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MOORE SPACES AND wJ-SPACES

R. E. HODEL

This paper is dedicated to Professor J. H. Roberts
on the occasion of his sixty-fifth birthday.

This paper is a study of conditions under which a wJ-space
is a Moore space. In §2 we introduce the notion of a Gjf-
diagonal and show that every wJ-space with a G*-diagonal
is developable. In §3 we prove that every regular 0-refinable
wJ-space with a point-countable separating open cover is a
Moore space. In §4 we introduce the class of α-spaces and
show that a regular wJ-space is a Moore space if and only
if it is an ar-space. Finally, in §5 we study a new class of
spaces which generalizes both semi-stratifiable and wJ-spaces.

!• Preliminaries* We begin with some definitions and known
results which will be used throughout this paper. Unless otherwise
stated no separation axioms are assumed; however regular spaces are
always T1 and paracompact spaces are always Hausdorff. The set of
natural numbers will be denoted by N.

Let X be a set, g^ a cover of X, x an element of X. The star
of x with respect to Ŝ 7, denoted st(α, &), is the union of all elements
of gf containing x. The order of x with respect to 2f, denoted ord
(x, %?)t is the number of elements of 5^ containing x.

A space X is developable if there is a sequence 2^, Ŝ 2, of open
covers of X such that, for each x in X, {&t(x, gf»): n = 1, 2, •} is a
fundamental system of neighborhoods of x. Such a sequence of open
covers is called a development for X. A regular developable space is
called a Moore space. Bing [1] proved that every paracompact Moore
space is metrizable.

According to Borges [3] a space X is a wj-space if there is a
sequence 3^, S 2̂, of open covers of X such that, for each x in X,
if xn G st(«, S?n) for n = 1, 2, then the sequence <X)> has a cluster
point. Such a sequence of open covers is called a wJ-sequence for X.
Clearly every countably compact space is a wj-space, and in [3]
Borges proved that every developable space and every Λf-space is a
wj-space. For the relationship between wj-spaces, strict p-spaces,
and p-spaces, see [6].

A space X is subparacompact if every open cover of X has a
σ-discrete closed refinement. Every paracompact space is subpara-
compact [16], and in [8] Creede proved that every semi-stratifiable
space is subparacompact. For further properties of subparacompact
spaces see [5], [11], and [15].
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A space X is θ-refinahle if for each open cover Y* of X there is
a sequence Z?ly gf2, of open refinements of °F such that, for each
x in X, there is a n in N such that ord(#, gτw) is finite. Such a
sequence of open covers is called a θ-refinement of 9^ In [24] Wicke
and Worrell state that every subparacompact space is #-refinable and
that a countably compact Tγ space is compact if and only if it is
#-refinable.

2* Spaces with a GΓ-diagonaL Recall that a space X has a
Gδ-diagonal if its diagonal j = {(x, x): x in X} is a Ga-subset of I x X
The notion of a G^-diagonal plays an important role in metrization
theorems; see, for example, [2], [3], [7], [14], and [22].

Every semi-stratifiable Hausdorίf space has a (^-diagonal [8].
On the other hand the space [0, 1] x {0, 1} with the lexicographic order
is a compact perfectly normal space which fails to have a Gδ-diagonal
[14].

In [7] Ceder obtained this characterization of spaces with a Gδ-
diagonal.

PROPOSITION 2.1. (Ceder) A space X has a Gδ-diagonal if and
only if there is a sequence &\? %72, of open covers of X such that,
for any two distinct points x and y of X, there is a n in N such
that y£st(x, gfΛ).

In light of this characterization of a GVdiagonal and Borges'
study of spaces with a G5-diagonal (see [3]), we introduce the follow-
ing definition.

DEFINITION 2.2. A space X has a Gf-diagonal if there is a
sequence 2̂ i, 5 2̂, of open covers of X such that, for any two
distinct points x and y of X, there is a n in N such that y £
st(x, &n)~~. Such a sequence of open covers is called a Gt-sequence for X.

In [13] Kullman proved that every regular #-refinable space with
a G5-diagonal has a Gδ-diagonal. Since every space with a Gδ-diagonal
has a Gf-diagonal, we have the following proposition.

PROPOSITION 2.3. Every regular θ-refinable space with a Gδ-
diagonal has a Gf-diagonaL In particular every regular semi-
stratifiable space has a Gΐ-diagonal.

The next result relates the Gf-diagonal property to the diagonal

PROPOSITION 2.4. Let X be a space, let {Vn: n = 1, 2 } be a



MOORE SPACES AND wJ-SPACES 643

sequence of open subsets of XxX containing J, and suppose that
HSU F» — Δ Then X has a Gf-diagonal. In particular, if X is
Hausdorff and XxX is perfectly normal then X has a Gί-diagonal.

Proof. For n = 1, 2, let ^ - { G g l : G open, GxG^ Vn).
Since Vn is open and contains 4, Z?n covers X. To show that Ŝ Ί,
Ŝ 2, is a G?-sequence for X, let x and y be distinct points of X.
Choose n in N such that (x, y)$ Vn, and let U and W be open
neighborhoods of x and y respectively such that (Ux W) Π Vn = φ.
It follows that W Π st(», 55̂ ) = φ and so 1/ ί st(&, S^)~.

We now prove the main result in this section.

THEOREM 2.5. Every wj-space with a G*-diagonal is developable.

Proof. Let X be a space, let ^gt, ^ t , be a wj-sequenee for
X, and let ^f, %̂sf, be a G*-sequence for X. For each positive
integer n let

I t is easy to check t h a t SfΛ+1 is an open refinement of 2 ^ for all n
in iV and t h a t g^, 2^2, in a i(;j-sequence and a G*-sequence for X.

Suppose tha t 5^, Sf2, is not a development for X. Then there
is a point a?, a neighborhood W of a;, and a sequence <X> such t h a t
for all n> xn e st(a?, ^ Λ ) and a?Λ ί TF. Since 3^, ^ 2 , is a wj-sequence
for X, the sequence <X> has a cluster point p. Clearly p $ W so
| ) ^ L Since g^., ^ 2 , is a G??-sequence for X, there is a positive
integer k and a neighborhood F of p such t h a t F Π st(a?, ^ f c ) = ^.
Now for n~^k, xne st(α, ^ w ) S s t ( ^ , ^fc) and so a?n ί F . This contra-
dicts the fact t h a t p is a cluster point of ζx^}. Thus ^ , ^ 2 , is
a development for X.

COROLLARY 2.6. 7%e following are equivalent for a regular wΔ-
space X:

(a) X is a Moore space.
(b) X is semi-stratifiable.
(c) X is θ-refinable and has a Gδ-diagonal.
(d) X has a Gf-diagonal.

Proof. The implication (a) ==> (b) is due to Creede [8]; (b) ==> (c)
follows from results by Creede [8] and Wicke and Worrell [24]; (c)
=> (d) follows from Proposition 2.3; (d) => (a) follows from Theorem
2.5.
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REMARK 2.7. The equivalence of (a) and (b) was first proved by
Creede in [8], and the equivalence of (a) and (c) is due to Siwiec
[23]. It is not known if every regular wJ-space with a Gδ-diagonal
is a Moore space. For a study of p-spaces with a Gδ-diagonal, see
[13].

COROLLARY 2.8. The following are equivalent for a regular
countably compact space X:

(a) X is metrizable.
(b) X x X x X is completely normal.
(c) X x X is perfectly normal.
(d) X has a Gf-diagonal.

Proof. Clearly (a) => (b); (b) => (c) follows from a theorem due
to Katetov [12]; (c) =» (d) follows from Proposition 2.4. To prove
(d) => (a) observe that X is a Moore space (by Corollary 2.6) and
recall that every countably compact Moore space is metrizable.

3* Separating covers. In 1938 Filippov [9] proved that every
paracompact ikf-space with a point-countable base is metrizable.
Filippov's theorem was generalized by Burke and Stoltenberg in [4],
and recently Burke [6] obtained another generalization as follows.

BURKE'S THEOREM. Every regular subparacompact wA-space with
a point-countable base is a Moore space.

In another direction Nagata [20] proved a metrization theorem
which not only generalizes Filippov's theorem but a result by Oku-
yama as well [22]. In order to state Nagata's theorem succinctly
we use the following terminology due to Michael [17]. A cover V
of a set X is said to be separating if given distinct points x and y
of X, there is a V in T such that xeV,y$V.

NAGATA'S THEOREM. Every paracompact M-space with a point-
countable separating open cover is metrizable.

In this section we use the techniques developed by Burke, Filip-
pov, Nagata, and Stoltenberg, together with the results in §2, to
obtain a generalization of the abovementioned theorems by Burke and
Nagata.

In light of the usefulness of the concept of a #-base in the study
of developable spaces (see [24]), we begin with the following defini-
tion.
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DEFINITION 3.1. A θ-separating cover of a space X is a sequence
S î, 5̂ 2, of open collections such that, for any two distinct points
x and y in X, there is a n in JV such that

(a) ord(x, ^ ) is finite;
(b) there is a G in ^ such that xeG and t / ί G .

The relationship between a ^-separating cover and a GVdiagonal
is given by the following two propositions.

PROPOSITION 3.2, Let X be a space with a Θ-separating cover.
If every closed subset of X is a Gδ then X has a Gδ-diagonal.

Proof. Let 3^, 2^2, be a ^-separating cover of X. For each
pair of positive integers n and k let £ίfnk = {H: H Φ φ, H — Π?=i Gif

Gx, , Gfc distinct elements of %?n} and let Fnk = X - U {H: He ££lk}.
Now Fnk is a closed set and so Fnk = Γ\7=i Wnkj, where each Wnkj is
open. For j = 1, 2, . . . let ^ f c i - ^ ς f c U{Wnkj}. Then each ,^ : & i

is an open cover of X and the sequence {^ζkj: n, k, j in N} exhibits
the (^-diagonal property for X.

PROPOSITION 3.3. Every Θ-refinable space with a Gδ-diagonal has
a θ-separating cover.

Proof. Let X be a #-refinable space and let g^, 2^2, - - be open
covers of X exhibiting the Gδ-diagonal property for X. For each n
in N let Jg^, Jg^2, - be a /^-refinement of g?Λ. Then

is a ^-separating cover of X.

The following lemmas, due to Burke and Miscenko [19], play a
key role in the proof of our theorem. For the sake of completeness
we sketch the proof of Burke's result. (See Remark 1.9 in [6]).

LEMMA 3.4. (Burke) Let X be a regular, θ-refinable wAspace.
Then there is a sequence ^ Ί , 5^2, of open covers of X such that

for each x in X,
(a) C* = Π~=i st(&, 5^) is compact;
(b) {st(x, &n): n = 1, 2, «•} is a base for Cx.

Proof. Let % % be a wJ-sequence for X. By induction
on n construct for each positive integer n a sequence Ύ/^%1

of open covers of X such that
( 1 ) for k = 1, 2, •.., {W: W in W~nk} refines ^ and

1 ^ i ^ n — 1, 1 ^j ^n - 1;
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(2) for each x in X there is a k in N such that ord(#,
is finite.

For n = 1, 2, let gfw = ^ l β Then the sequence g^, 2f2,
satisfies properties (a) and (b).

LEMMA 3.5. (Miscenko) Let Ύ* be a point-countable collection
of subsets of a set X and let M be a subset of X. Then there are at
most countably many finite minimal covers of M by elements of ^

We now state and prove the main result in this section.

THEOREM 3.6. Let X be a regular, θ-refinable wΔ-space with a
point-countable separating open cover. Then X is a Moore space.

Proof. We are going to show that X has a ^-separating cover
and that every closed subset of Z is a ft. It follows by Proposition
3.2 that X has a Gδ-diagonal and hence by Corollary 2.6 X is a
Moore space.

Let Γ be a point-countable separating open cover of X. We
assume that J G ^ and hence for every subset M of X there is a
finite subcollection of T which covers M, namely {X}. Let &19 g 2̂,
be open covers of X such that for each a; in I ,

(a) Cx = n?=i st(a?, gfn) is compact;
(b) {st(x, &n): n = 1, 2, •} is a base for Cx.

For each n in N let <%tu, 3ίfn%, be a ^-refinement of &n. Recall
that

(c) <%fnk refines 5f%, k = 1, 2,
(d) for each x in X there is a k in N such that ord(#, Jg f̂c) is

finite.

X Λαs α θ-separating cover. For each pair of positive integers
n and & and for each H in ^g f̂c let H(n, k, 1), iϊ(w, k, 2), be all
finite minimal covers of H by elements of 5̂ 7 and let

ςfci - {H n F: H e ^ f c , Ve H(n, k, j)} .

To show that {J%̂ kj: n, k, j in N} is a ^-separating cover of X, let
a? and 2/ be two distinct points of X. Choose V1 in 3^ such that
xe V1 and y£ Vly and let {VΊ, •••, Vt) be a finite cover of Cx by
elements of T such that a? g y4 for i = 2, , t. Now C* g U'=i Vt

and so by (b) there is a ^ in N such that st(a?, &n) £ Ul= 1 Ti
Choose & in JV such that ord(#, Sίfnk) is finite, and let H be some
element of ^fnk such that xeH. Since Jg^fc refines 2̂ >, i ? S st(a?, ^ )
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and so E g U U Vt. Choose a minimal subcollection of {V^ •••, Vt}
which covers H and label it H(n,k,j). Note that V^ H(n, k, j).
Thus (HO Vx) e ^Γnkj, xe(Hf) F2), and y£(HΓι V,). Finally, suppose
Hi, , Hr are all elements of β^nk containing x. Since H^n, k, j)
is finite for i = 1, * , r it follows that ord(x, J%ζkj) is finite. This
completes the proof that X has a ^-separating cover.

Every closed subset of X is a Gδ. Let M be a closed subset of
X. For each pair of positive integers n and kf and for each H in
β£%k such that Hf]Mφ 0 , let H(n,Jc,j),j = 1, 2, ••• be all finite
minimal covers of if Π M by elements of 3̂ 7 By repeatedly counting
a cover if necessary, we may assume that H(n, k, j) exists for all j
in N. For j = 1, 2, let H*(n,k,j) denote the union of all ele-
ments of H(n, k, j), and let Wnkj = U {H Π ( Π ύ # * ( ^ , fc, i)): He 3ίfnk,
H Π M Φ 0 } . Clearly each Wnk, is open and contains M. To com-
plete the proof that M is a (?δ it suffices to show that if & g M then
there exist ^, k, and j" such that x & Wnkj.

First suppose that Cx Π M" — 0 . Choose % in JV such that
st(x, ^n) Π M = 0 , and let ά and i be any positive integers. Suppose
α e Wnkj. Then there is a H in ^ f c such that x e H and if Π M Φ 0 .
Now ^fnk refines ^ and so HQ st(a?, ^ ) . Hence st(a?, ^ B ) n l ^ 0
and this contradicts the choice of n.

Next suppose that Cxf)Mφ0. Let {Viy •• ,Vr

ί} be a finite
cover of Cxf)M by elements of 3^ such that x<£ Vr, r — 1, •••, ί.
Choose n in iV such that st(a?, ^ Λ ) S (U*=i *̂ r) U (X - M). Let k in
JV be such that ord(x, ^g f̂c) is finite and let Hιy , Hs be all ele-
ments of £%fnk which contain x and intersect M. For i = 1, , s,
ίfί S st(«, ^ Λ ) and so if, Π M s |Jί=L K Select from {F l f , Vt) a
minimal subcollection which covers HiΠM and label it Hi(n,k,jl).
Now x ί H\(n, &, iί) and so if we take i = maxfii, , js} then x g TFwA;i.

4* ^-spaces* A space with a σ-closure preserving separating
closed cover is called a σ*-space. This definition was introduced by
Nagata and Siwiec in [21].

PROPOSITION 4.1. Every subparacompact space with a Gδ-diagonal
is a σ%-space.

Proof. Let X be a subparacompact space and let 2^, gf2, be
open covers of X exhibiting the Gδ-diagonal property for X. For
each n in N let ^nl1 ^ 2 , be a σ-discrete closed refinement of
ί̂ w. Then {^lk: n — 1, 2, , k = 1, 2, •} is a σ-closure preserving
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separating closed cover of X.

In [6] Burke showed that a regular wJ-space is a Moore space if
and only if it is a σ*-space. His method of proof suggests introduc-
ing a new class of spaces which we call α-spaces. We shall show
that cr*-spaces are α-spaces and that a regular wz/-space is a Moore
space if and only if it is an ct-space.

DEFINITION 4.2. A space X is an a-space if there is a function
g from NxX into the topology of X such that for each x in X,

(a) p:=i g(n, x) = M;
(b) if y 6 g(n, x) then g(n, y) Q gin, x).

Such a function is called an a-function for X.

PROPOSITION 4.3. Every σ*-space is an a-space.

Proof. Let _^, ̂ 7 , be a σ-closure preserving separating closed
cover of a α *-space X. For n in JV and x in X let

g(n, x) = X - U{Fe^n: x 0 F} .

It is easy to check that the function g is an α-function for X.

PROPOSITION 4.4. Every space with a σ-point finite separating
open cover is an a-space. In particular, every Tγ space with a σ-point
finite base is an a-space.

Proof. Let gfΊ, ̂ 2 , be a σ-point finite separating open cover
of a space X. We may assume that Xeg^» for all n in N. For
n = 1, 2, and x in X let g(n, x) = Π {(? in gf%: a? in G}. Then
the function # is an α-function for X.

The following characterization of semi-stratifiable spaces will be
useful in proving the main theorem in this section.

LEMMA 4.5. The following are equivalent for a space X:
(a) X is semi-stratifiable.
(b) There is a function g from NxX into the topology of X

such that (1) for each x in X, Π»=i 9(n> x) = {χ}~~> (2) if xe g{n, xn)
for n — 1,2, then the sequence ζxny converges to x.

(c) There is a function g from NxX into the topology of X
such that (1) for each x in X and n in N, xe gin, x); (2) if x e g{n, xn)
for n — 1, 2, then x is a cluster point of the sequence <X>.

Proof. The equivalence of (a) and (b) is due to Creede [8], and
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(b) ==> (c) is obvious. To complete the proof we show that (c) => (b).
Thus, let g be a function satisfying (c), and assume that g(n + 1, x) £
g{n, x) for all n in N and x in X.

To prove (1) of (b), first let yefin^i 9(n> a) Then by (2) of (c),
y is a cluster point of the sequence {x, x, •••} and so ye{x}~. Next
let y e {x}~~. Then x e g(n, y) for n = 1, 2, so by (2) of (c) it
follows that a; is a cluster point of the sequence {y, y9 •••}. Thus
y e g(n, x) for n = 1, 2, and so # e fi?=i #(^> »)•

To prove (2) of (b), let x e g(n, xn), n = 1, 2, and suppose that
the sequence ζxny does not converge to x. Then there is a neigh-
borhood TF of x and a subsequence <^£Λjfĉ  of <(x%y such that a5Λjfc g TF
for all A; in JV. Now α e g(nk, xnj) fi #(&, a?WΛ) for k = 1, 2, so by
(2) of (c), x is a cluster point of the sequence <&ΛjfcX But this is
impossible, and so we conclude that ζxny converges to x.

THEOREM 4,6. A regular wA-space is a Moore space if and only
if it is an a-space.

Proof. By Propositions 4.1 and 4.3 every Moore space is an
α-space. To complete the proof let X be a regular wJ-space which
is also an α-space and let us show that X is a Moore space. By
Corollary 2.6 it suffices to show that X is semi-stratifiable.

Let 5^Ί, ̂ 2, be a wJ-sequence for X, let g be an α-function
for X. We may assume that for x in X and n in N, g(n + 1, x) g
g(n, x). For x in X and n — 1, 2, let /^(^, a?) = #(π, a?) Π st(a?, Ŝ »)
We shall show that the function Λ satisfies (c) of Lemma 4.5.

Clearly (1) of (c) is satisfied. To check (2) let x e h(n, xn) for
n — 1, 2, . Then for n = 1, 2, , a? e st(a?n, 5^) and so xπ e
st(x, 2^%). Thus the sequence ζx^} has a cluster point y. Suppose y Φ X.
Now {y} = Π?=i # ( ^ ?/) and so there is a fc in JV such that x£ g(k, y).
Since y is a cluster point of ζxny there is a m ^ έ such that xm e
g(k, y). Since g is an ^-function for X, xm e g(k, y) implies g(k, xm) Q
g(k, y). But x e h(m, xm) s g(m, xm) S ^(^J «») and so a? e gr(&, T/), a con-
tradiction. Thus a? = y and a? is a cluster point of <X>.

COROLLARY 4.7. Every regular wA-space with a σ-point finite
separating open cover is a Moore space.

COROLLARY 4.8. Every regular countably compact space with a
σ-point finite separating open cover is metrizable.

5* A generalization of semi-stratifiable and wA-spaces* Let X
be a space and let g be a function from NxX into the topology of
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X such that for all x m X and n in N, xeg(n,x). Consider the
following properties of the function g.

(A) If x e g{n, xn) and yn e g(n, xn) for n = 1, 2, then x is a
cluster point of the sequence <j/w)>.

(B) If x e g(n, xn) and yn e #(w, &w) for w — 1, 2, then the
sequence <#w> has a cluster point.

(C) If xn e g(n, x) for n — 1, 2, then a? is a cluster point of
the sequence (xny.

(D) If xn e g(n, x) for n — 1, 2, then the sequence <α?w> has a
cluster point.

(E) If x e g(n, xn) for n = 1, 2, then a; is a cluster point of
the sequence <X>.

(F) If x 6 #(w, &n) for n — 1, 2, then the sequence <χ> has a
cluster point.

In [10] Heath proved that developable spaces can be characterized
in terms of a function g satisfying (A), and similarly wJ-spaces can
be characterized in terms of a function g satisfying (B). Clearly l s ί

countable spaces are characterized by (C), and (D) is precisely the
definition of a g-space [18]. Finally, as proved in §4, semi-stratifiable
spaces are characterized by a function g satisfying (E). These
observations suggest introducing a new class of spaces, based on (F),
which generalizes semi-stratifiable and wJ-spaces.

DEFINITION 5.1. A space X is a β-space if there is a function g
from NxX into the topology of X such that

(a) for all a; in I and n in N, xeg(n, x);
(b) if x e g(n, xn) for n = 1, 2, then the sequence <X)> has a

cluster point.
Such a function is called a β-functίon for X.

THEOREM 5.2. The following are equivalent for a regular space
X:

(a) X is semi-stratifiable.
(b) X is a β-space with a G*-diagonal.
(c) X is an a-space and a β-space.

Proof. Clearly (a) => (b) and (a) => (c). To prove (b) => (a) let g
be a /3-function for X and let gfx, %?29 be a Gf-sequence for X,
where it is assumed that gfΛ+1 refines &n for all n. For x in I
and n in N let h(n, x) = g(n, x) Γ) st(a?, 3^,). Then & satisfies (c) of
Lemma 4.5 and so X is semi-stratifiable.

To prove (c) => (a) let g be a /S-function for X and let & be an
a-function for X, where h(n + 1, x) g fe(w, a?) for all w in JV and x
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in X. For a; in I and n = 1, 2, let k(n, x) — g(n, x) Π h(n, x).
Then k satifies (c) of Lemma 4.5 and so X is semi-stratifiable.

REMARK 5.3. The implication (d) => (a) of Corollary 2.6 and
Theorem 4.6 can be proved using the above theorem together with
Creede's result that every regular semi-stratifiable wz/-space is a
Moore space.

6* Summary* The relationship between some of the classes of
spaces considered in this paper can be summarized in a diagram as
follows.

developable

1 s t countable w/ί-spaee > ^δmi-stratifiable

g-space β-space α:-space

Fig. 1
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