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SCHLICHT MAPPINGS AND INFINITELY
DIVISIBLE KERNELS

ROGER A. HORN

The purpose of this note is to give a simple condition
which is sufficient for a function on a real interval to be
the boundary value of a schlicht (univalent) analytic mapping
of the upper half plane into itself. This condition leads to
a simple transformation which takes (possibly) non-schlicht
mappings into schlicht ones. The methods used have appli-
cations to probability theory as well; they yield an interest-
ing class of infinitely divisible characteristic functions.

We shall require some facts about infinitely divisible kernels;
for a detailed exposition see [5]. If I is a real interval we denote
by L0(I) the set of all continuous complex valued functions which
have compact support in / and whose integral over I vanishes, A
continuous kernel K(x, y) on I x I is said to be conditionally positive
definite on I if

(1) [[ K(x, y)φ(x)φ(y)dxdy ̂  0
J JlXJ

for all functions φeL0(I); it is said to be positive definite on I if
(1) is satisfied for all continuous functions φ with compact support
in I; it is said to be infinitely divisible on I if (for some fixed con-
tinuous determination of the argument) the kernel K"(x, y) is positive
definite for all a > 0.

The connection among these concepts is that a continuous Her-
mitian kernel K(x, y) with no zeroes is infinitely divisible on I if
and only if (for some continuous determination of the argument) the
kernel log K(x, y) is conditionally positive definite on /. If K(x, y) > 0
for all x,yel there is, of course, no difficulty about determining
the argument. Finally, the relevance of these notions to function
theory is indicated by the following result [6], [4] If / is a
differentiate function we define Kf(x, y) = [f(x) — f(y)]/(x — y) and
agree that Kf(x, x) = /'(#)•

THEOREM 1. Let f be a continuously differentiable real valued
function with positive derivative on a real interval I. The function
f possesses an analytic continuation onto the upper half plane which
maps the upper half plane into itself if and only if the kernel
Kf{x, y) is positive definite on I. This mapping is schlicht if and
only if Kf(x, y) is infinitely divisible on I.
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Although this result completely characterizes the boundary values
of schlicht mappings, it is in practice much harder to verify that
the kernel Kf(x, y) is infinitely divisible than to test it for positive
definiteness. By our remarks above, one must check whether
log Kf(x, y) is conditionally positive definite, but the non-linearity of
this expression in / often leads to computational difficulties. In the
following, we shall derive a more linear, and hopefully more useful,
sufficient condition. Recall that a C°° function φ defined on (0, ©o)
is completely monotonic if ( — l)nφ{n)(x) J> 0 for all x > 0 and all
n = 1, 2, 3, •••.

LEMMA 2. Let H(x, y) be a continuous Hermitian kernel on a
real interval I such that Re {H(x> y)} > 0 and such that —H(x, y) is
conditionally positive definite. If φ is any completely monotonic
function then the kernel φ(H(x, y)) is positive definite on I.

Proof. It is well known that a function φ is completely mono-
tonic if and only if there exists a nonnegative measure dμ such that

φ(x) = \°°e-χsdμ(s) for all x > 0 ([8], p. 160); in this event φ is
Jo

analytic in the whole right half plane. But since Re {H(x, y)} > 0
and exp ( — sH(x, y)) is positive definite (even infinitely divisible) for

exp( — sH(x, y))dμ{s) is con-
0

vergent and is a positive definite kernel.
An infinitely divisible completely monotonic function φ is a

function such that φa is completely monotonic for all a > 0; if ^ ΐ θ ,
a necessary and sufficient condition for this is that the derivative of
— Inφ be completely monotonic ([3], p. 229). Using the lemma and
the definition of an infinitely divisible kernel we obtain

COROLLARY 3. Let φ be a positive differentiate function on
(0, oo) such that —φ'lφ is completely monotonic, and suppose H(x, y)
satisfies the hypotheses of Lemma 2. Then φ(H(x, y)) is an infinitely
divisible kernel.

Since the function φ(x) = 1/x satisfies this condition, the following
result is immediate.

COROLLARY 4. If H(x, y) satisfies the conditions of Lemma 2f

then the kernel 1/H(x, y) is infinitely divisible.

Now suppose that g is a continuously differentiate real valued
function on a real interval J, so that Kg(x, y) is a continuous symmetric
kernel. If g'(x) > 0 on I then Kg(x, y) is a positive kernel and the
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inverse function g"1 is defined on the interval g(I). Thus, if we
assume that — Kg(x, y) is conditionally positive definite on I then
we conclude from Corollary 4 that the kernel

1 _ x - y _ g~ι(g(χ)) - g~\g{y))

κg(x, v) 9(χ) - g(y) Φ ) - g(v)

is infinitely divisible. But this is equivalent to the kernel Kg-i(s, t)
being infinitely divisible on g(I) and so we may apply Theorem 1 to
obtain the conclusion of the following

THEOREM 5. Let g be a continuously differentiate real valued
function with positive derivative on a real interval I and suppose
that the kernel

g(,y)
x — y

is conditionally positive definite on I. Then the inverse function g~ι

has an analytic continuation from g(I) onto the upper half plane
which is a schlicht mapping of the upper half plane into itself.

Thus, to ensure that a real function / on a real interval I is
the boundary value of a schlicht self-mapping of the upper half
plane it is sufficient to check that f'(x) > 0 and that — Kf-i(x, y) is
conditionally positive definite on f~\I).

The crucial condition in Theorem 5 is that the kernel — Kg(x, y)
be conditionally positive definite, and a great deal is known about
functions which satisfy this condition. For example, they are real
analytic and are analytically continuable onto the upper half plane,
they have a simple integral representation, and they arise as the
infinitesimal transformations of the pseudo-semigroup SDlβo of self-
mappings of the upper half plane which have real boundary values
on I ([6] and [2], pp. 53-54). Furthermore, it is easy to find many
non-trivial functions which satisfy this condition. Denote by HJΪco(O)
the class of functions / which are analytic in the upper half plane,
map it into itself, are real valued on some open real interval con-
taining zero, and are normalized by the condition /(0) — 0.

LEMMA 6. Let a be a real number, let 6 ^ 0 and let fe SPΪoo(O).

Then the functions go(x) = a, gx(x) — ax, g2(x) — ax2, and gs(x) — bx2f(x)

are such that Kg.(x, y) is conditionally positive definite on some

neighborhood of the origin, i = 0, 1, 2, 3.

Proof. This follows from a direct computation for i = 0, 1, 2
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but for i = 3 we need to know ([1], p. 63) that fe HϊL>(0) if and
only if

( 2 ) f(x) =
-«l — tx

for some ε > 0 and some nonnegative bounded measure dμ on
[ — ε, ε]. Thus, since the assertion for i = 3 follows for the special
case f(x) = x/(l — tx) by direct computation, it follows for all fe Tt^(O)
by linearity.

Using the four types of functions introduced in this lemma we
can now use Theorem 5 to construct a wide class of schlicht mappings.

THEOREM 7. Let /e3Woo(0), let a, > 0, α3 ̂  0, and let α0 and α2

be real numbers. Then the function

g(x) = α0 + axx + α2#
2 — α3#

2/O)

is such that the inverse function g~ι has an analytic continuation
from a real neighborhood of α0 onto the upper half plane which is a
schlicht mapping of the upper half plane into itself.

Proof. The kernel — Kg(x, y) is conditionally positive definite by
Lemma 6 and g'(x) > 0 in some real neighborhood of zero. The
result follows from Theorem 5.

Although this construction provides a wealth of schlicht mappings,
it is far from exhaustive: the functions f(z) = 2\Vz + 1 — 1] and
f(z) = log (2 + 1) are schlicht mappings which are not of this form.

REMARK 1. Linear combinations of the four functions in Lemma 6
are in fact the only smooth functions g such that Kg(x, y) is condi-
tionally positive definite. In order to prove this we use the follow-
ing criterion for a kernel to be conditionally positive definite.

LEMMA 8. Let H(x, y) be a continuous kernel on a real interval
I and let x0 e I. Then H(x, y) is conditionally positive definite on I
if and only if the kernel

H?Q(x, y) = H(x, y) - H(x, x0) - H(x0, y) + H(x0, xQ)

is positive definite on I.

Proof. If φeL0(I), then

( Hz*0(x, y)φ(x)φ(y)dxdy = (( H(x, y)φ(x)φ(y)dxdy ,
J/XJ JjJX/
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and hence H(x, y) is conditionally positive definite if H*0(x, y) is
positive definite. Conversely, suppose H{x, y) is conditionally positive
definite and let {fn(x)}9 n = 1, 2, 3, be an approximate identity
based at x0, i.e., each fn is a nonnegative continuous function with

support in If][Xo — n~\ Xo + rr1] and I fn(x)dx = l for all n. If φ is any
JI

continuous function with compact support in I, let φn(x) = φ(x) —

fΛχ)\ Φ(t)dt and observe that φneL0(I) for all large n. Thus,

0 ^ [ [ H(x, y)Φn(x)φn(y)dxdy
J JIXI

= \\ \H(x, y) - \ H(x, t)fn(t)dt - \ H(s, y)fn(s)ds
JJ/X/ l JI JI

+ \\iχH(s, t)fn(s)fn(t)dsdt}φ(x)φ(y)dxdy

-> 11 {H(x, y) - H(x, x0) - H(xoy y) + H(x0, xQ)}φ(x)ψ(y)dxdy
JJ/X/

Hζ(x, y)φ(x)φ(y)dxdy
I

as n—> oo. Since φ is arbitrary, we conclude that the kernel
H*Q{x, y) must be positive definite.

LEMMA 9. Let K(x, y) be a continuous kernel on a real interval
I. Then xyK(x, y) is positive definite kernel if and only if K(x, y)
is a positive definite kernel.

Proof. If zero is not a point of / this is trivial, so suppose
0 G 7, let ε > 0, and denote by fs the unique even function such that

(0 if x e [0, ε]

f(x) = ε - ^ - ε ) if xe[ε, 2s]

(l if x ^ ε .

Let M= sup7x71 K(x, y) |, let φ be a continuous function with compact
support in I, and assume that xyK(x, y) is positive definite on I. Then

\ I K(x, y)φ(x)φ{y)dxdy
J JIXI

= \ \ K(x, y)φ(x)φ{y)(l - fe(y))dxdy
J JIXI

+ ί ( K(x, y)Φ(x)φ(y)f.(y)(l ~ f.(x))dxdy
JJIXI

+ \\ K(x, y)Φ(x)f.(x)φ(y)f.(y)dxdy
JJIXI
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Ξ> - \( I K(x, y)φ(x)φ{y){l - f.{y)) I dxdy
J J / X /

-\\ I K(x, y)φ{y)Uv)Φ{x)Q. - /.
J J / X /

+ 11 χyK(χ, y)χ~1Φ(χ)f(χ)y'1Φ(y)f(y)dχdy
J J / x /

^ -6ikfε supz I ^(x) |ί | 0(E) | da .

For the last inequality we have used the hypothesis that xyK(x, y)
is positive definite and the fact that the function x"ιφ{x)fε{x) is a
continuous function with compact support in I. Since e > 0 is
arbitrary we conclude that

/ x /
K(x, y)φ(x)φ(y)dxdy ̂  0 ,

i.e., K(x, y) is positive definite. The converse is trivial.

Now assume that the kernel H(x, y) is of the special form
H(x, y) = Kg(x, y), where g is a real valued function which is three
times continuously differentiable on an open real interval containing
zero. Assume that g(0) = g'(0) = </'(0) = 0. Then g(x)/x2 is con-
tinuously differentiable and

H*(x, V) = Kg(x, y) - Kg(x, 0) - Kg(0, y) + Kg(0, 0)

Φ) _
? ^ = xyKh(x, y) ,

a? — 2/

where we set Λ(.τ) = g(x)/x2. Thus, Lemma 8 says that Kg(x, y) is
conditionally positive definite if and only if xyKh(x, y) is positive
definite, and Lemma 9 says this is equivalent to the kernel Kh(x, y)
being positive definite. We conclude that Kg{x, y) is conditionally
positive definite if and only if Kh(x, y) is positive definite. But this
means that h(x) = g(x)/x2 e SKco(O) and hence h has the integral re-
presentation (2). The normalization we assumed for g can always
be attained by subtracting a suitable quadratic polynomial, since
Lemma 6 shows that every such polynomial has a conditionally
positive definite difference quotient kernel. We summarize our
results as

THEOREM 10. Let g be real valued function on an open real
interval I containing zero. The following are equivalent:

(a) The function g is three times continuously differentiable and
the kernel Kg{x, y) — [g(x) — g(y)]/(x — y) is conditionally positive
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definite on I.

(b) The function g has the form

g(x) = α0 + a,x + a2x
2 + azx

2f(x) ,

where α0, α l t α2 are reaZ numbers, a3 ^ 0 ami / e SKoo(O).

(c) T%e function g has the form

g(x) ^cto + a^ [ f
J-β 1 — a ί

where a0, ax, a2 are real numbers, e ^ 0 amZ dμ is a nonnegative
bounded measure.

It should be noted that it is sufficient in (a) to assume only
that g is continuously differentiate; the condition on the kernel
then implies that g is analytic [6]. This characterization of the
functions g such that Kg{x, y) is conditionally positive definite was
obtained first by C. FitzGerald [2] using less elementary results on
analytic kernels.

REMARK 2. Lemma 2 and its corollaries are also useful in pro-
bability theory where one is interested in continuous Hermitian
kernels of the form K(x, y) = f(x — y), /(0) = 1. Such a kernel is
positive definite if and only if f(x) is the Fourier transform of a
(unique) probability measure on the line, i.e., f(x) is a characteristic
function; this kernel is infinitely divisible if and only if the measure
is infinitely divisible. If f{x) is the characteristic function of an
infinitely divisible probability measure, then the kernel H(x, y) =
lnf(x — y) is conditionally positive definite and has nonpositive real part
since \f{x) | ^ 1 f or all real x. Thus, the kernel H(x, y)~X — Infix ~ V)
satisfies the hypotheses of Lemma 2 if λ > 0 and hence the kernel

λ

λ — Infix — y)

is infinitely divisible by Corollary 4. But this means that the
function φix) = λ/(λ — Infix)) is an infinitely divisible characteristic
function whenever / is an infinitely divisible characteristic function
and λ > 0. This result was obtained by F. W. Steutel [7] from
very different considerations.
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