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THE POLYNOMIAL OF A NON-REGULAR DIGRAPH

W. G BRIDGES

This paper studies the matrix equation f(Z) = D + λj
where / is a polynomial, Z a square (0, l)-matrix, D is diago-
nal, λ Φ 0 and J is the matrix of ones. If Z is thought of
as the incidence matrix of a digraph G, the equation implies
various path length properties for G. It is shown that such
a graph is an amalgamation of regular subgraphs with simi-
lar path length properties. Necessary and sufficient parameter
conditions on the matrix Z are given in order that it satisfy
such an equation for a fixed polynomial / and all non-regular
digraphs corresponding to quadratic polynomials / are found.

1* Introduction. The concept of the polynomial of a graph

was introduced by Hoffman [3] for regular, connected, non-oriented
graphs, and discussed by Hoffman and McAndrew [4] for regular
directed graphs. If A is the adjacency matrix of such a graph G, the
polynomial of G is taken to be the polynomial p(x) of least degree
with p(A) = J, the matrix of ones. In extending this notion to non-
regular, directed graphs we are concerned with the matrix equation

(1.1) f(Z) = D + XJ

where / is a polynomial, Z a square (0,1) matrix, D a diagonal
matrix and λ Φ 0. Given (1.1) the conditions: (a) Z has constant row
sums; (b) D is a scalar matrix; (c) Z has constant line sums; and
(d) The graph of Z is regular; are easily seen to be equivalent. The
regular case of (1.1) embraces such studies as the (v, k, λ)-problem
[7], (n, k, λ)-systems on k and k + 1 [1], Moore graphs [4], strongly
regular graphs [9,10,11,12] and even the algebraic studies of central
groupoids and universal algebras ]2], [6].

In [8] Ryser opens the non-regular question by considering (1.1)
with f(x) = x2, and finding all nonregular solutions.

The case in which / of (1.1) has degree two is particularly inter-
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esting. Here we are studying directed graphs with the feature that
there are constants μ0, μ1 so that for distinct points piy p3- the
number of directed paths from p{ to p3- of length two is μt or μ0

depending on whether or not there is a directed edge from Pi to pά.
For example the digraph G of figure one has this property with μλ =
1, μo—2. Its adjacency matrix is given by

0 1 1 1

1 0 1 0

1 0 0 1

1 1 0 0

satisfying

Z2 + Z=άmg(l, - 1 , - 1 , -1) + 2J.

It is easy to see how various graph theoretic properties expressi-
ble in terms of path lengths can be reflected in (1.1) by suitably
choosing the polynomial /.

In the next section we give a general structure result for matri-
ces satisfying (1.1) showing them to be an "amalgamation" of regular
solutions to similar equations. We refine this structure result by
considering certain special polynomials f{x). Finally we determine
all non-regular quadratic graphs, i.e., those whose adjacency matrix
satisfies (1.1) with / a quadratic polynomial.

Throughout / will denote a matrix of ones, / an identity matrix
and subscripts on these symbols will denote their orders when neces-
sary.

2* The structure of /-graphs* Let G be a directed graph (loops
allowed) on n vertices {1, •••,%} with adjacency matrix Z=(zij)(zij=
1 if there is an edge from i to j and Zij = 0 otherwise). Further let
/ be a monic polynomial with /(0) = 0. We say that G is an f-graph
or that Z carries an f-graph if there is a diagonal matrix D and a
number λ Φ 0 so that

(2.1) f(Z) = D + XJ.

We shall sometimes say, for Z with constant line sums, that Z
carries a degenerate /-graph if f(Z) is a scalar matrix.

Let Zi be a square (0, l)-matrix of order % for i — 1,2, •••,£
and n = Σ;=i %• We define the complementary direct sum (c.d.s) of
the matrices Z{ by

(2.2) c.d.s.(^.| i = 1, ., ί) = Jn - Σ Θ (Λ4 - Z<)
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where 2 , 0 denotes the usual direct sum
Finally since evidently for P a permutation matrix with trans-

pose P* the matrix PZP* will satisfy (2.1) if Z does we define A
and B to be equivalent, A = By if there is a permutation matrix P
so that A = PBPK The relevance of these definitions will be clear
from the following theorem.

THEOREM 2.1. Let Z be a (0, l)-matrix of order n. Suppose Z
carries an j'-graph. Then we have

(2.3) £ s c . d . s . ( W = 1, •••,<)

where the matrices Z{ of order nt have constant line sums r* wiίλ
r< — Ui Φ r3- — % for i Φ j and each Zι carries an f-graph (possibly
degenerate).

We delay the proof of this elementary observation as we can say
considerably more. We only state Theorem 2.1 in order to put the
next theorem in proper perspective.

THEOREM 2.2. Let Zi be a (0, ΐ)-matrix of order rii with constant
line sums r* for i = 1, , t. For i Φ j suppose r* — wf Φ r3- — n^.
Put

(2.4) Z = c.d.s. (Zi\ i = 1, 2, , t)

(2.5) riS = (n - ni)δiS + n5 (i, i = 1, , t)

(δ<y denoting Kronecker's delta)

(2.6) B = (r4i) .

Finally left f be a monic polynomial of degree at least two with
/(0) = 0.

Then Z carries an f-graph if and only if there exist constants b
and λ with λ Φ 0, and numbers dif λ< (i = 1, , t) so that

, t)(2.7)
(2.8)

and

(2.9)

d,

f{

= λ ( n - •

Zi) = dil-

fίR)

%{) + h (i = 1,
f Xjni (i = 1,

= XR + bl.

We proceed to prove both theorems. It follows from (2.1) that
Z commutes with D + \J if Z carries an /-graph. Denoting D =
diag(c?!, •••, dn), the row sums of Z by pi (i = 1, •••, n) and the
column sums by σs{j = 1, •••,%) this fact may be expressed as
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(2.10) Ziάdi - ds) - X{Pi - σs) .

We thus have Pi = a{ and if we permute the rows of Z so that rows
with equal sum occur together and then perform the corresponding
column permutations we obtain PZP1 with say rows 1, 2, • , ^ 1 of
equal sum and then rows nx + 1, nλ + 2, , nx + n2 of equal sum
etc. Let Zi denote the principal submatrix of PZP1 on the lines
%_! + 1, , %_i + Ui (n0 Ξ= 0). We assert that no entry of Z outside
one of these Zt can be a zero for then from (2.10) we have pi = aj =
p3 contrary to our grouping of the rows. Thus we have established
(2.3) where t is the number of distinct row sums of Z. It is im-
mediate that Zi of order %i has constant line sums say Ti(ί=l, •••,£)
and that r* — % Φ r3- — % for i Φ j since pj = r* + n —• %.

We now deal with Z in the equivalent c.d.s. form and take t > 1
lest Z be regular. Note from (2.10) that the diagonal matrix D has
different entries in positions corresponding to different blocks Zt. It
is further clear from (2.10) that the entries in D in positions corre-
sponding to the same block Zi are the same. We therefore revise
our notation so that dl9 d2, , dt denote the distinct diagonal entries
of D, di occurring % times. Then (2.10) says that the points (di9 n —
Πi) for i = 1, 2, , t lie on the line y — Xx + b for some constant 6.
[Note it is the choice of normalization (/(0) = 0) which brings the
constant b into play. We could, of course, force b = 0 by altering
the constant term of f(x).]

We now investigate the powers of the matrix Z in c.d.s. form
and assert that in block form, the (i, j)tu block of size Ui x ni9 we
have

/O 1 O\ Vk Γ TD "I / -I J.\

where

{Δ.lό) ίSij — dij/ti + giό Jn.xnj .

The numbers g(# are given by

(2.14) g% - 0, £# = 1 for i ^ i

and for fc > 1

t

e — ί

This claim is easily verified inductively.
We introduce the following notational convention: If p(x) =

ΣΠ=i δiί^ is a polynomial in a; and a{k) is a symbol in use with super-
scripts then by p{a) we will mean the expression p{a) = ΣΓ=i 6ΐ^(ί),
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using the iterates of a in place of the powers of x. Then from
(2.12) - (2.13) we have

(2.16) f(Z) = [ C d (ij = l, •-.,«)

On being an Ui x % block given by

(2.17) C« = f(Z<) + f{Vu)JH (i = 1, , t)

(2.18) C i d = / ( g ^ J n . x n j i Φ j ( ΐ , i = 1 , • • - , * ) .

with

yΔ.Lu) \JΓ — \Qij) (I, J — 1, , t)

we see that the structure of f(Z) depends on the matrix f{G). We
note, however, from (2.16), (21.7) that if Z carries an /-graph

f(Zt) + f(gu)Jni = dj + XJ so that

/(Zt) = dj + (X - f(gu))Jni

and the Zi carry /-graphs, degenerate should λ — f(gu). We have
thus completely proven Theorem 2.1 and continue with the necessity
in Theorem 2.2 where we have already established (2.7) and (2.8).
To obtain (2.9) we proceed to observe that the recursion (2.24), (2.15)
can be written: Gω = J — I and for k > 1:

(2.21) G{k) = RG{k-1] + (J - I)Fk~ι

where F — diag (n, •• , r ί ) . We obtain an explicit formula for G{k)

as follows. Let E = diag (1M, , l/nt) and consider

(2.22) H{k) Ξ [Rk - Fk]E, k ^ 1 .

We claim that H{k) satisfies the recursion (2.21). For k = 1, Hw =
Gω = J — J. Now for k > 1 we have:

1} + (J- IW*-1 = [Rk - RF'-^E + (J

so

} + (J - JJF*-1 = RkE - (Λ - (J - I)E~ι)Fk~ιE .

But R-(J- I)E'1 = F so we have Λ#<*-» + (J -
= H{k). Thus iϊ(fc) - G(/b) and

(2.23) /((?) = [/(i2) - f(F)]E .

Now if Z is carrying an /-graph the off-diagonal entries of f(G)
are all λ. Thus the off-diagonal entries of f(R) are given by

(2.24) f(R)u - λtty (i ^ i; ΐ, i = 1, , t) .
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From (2 20) we see that

/(r.) = dζ + (λ - f{ΰu))ni

so that

(2.25) f(gu) = /(^)^ ~ /fa) = dt + \nj - /fa)

Since d4 = λ(r< — w<) + 6 we have

(2.26) /(#)„ = rf4 + λn< - λr, + 6 ,

and (2.24) and (2.26) establish (2.9).
As to the sufficiency of (2.7) — (2.9) we need only note that

(2.23) is a valid expression for any polynomial / and that using
(2.7), (2.8) with

f(G) = [KB + hi -

we see /((?)« = /(#ϋ) = λ (i Φ j ; i, j = 1, , ί) and

so that in view of f(rt) = dι +

f(Z<) + f(Qu)J = dj + λJ .

This completes the proof of Theorems 2.1 and 2.2. An immediate
corollary of these results is that we may define the notion of the
polynomial of a directed graph if the graph is an /-graph for some /.

COROLLARY 2.3. Let Z carry an f-graph for some f. Then there
exists a unique monic polynomial Pz(x) with P,(0) = 0 of least degree so
that Z carries a Pz-graph.

Proof. Let g(x) and h(x) be two such polynomials. Suppose

g(Z) = D + XJ, h(Z) = H+ μJ

D, H diagonal λ Φ 0, μ Φ 0. Then since

(g - h)Z - (D - H) + (λ - μ)J

evidently Z carries a degenerate (g — fr)-graph, i.e., λ = μ. But for
suitable constants ϊ>, c we have d< = λ(r^—%) + & and hi = μ{ri — n^ + c
so that D — H is a scalar matrix and since surely g and h have
degree less than that of Z's minimal polynomial and g(0) = h(0) = 0
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we have g(x) = h{x).
Professor Hoffman has observed that the condition that Z carry

an /-graph for some / can be expressed in terms of the spectra of
the matrices Zi of (2.4) and that of the parameter matrix R of (2.6)
as follows. For % > 1 delete from the eigenvalue set of Zi the line
sum r< if Zi is irreducible and call the resultant set Λt. Let ΛQ be
the set of eigenvalues of the matrix R. Then Z carries an /-graph
for some / if and only if

Λi Π Λ5 — φ for all nu % > 1, iΦ j, i, j — 0, l , t .

To see this one need only observe that the congruences

f(x) ΞΞ di mod ihi(x)

f(x) ΞΞ Xx + b mod q(x)

(where m^x) is the minimal polynomial of Zi with (x — r*) divided
out in case Zt is irreducible and q(x) is the minimal polynomial of
R) are satisfied by / so that the m^x) and q(x) cannot share roots.
Note that for m^x) and q(x) one needs the fact that r4 — n^ = (di — b)/X
is not a root of q(x). The converse statement is also quite immediate
in view of Theorem 2.2.

We shall call the matrices Z{ (or the obviously associated sub-
graphs Gi) in the c.d.s. form of Z the regular constituents of Z. So
Z is regular if it has one constituent and we will call Z near-regular
if it has precisely two regular-constituents.

Now the parameter matrix R (2.6) is readily seen to be similar
to the symmetric matrix

(2.27) S = diag (n - ni9 , rt - nt) + {Vn^) .

Indeed

R = E1

where E — diag(lM, ••••, l/nt). Easily for the fa—n^ distinct the
matrix R has t distinct real characteristic roots, and that precisely
one of these roots is positive. Now if Z carries an /-graph we have
f(R) — XR + bl so that the minimal polynomial (= characteristic poly-
nomial) of R divides f(x) — Xx — 6. We thus establish

COROLLARY 2.4. Let Z carry an f-graph with t regular con-
stituents. Then t ίg degree /, and, if equality holds, f(x) — Xx — b is
the characteristic polynomial of R.

The case of equality may occur. For example the matrix
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1 1 1 1

1 0 1 1

1 1 0 0

1 1 0 0

has 3 regular constituents and its polynomial is xz — x2 — Ax. How-
ever with various restrictions on f(x) we can make stronger state-
ments about the number of constituents of an /-graph.

COROLLARY 2.5. Suppose f(x) is an even polynomial with non-
negative coefficients. Then a non-regular f-graph is near-regular.

Proof. For suitable λ > 0 and b we have that q(x), the charac-
teristic polynomial of the parameter matrix R, devides g(x) — f(x) —
Xx — b. But g(—x) = f(x) + Xx — b so that g has at most one nega-
tive root. However q(x) has t — 1 negative roots. Thus t ^ 2.

An interesting class of polynomial graphs are the of-graphs in-
vestigated by Ryser [7] for r — 2. These graphs have the feature
that the number of paths of length r joining any two distinct points
is constant. The preceding corollary shows that for r even such
graphs, if not regular, are near regular. This property extends to
all af-graphs.

COROLLARY 2.6. A non-regular xr-graph (r ̂  2) is near regular.

Proof. Again g(x) = f(x) — Xx — b = xr — Xx — b must have at
least t distinct real roots, where t is the number of regular con-
stituents of the graph. But gr(x) has at most two real roots so that
t ^ 3. The following argument suggested by Professor Hoffman
shows that t Φ 3. Suppose t — 3. Then q(x) — xz — ax2 + hx—j where
a = rL + r2 + r3, h = Σ*</ (rirJ ~ %%) and A = det R, is the charac-
teristic polynomial of R. Easily a > 0, h < 0, Δ > 0. Since q(x)
divides f(x) — Xx — b we may write

(2.28) (xr -Xχ-b) = {xz - ax2+hx-Δ) (xr~z+a,xr^ + + ar^x+ar).

Equating coefficients in this identity we obtain

α4 — a = 0

(2.29) «.-«* + * = 0
αβ — aaδ + feα4 — Δ = 0

α i + 3 — ααy+2 + haj+1 — Δa3- = 0 (4 <̂  j 1 <; r — 3) .

The relations (2.29) imply for i = 4, « , r t h a t α ^ O . Now equating
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the coefficients of x2 we obtain the contradiction

— ααr + Λαr_! — z/αr_2 = 0 .

Of course r = 3 implies a — 0.

We remark that the existence of a non-regular af-graph on more
than two points r > 2 remains in question.

Suppose one constituent of an /-graph is a (looped or unlooped)
point. Then we shall refer to the graph as a (looped or unlooped)
cone. For example let Ka denote the full (looped) directed clique on
a vertices. Take some number say m > 1 of copies of Ka and form
the looped cone over this graph with respect to an additional point.
The resulting graph is a non-regular (x2 — α#)-graph. We shall in
fact see in the next section that with one exception all non-regular
quadratic graphs are cones.

3* Non-regular quadratic graphs* In this section we determine
all non-regular /-graphs for f(x) = x2 — ax. We characterized these
graphs in the introduction in terms of path lengths. From Corollary
2.4 we know such graphs are near regular. Our first observation is
that there is precisely one such graph which is not a cone.

THEOREM 3.1. Let Z carry a non-regular quadratic graph which
is not a cone. Then

1 0 1 1 1

0 1 1 1 1

(3.1) Z s l l O O l

1 1 1 0 0

110 10

and carries an (x2 + x)-graph.

Proof. Let Z^ Z2 of orders n19 n2 and line sums rx and r2 be
the regular constituents of Z and suppose n{ > 1 (i — 1, 2). We
note from Corollary 2.4 that

(3.2) rλ + r2 = X + a .

We first remark that neither constituent can be J — I. For suppose
rt — nt — 1. Then from (3.2) r2 = λ + α — τ^ + 1 and we have

(3.3) f(Z) =
XJ

XJ

f(Z2) + nj

So with Z1 — J — I we have
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n^Λ- n2 — a — 2 — X ~ r2 — a + nx — 1

which forces n2 — r2 = 1 = nx — rx implying Z is regular. One can
similarly eliminate Zi — J for % > 1. Consider next the possibility
Zι = I. From (3.2) and (3.3) we have

X = n2 — I + r2 — a

so the constituent Z2 satisfies

Zi + (n2 - ra - 1)Z% = [(n2 - l)(r2 - λ2) - λ2]/ + λ2/

where λ2 — n2 — nL and the coefficient of / is determined by equating
line sums. Since the elements of Zt cannot exceed r2 we have

(n2 — l)(r2 — λ2) ^ (n2 — 1) with r2 ^ λ2 .

If r2 = λ2 + 1 we have r2 = n2 — nt + 1 whence r2 — n2 — 1 — nt —
τx — nx and Z is regular. Thus r2 = λ2 and trace Z2 — 0 with

(3.4) Zl + (π2 - r2 - 1)Z2 = r2(J - I) .

Now row i and column i of Z2 are different while zi3- = 0 forces row
i equal column y. Hence there is at most one off diagonal zero in
any row of Z2 and r2 = n2 — 2, a = — 1. It is then almost immediate
from (3.4) that r2 = 1, n2 = 3 and

0 0 1

0 1 0

Then λ2 — w2 — nx = 1 so ^ = 2 and we obtain (3.1). We-now suppose
neither constituent is a point, J — I or I and assert:

/ o r x X + n + a- 2(n + O ^ 0
(3.5)

λ + w + a — 2(r2 + ^i) ^ 0

This can be seen by considering (0, — l)-matrix Z — J. The
quantities (3.5) are off diagonal entries in /(Z — J) and for ϋΓt Φ I
these entries are nonnegative. But in view of (3.2) adding the entries
in (3.5) gives zero.
Thus

—
' l —

(3.6,
— ^ + 2̂ — -̂i + ^ _ X2 + n2 + a

2 2

where λ» = λ + 7i{ — n, f{Zt) = dj + XtJ (see 3.3). Now f(rf) —
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Πiλi gives dι = (Vi — λi)(wί — r*) and if Zi has a zero in diagonal
position we can assert that d{ + \ ^ r t . Whence

forcing r< = λ< and a — λ< — w< = r< — %. Thus j? is regular unless

trace (Zt) = ^ . But in that event we have d< + λ< + α ^ r< which,

viewed with (3.6) implies dt ^ % — r< or

(3.7) (r, - λ<)(n< - r<) ^ (% - r«) .

Hence r4 = λ<, λ« + 1. From (3.6) if we are to avoid r± — nι~
r2 — ^ 2 we conclude r1 — λx, r2 = λ2 + 1 with a — rx — nx — r2 — ̂  + 1.
Now (3.3) and (3.2) imply λ = λ1 + w2 = λ2 + w1 = r1 + r2 — α and
hence a = τx — n± + 1 = rί — nγ which contradiction completes the
proof.

As all remaining non-regular quadratic graphs are cones they
fall naturally into two classes: looped and unlooped. We determine
these classes separately in the next two theorems.

THEOREM 3.2. Let G be a non-regular (x2 — ax)-graph which is
the looped cone over Gt carried by the matrix Z^ Then one of the
following holds:

( i ) a is a positive integer and

(3.8) Si

(ii) a = 1 and

1 1 0

(3.9) ^ £ 0 1 1

10 1

(3.10) (iii) a - 0, Zx = 0.

Proof. The matrix Z1 with line sums rt must satisfy

(3.11) Z! - aZt = dj + (r, - a)J

with d1 = (n - WxXn - a) [See (3.3)]. Note here that if rλ = n, - 1
then ^ = J - P for P a permutation. Now (3.11) will force nL = 3
and P carrying either of the cycles (123) or (132) yielding (3.9) of
the theorem or n1 — 2, α — 1 of case (i) — (3.8). Hence we take
1 S n ^ Wi—2. We must have rL ^ α since n < α implies ^H- (αi —α) > 0
and the entries of Z\ do not exceed ?v We further assert that rx~a
only for the family (i) of the theorem for here Z\ — r&

Quite generally from (3.11) we see that zi5 — \,%Φ j , implies
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row i equal to column j . Further if some zu = 0 we have

n — a) = (rx — n — a) ^ 0,

and since τx Ξ> a we must conclude that n = α and obtain the family
(i). The remaining candidates for Zγ have trace nx. If for some i,
row i and column i are equal then evidently ĉ  — 0 and rt = α
again. But we still have that row i and column j are indentical if
^y = 1 for i Φ j . To avoid an occurrence of row i equals column i
easily rλ = 1, 2. In the former instance Z1 = I (of family (i)) in the
latter since i ^ j and ^y = 0 forces row i and column j to meet in
a 2-α positions we deduce that a = 1, nx — 3 = n + 1 and we have
case (ii).

Finally we treat the case of a non-looped cone. There are several
such graphs as the next theorem shows.

THEOREM 3.3. Let G be a non-regular (x2 — ax)-graph which is a
non-looped cone over Gt carried by Zγ. Then one of the following holds.

( i ) a = 0 and Z^ is a symmetric permutation matrix or Zx = 0.
0 1 0

a = - 1 and Z, = 0 0 1
1 0 0

(ϋ)

(iii) a = 2

1 1 1 1 0 0 0 0)

1 1 0 0 0 0 1 1

1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1

0 0 1 1 1 1 0 0

1 1 0 0 0 0 1 1

, 0 0 0 0 1 1 1 1

(iv) a — +1 and Z^ is equivalent to one of the following six

matrices:

(a)

1 0 1 1 0

0 1 0 1 1

1 0 1 0 1

1 1 0 1 0

0 1 1 0 1

(b)

0 1 1 1 0 0

1 1 0 0 0 1

0 1 1 1 0 0

0 0 1 1 1 0

10 0 0 11

10 0 0 11

0 1 1 1 0 0 0

0 10 1 1 0 0

(c) 0 1 1 0 0 0 1

0 0 1 1 0 10

10 0 0 10 1

10 0 0 1 1 0

10 0 0 0 11
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(d)

1 1 1 0 0 0

1 1 0 0 0 1

0 0 1 1 1 0

1 0 0 1 0 1

0 1 1 0 1 0

0 0 0 1 1 1

(e)

1 1 1 1 0 0 0

0 1 1 0 0 1 1

0 0 1 1 1 1 0

0 1 0 1 1 0 1

1 1 0 0 1 1 0

1 0 0 1 0 1 1

1 0 1 0 1 0 1

(f)

1 1 1 1 0 0

1 1 0 0 1 1

1 1 1 1 0 0

0 0 1 1 1 1

1 1 0 0 1 1

0 0 1 1 1 1

(v) a + 2 is a positive integer and

(a) - J).+ I or (b)

Ό

.
0
1

o α + 2
e'α+2,α+l

y

Proof. We have

(3.12)

with

(3.13)

Z\ - aZ, = dj + fa — a— 1)J

= fa — a)fa — ni) + ni = fa — a— l)fa — nj + r1

using (3.3) and ffa) — d1

Jr n,fa — a—I). We note that rx = 1 easily
gives a = 0 with ϋ^ a symmetric permutation or α = — 1 with Zt

carrying either of the three cycles (123) or (132). We also note that
the preceding Theorm 3.2 finds all candidates here with trace zero.
For then W = Z + I carries a non-regular (x2 — (a + 2)#)-graph with
a looped point as one constituent. These observations give cases (ii)
and (va) of the present theorem as the only Z[s with trace Zγ = 0.
We further remark that ZXΦ J and that the examples (va) are
characterized by rx — a + 1. For in this case dλ = rx and Zl — aZx —
(a + 1)/, so that if Zx has a diagonal entry equal to one a cannot be
positive since the entries of Z\ do not exceed a + 1. Thus a — 0, rx = 1
discussed above, or a = — 1, iJΊ = 0, case v with a = — 1. The re-
maining possibilities have trace Zx — 0 and are also discussed above.

We have to consider then trace Zx positive and easily here:

(3.14) a + 1 < n < n, - 1 .

We first suppose some Zi{ = 0. With Z\ = (QiS) we have
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(3.15) Qu = (n - a - l)(n - n, + 1) + n .

But surely n — Q« ^ nL — n — 1 so that (3.15) implies

(3.16) (nL - n - l)(rx - α - 1) ^ (^ - n - 1) •

Thus rι — aJr2 and we may suppose a ^ 0. Now (3.12) will become

(3.17)

Take

? - aZx = [2(α + 2) - ny\I + J .

(3.18)

α + 2

B

0 0

Γ '.α + 2

The matrix £ of (3.18) has column sums (α + 1) and so contains
(a + 2) zeros. Thus B has a row with at most one zero. This row
will meet any column of B in at least a positions. If this row has
a zero in an off-diagonal position we have a = 0, 1. If this row has
its single zero on the diagonal, say bn — Z2Z — 0 then Z21 — 1 so that
row 2 of Zx can meet column 3 of Zx in the proper number of positions
(z23 = 1 =φ Q2S — a + 1). But then Q21 — α + 1 = 2α + 4 — ^ so ^ =
a + 3 and ^ would be regular with r̂  — τii — — 1 . Thus unless B
has a row of all ones α = 0, 1. We consider the case that 5 indeed
has a row of all ones.

Placing this row initially in B and maintaining equivalence a
look at row two and column one of Z^ gives w1 = 2(α + 2), Zf — aZ^J.
Recall we are avoiding a row in B with precisely one zero, so that
B has a row with at least two zeros. This row in Z1 has a one in
its first position and by checking the row and column through its
off-diagonal zero we see this row in B has at most one nonzero entry.
This row accounts for at least a + 1 of the zeros of B. Were the
remaining zero not in this row we would have a row in B with pre-
cisely one zero. Thus B has a zero row and all other rows are full.
This gives Zx the form of case v.

We are left with the cases a = 0,1 and note from (3.17) that
4 ^ Hi ^ 7. With a = 0, nλ — 4, 5 and wx = 5 gives trace (ϋΓJ = 0
while nL = 4 gives (̂ 6) with a = 0. The choice α = 1, ^ = 5 is
easily eliminated and, for nλ = 6, one obtains (ΐvδ) and (vb). Finally
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with nγ = 7 the matrix (ivc) is obtained after some work
As this discussion was on the assumption of some zH = 0 we are

left to investigate those Zι satisfying (3.12), (3.13) and trace Zv =
nγ. To that end we investigate W ~ Zι — I. Evidently

(3.19) W2 + (2 - a)W = (d, + a - 1)1 + (n - a - 1)J .

Let S = rι — 1, the line sum of W. Consider the principal sub-
matrix B of W through the columns with ones in row one. This
S x S matrix B has column sums S — 2 and trace zero. So B has a
row with sum at least S—2 and this row will meet the corresponding
column of B in at least S — 3 positions. Thus dλ ~{- S — l ^ S — 3 or
dγ ^ — 2. Since ê  > 1 would force corresponding hits in W to exceed
S we deduce

(3.20) -2^dL^l.

Now with ^ = — 2 we have that B has line sums S — 2 and row i
of JB hits column i of Z for 2 <Ξ; £ <̂  S + 1 in a minimum of S — 3
positions. Since now di + S — 1 = S — 3 we conclude that column
one of Z has zeros in positions 2 through S + 1 forcing row 1 to
miss column 1 and ch + s —1 = 0 so S—3. One then easily eliminates
a = 0 and α = 3 and α = 2 forces ΐ^ 2 = J-1 of order 10. But J - /
of order 10 has a negative determinant, so we are left with a = 1,
nγ — l and the matrix IVe pops up unique to within equivalence.

We proceed with the cases on dt according to (3.20). If dι — ~l
(3.19) becomes

(3.21) W2 + (2 - a)W = (α - 2)7 + (S - α)J

with

(3.22) (^ - S - 1)(S - a) = S + 2.

The eigenvalues of W are then S of multiplicity one (S Φ a so TF
is irreducible) and then the roots of xz + (2 — α)» + (2 — α) = 0.
These roots are (a — 2) ± i/α2 — 4)/2 For α ^ 2 these are irrational
or imaginary so that trace W = 0 means % is odd and

S + i?^=J:(α - 2) - 0 .

Then α = 0,1 with S — nγ — 1, ^ — 1/2 respectively. The former
gives Zγ — J earlier eliminated and the latter is incompatible with
(3.22). In case r = 2 we have W2 = (S - 2)J. The eigenvalues of
W are then S and 0 denying trace W = 0.

The case dx — + 1 is similarly eliminated as follows. The eigen-
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values of W other than S are

a - 2 ±

For α^O these are not rational. Hence nι is odd and S+ (n1 — ϊ)/2(a—2) =
0, yielding a = l , S = f a —1)/2. This is incompatible with S 2 +(2-α)S=
^ + S - 1 + fa - 1)(S - a) unless S = 2, ^ - 5, W2 + TF - (/ + J) 5

yielding the matrix (iva). In case a = 0 we have W2 + 2T7 = SJ,
S2 + 2/S = ^ S so S = Wx — 2, r t = ^ — 1 and Z is regular.

The final case is dt = 0. Here the above techniques fail as the
spectrum of W is {a — 1, —1, S} with appropriate multiplicities. So
consider the structure of W:

S

(3.23)

0

1

1
0

1

0
a

•

0

1

0

B

1

• 1

•
a

0

••• 100
ε

0

0

•

c

10 ••
•

•

• 0

•0

0

It is not difficult to see that W has the structure of (3.23). The
(S + 2)rd row being obtained by considering its inner product with
column one. Now investigating this row and column S + 1 recalling
that B has column sums S — 2 we have

(ό.Δ4t) l + τ + ε = >b — a .

Where ε = 0,1, τ = S — 2, S — 3 depending on whether a is zero
or one. In any case (3.24) shows α = 0 , 1 , 2. From our remaks about
the spectrum of W it follows that i f α = 0 ^ = 5 + 1 and JZΊ = J 1 .
If a = 1 we have W2 + W = (S - 1)T so S2 + S = MS-1) yielding

(3.25) - 3)2 - 8

From (3.25) and the fact that S is a nonnegative integer with
we conclude that v* = 6, S> = 2, 3. These parameters give cases (ivd)
and (ivf).

1 Λ(W) = {S, -l,a-l}, if m is the multiplicity of a - 1 = - 1 we have S-
m — (fii — m — 1) = 0 or S = ni — 1.
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Finally for a — 2 we have

W2 = I + (S - 2)J with S2 - 1 + ^(S - 2)

or

(3.26) S - ^ ± τ/(^ - 4)2 - 12 #

2

Then (3.26) forces nx = 8, S = 3, 5. In case S = 3 one obtains
the matrix (iii) and the case S = 5 violates a ^ wL — S — 2 easily
seen to be necessary from (3.23) since the matrix C has column S—a.

We remark in conclusion that the various matrices in Theorem
3.3 are easily seen to be non-equivalent by considerations of parameters
and trace.
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