, then ^ has Helly number
k + 1, l^k^d.

Proof. Using induction on the deficiency d — k of the flat,
suppose the assertion has been proved for any collection ^ and let
C19 •••, Ck+1 be k + 1 members of ^ ^ contained in a (k — l)~flat.F,
each k of which have nonempty intersection. We first replace the
d by ^-hulls Pi of finite point sets. For each i define x{ e Π*i},i#» CV
and let P { = ^(xl9 , a?*-!, α?<+1, , xk+1). It follows that Ps c C,
for each j . Each Λ of P u •• , P f c + 1 have nonempty intersection
since ^ e P^ if i Φ i , and, therefore, ^ e (\)±\,j¥:i P3. Let a? £ JP and
define the sets C/ = £f (x U P<) for l ^ i ^ f c + 1 and Cί+2 = ̂ 7(a;1, , a?fc+1).
Then by Lemma 2 the sets C/, •••, Cfe'+2 lie in a &-flat and each k + 1
have nonempty intersection. By the induction assumption there
exists p e Πfi 2 C/ F ° r e a c h *» o n e c a n υ s e Axiom 3 and Lemma 2
to prove that
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The standard inductive argument may now be used to extend the
property to any finite subcollection of ^k-ί9 and hence ^ ^ has
Helly number k.

LEMMA 4. If <& satisfies Axioms 1-4, then for any finite set of

points x19 , xk9

^{xl9 •••,«*) = conv (x19 •••, xk) .

Proof. Consider the case k = 2, and suppose p e xy ~ ^(x, y).
The sets C1 = ^(x, p), C2 = ^(p, y), and C3 =

 c<^{x, y) are subsets of
F = L(x, y) so that Lemma 3 applies, with k = 2. Each 2 of the C*
intersect, but Π;=i Ct = 0 since 2>g ̂ (a?, ^/). The contradiction proves
that £M/c^(£, y) and establishes the result for k — 2. Induction
may then be applied to finish the proof.

The obvious result of Lemma 4 is

THEOREM 9. If cέ? is a convexity structure for X = Ed satisfy-
ing Axioms 1-4, then each member of & is convex.

The independence of our axioms show that at this point & need
not contain all the convex sets of X. But the use of Axiom 5
together with the result of Lemma 4 provides an easy proof of the
final result.

THEOREM 10. If ^ is a convexity structure for X=Ed satisfy-
ing Axioms 1-5, then & is precisely the family of convex sets of X.

Proof. Let C c X be convex, and consider x e ^(C). By Axiom 5
there exist points x19 •••, xk in C such that

x e ^(xi9 , xk) = conv (xl9 , xk) c conv C = C .

Therefore <§f (C) c C, implying C = <ϊf(C). Hence, Ce 9f and, in view
of Theorem 9, the result is proved.

It is routine to show the independence of each of the above
axioms, except for Axiom 2. For, in order to deny exactly one each
of the Axioms 1, 3, 4, and 5, merely take ^ to be, respectively,

( i ) 0 , X, and all convex subsets of diameter <Ξ 1;
(ii) 0 , Xy and all convex subsets of dimension <̂  k for some

fixed k9 2 ^ k < d2;

2 It is easy to find examples in (i) and (ii) for which there are nonconvex members
of <if7. This, together with Example 3, shows that no proper subsystem of Axioms
1-4 is sufficient to prove Theorem 9.
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(iii) 0 , X, and all subsets of cardinality ^ d + 2; and,
(iv) all compact convex subsets of X.
To show the independence of Axiom 2 more effort is required.

First, we observe the result: If Q denotes the set of all rational
points in E2 and / is a similitude of E2, then Q f] f[Q] must be
either 0 , a singleton, or Q itself. This is proved by using the
analytic form of a plane similitude (the plane being coordinatized by

£' = aζ - βη + λ ,

V' = ε/3f + eaη + μ ,

where s = ± 1 . Then if (ξi9 %), £ = 1,2, are points of QΠ/[Q] it
may be readily shown that a and β are rational and that, therefore,
λ and μ are rational (call / rational in this case). Hence f[Q] = Q,
and the result follows.

EXAMPLE 3. With X — E2, define <& as the collection consisting
of 0 , X, Q, all sets of the form /[Q], where feΩ = family of plane
similitudes, and all singleton subsets of X.

It may be proved that ^ is a convexity structure (to show that
S = ΓiieifAQ] is a member of c^ if /4ei2 for each £e/, write
/ΓfS] = Πίβ/^[Q]» where gi =/Γ1/*, and thus #y[Q] = Q; apply the
above observation to show that either f^ι[S] is a singleton or g{ is
rational for all £). Axiom 1 is valid, Axiom 2 is obviously denied,
and Axiom 3 holds trivially since if Ce^ has 2 or more points,
cl C = X. Because of the pathological nature of the example it is
remarkable that c — 3, h = 3, and r = 4—as in classical convexity!
(Thus, Axioms 4 and 5 are valid.) Leaving the other two proofs
for the reader, consider the following argument for h — 3: Let
CΊ, , Ck be members of ^ such that any 3 intersect (it is obvious
that h Φ 2 by considering the ^-hulls of the pairs of three points
consisting of two rationale and one irrational point). Without loss
of generality, assume that C{ Φ X and Cι Φ singleton, for each £•
Thus C<=f<[Q], ΆeΩ.

Case 1. C1ΓΊ C* = x for some £. Then let i ^ £ and consider
C2 Π Ci Π C, ^ 0 . Thus xeCj and αe Π?=i C*.

Case 2. d Π C< contains at least two points for each £. Then
the set fΓ1[Cι Π CJ = Q Π /ΓlAfQ] contains at least two points so that
fΓι[C, ΠCi] = Q or Cx n C^fMf for all i. Therefore, /JQ] c flf=i C4,
and ^ has Helly number 3.
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