MOORE SPACES AND $w \varDelta$ -SPACES

R. E. HODEL

This paper is dedicated to Professor J. H. Roberts on the occasion of his sixty-fifth birthday.

This paper is a study of conditions under which a $w\Delta$ -space is a Moore space. In §2 we introduce the notion of a G_{δ}^* diagonal and show that every $w\Delta$ -space with a G_{δ}^* -diagonal is developable. In §3 we prove that every regular θ -refinable $w\Delta$ -space with a point-countable separating open cover is a Moore space. In §4 we introduce the class of α -spaces and show that a regular $w\Delta$ -space is a Moore space if and only if it is an α -space. Finally, in §5 we study a new class of spaces which generalizes both semi-stratifiable and $w\Delta$ -spaces.

1. Preliminaries. We begin with some definitions and known results which will be used throughout this paper. Unless otherwise stated no separation axioms are assumed; however regular spaces are always T_1 and paracompact spaces are always Hausdorff. The set of natural numbers will be denoted by N.

Let X be a set, \mathcal{G} a cover of X, x an element of X. The star of x with respect to \mathcal{G} , denoted $st(x, \mathcal{G})$, is the union of all elements of \mathcal{G} containing x. The order of x with respect to \mathcal{G} , denoted ord (x, \mathcal{G}) , is the number of elements of \mathcal{G} containing x.

A space X is developable if there is a sequence $\mathscr{G}_1, \mathscr{G}_2, \cdots$ of open covers of X such that, for each x in X, $\{\operatorname{st}(x, \mathscr{G}_n): n = 1, 2, \cdots\}$ is a fundamental system of neighborhoods of x. Such a sequence of open covers is called a *development* for X. A regular developable space is called a *Moore space*. Bing [1] proved that every paracompact Moore space is metrizable.

According to Borges [3] a space X is a w_{Δ} -space if there is a sequence $\mathscr{G}_1, \mathscr{G}_2, \cdots$ of open covers of X such that, for each x in X, if $x_n \in \operatorname{st}(x, \mathscr{G}_n)$ for $n = 1, 2, \cdots$ then the sequence $\langle x_n \rangle$ has a cluster point. Such a sequence of open covers is called a w_{Δ} -sequence for X. Clearly every countably compact space is a w_{Δ} -space, and in [3] Borges proved that every developable space and every M-space is a w_{Δ} -space. For the relationship between w_{Δ} -spaces, strict p-spaces, and p-spaces, see [6].

A space X is subparacompact if every open cover of X has a σ -discrete closed refinement. Every paracompact space is subparacompact [16], and in [8] Creede proved that every semi-stratifiable space is subparacompact. For further properties of subparacompact spaces see [5], [11], and [15]. A space X is θ -refinable if for each open cover \mathscr{V} of X there is a sequence $\mathscr{G}_1, \mathscr{G}_2, \cdots$ of open refinements of \mathscr{V} such that, for each x in X, there is a n in N such that $\operatorname{ord}(x, \mathscr{G}_n)$ is finite. Such a sequence of open covers is called a θ -refinement of \mathscr{V} . In [24] Wicke and Worrell state that every subparacompact space is θ -refinable and that a countably compact T_1 space is compact if and only if it is θ -refinable.

2. Spaces with a G_{δ}^* -diagonal. Recall that a space X has a G_{δ} -diagonal if its diagonal $\Delta = \{(x, x): x \text{ in } X\}$ is a G_{δ} -subset of $X \times X$. The notion of a G_{δ} -diagonal plays an important role in metrization theorems; see, for example, [2], [3], [7], [14], and [22].

Every semi-stratifiable Hausdorff space has a G_{δ} -diagonal [8]. On the other hand the space $[0, 1] \times \{0, 1\}$ with the lexicographic order is a compact perfectly normal space which fails to have a G_{δ} -diagonal [14].

In [7] Ceder obtained this characterization of spaces with a G_{δ} -diagonal.

PROPOSITION 2.1. (Ceder) A space X has a $G_{\mathfrak{d}}$ -diagonal if and only if there is a sequence $\mathscr{G}_1, \mathscr{G}_2, \cdots$ of open covers of X such that, for any two distinct points x and y of X, there is a n in N such that $y \notin \operatorname{st}(x, \mathscr{G}_n)$.

In light of this characterization of a G_{δ} -diagonal and Borges' study of spaces with a \overline{G}_{δ} -diagonal (see [3]), we introduce the following definition.

DEFINITION 2.2. A space X has a G_{δ}^* -diagonal if there is a sequence $\mathscr{G}_1, \mathscr{G}_2, \cdots$ of open covers of X such that, for any two distinct points x and y of X, there is a n in N such that $y \notin \operatorname{st}(x, \mathscr{G}_n)^-$. Such a sequence of open covers is called a G_{δ}^* -sequence for X.

In [13] Kullman proved that every regular θ -refinable space with a G_{δ} -diagonal has a \overline{G}_{δ} -diagonal. Since every space with a \overline{G}_{δ} -diagonal has a G_{δ}^* -diagonal, we have the following proposition.

PROPOSITION 2.3. Every regular θ -refinable space with a G_{δ} -diagonal has a G_{δ}^* -diagonal. In particular every regular semistratifiable space has a G_{δ}^* -diagonal.

The next result relates the G^*_{i} -diagonal property to the diagonal \varDelta .

PROPOSITION 2.4. Let X be a space, let $\{V_n: n = 1, 2\cdots\}$ be a

sequence of open subsets of $X \times X$ containing Δ , and suppose that $\bigcap_{n=1}^{\infty} \overline{V}_n = \Delta$. Then X has a G_{δ}^* -diagonal. In particular, if X is Hausdorff and $X \times X$ is perfectly normal then X has a G_{δ}^* -diagonal.

Proof. For $n = 1, 2, \cdots$ let $\mathscr{G}_n = \{G \subseteq X: G \text{ open}, G \times G \subseteq V_n\}$. Since V_n is open and contains $\mathcal{A}, \mathscr{G}_n$ covers X. To show that $\mathscr{G}_1, \mathscr{G}_2, \cdots$ is a G_{δ}^* -sequence for X, let x and y be distinct points of X. Choose n in N such that $(x, y) \notin \overline{V}_n$, and let U and W be open neighborhoods of x and y respectively such that $(U \times W) \cap V_n = \phi$. It follows that $W \cap \operatorname{st}(x, \mathscr{G}_n) = \phi$ and so $y \notin \operatorname{st}(x, \mathscr{G}_n)^-$.

We now prove the main result in this section.

THEOREM 2.5. Every w_{Δ} -space with a G_{δ}^* -diagonal is developable.

Proof. Let X be a space, let $\mathcal{H}_1, \mathcal{H}_2, \cdots$ be a w_{Δ} -sequence for X, and let $\mathcal{H}_1, \mathcal{H}_2, \cdots$ be a G_{δ}^* -sequence for X. For each positive integer n let

$$\mathscr{G}_n = \left\{ G: \ G = \left(\bigcap_{i=1}^n H_i \right) \cap \left(\bigcap_{i=1}^n K_i \right), \ \mathrm{H}_i \in \mathscr{H}_i, \ K_i \in \mathscr{H}_i, \ i = 1, \ \cdots, \ n \right\}.$$

It is easy to check that \mathcal{G}_{n+1} is an open refinement of \mathcal{G}_n for all n in N and that $\mathcal{G}_1, \mathcal{G}_2, \cdots$ in a w_{Δ} -sequence and a G_{δ}^* -sequence for X.

Suppose that $\mathscr{G}_1, \mathscr{G}_2, \cdots$ is not a development for X. Then there is a point x, a neighborhood W of x, and a sequence $\langle x_n \rangle$ such that for all $n, x_n \in \operatorname{st}(x, \mathscr{G}_n)$ and $x_n \notin W$. Since $\mathscr{G}_1, \mathscr{G}_2, \cdots$ is a w_{Δ} -sequence for X, the sequence $\langle x_n \rangle$ has a cluster point p. Clearly $p \notin W$ so $p \neq x$. Since $\mathscr{G}_1, \mathscr{G}_2, \cdots$ is a G_s^* -sequence for X, there is a positive integer k and a neighborhood V of p such that $V \cap \operatorname{st}(x, \mathscr{G}_k) = \phi$. Now for $n \geq k, x_n \in \operatorname{st}(x, \mathscr{G}_n) \subseteq \operatorname{st}(x, \mathscr{G}_k)$ and so $x_n \notin V$. This contradicts the fact that p is a cluster point of $\langle x_n \rangle$. Thus $\mathscr{G}_1, \mathscr{G}_2, \cdots$ is a development for X.

COROLLARY 2.6. The following are equivalent for a regular $w \Delta$ -space X:

- (a) X is a Moore space.
- (b) X is semi-stratifiable.
- (c) X is θ -refinable and has a G_{δ} -diagonal.
- (d) X has a G_{δ}^* -diagonal.

Proof. The implication $(a) \Rightarrow (b)$ is due to Creede [8]; $(b) \Rightarrow (c)$ follows from results by Creede [8] and Wicke and Worrell [24]; $(c) \Rightarrow (d)$ follows from Proposition 2.3; $(d) \Rightarrow (a)$ follows from Theorem 2.5.

REMARK 2.7. The equivalence of (a) and (b) was first proved by Creede in [8], and the equivalence of (a) and (c) is due to Siwiec [23]. It is not known if every regular $w\Delta$ -space with a G_{δ} -diagonal is a Moore space. For a study of p-spaces with a G_{δ} -diagonal, see [13].

COROLLARY 2.8. The following are equivalent for a regular countably compact space X:

- (a) X is metrizable.
- (b) $X \times X \times X$ is completely normal.
- (c) $X \times X$ is perfectly normal.
- (d) X has a G_{δ}^* -diagonal.

Proof. Clearly $(a) \Rightarrow (b)$; $(b) \Rightarrow (c)$ follows from a theorem due to Katetov [12]; $(c) \Rightarrow (d)$ follows from Proposition 2.4. To prove $(d) \Rightarrow (a)$ observe that X is a Moore space (by Corollary 2.6) and recall that every countably compact Moore space is metrizable.

3. Separating covers. In 1968 Filippov [9] proved that every paracompact M-space with a point-countable base is metrizable. Filippov's theorem was generalized by Burke and Stoltenberg in [4], and recently Burke [6] obtained another generalization as follows.

BURKE'S THEOREM. Every regular subparacompact $w \Delta$ -space with a point-countable base is a Moore space.

In another direction Nagata [20] proved a metrization theorem which not only generalizes Filippov's theorem but a result by Okuyama as well [22]. In order to state Nagata's theorem succinctly we use the following terminology due to Michael [17]. A cover \mathscr{V} of a set X is said to be *separating* if given distinct points x and y of X, there is a V in \mathscr{V} such that $x \in V, y \notin V$.

NAGATA'S THEOREM. Every paracompact M-space with a pointcountable separating open cover is metrizable.

In this section we use the techniques developed by Burke, Filippov, Nagata, and Stoltenberg, together with the results in §2, to obtain a generalization of the abovementioned theorems by Burke and Nagata.

In light of the usefulness of the concept of a θ -base in the study of developable spaces (see [24]), we begin with the following definition.

644

DEFINITION 3.1. A θ -separating cover of a space X is a sequence $\mathscr{G}_1, \mathscr{G}_2, \cdots$ of open collections such that, for any two distinct points x and y in X, there is a n in N such that

- (a) $\operatorname{ord}(x, \mathcal{G}_n)$ is finite;
- (b) there is a G in \mathcal{G}_n such that $x \in G$ and $y \notin G$.

The relationship between a θ -separating cover and a G_{δ} -diagonal is given by the following two propositions.

PROPOSITION 3.2. Let X be a space with a θ -separating cover. If every closed subset of X is a G_{δ} then X has a G_{δ} -diagonal.

Proof. Let $\mathscr{G}_1, \mathscr{G}_2, \cdots$ be a θ -separating cover of X. For each pair of positive integers n and k let $\mathscr{H}_{nk} = \{H: H \neq \phi, H = \bigcap_{i=1}^k G_i, G_i, \cdots, G_k \text{ distinct elements of } \mathscr{G}_n\}$ and let $F_{nk} = X - \bigcup \{H: H \in \mathscr{H}_{nk}\}$. Now F_{nk} is a closed set and so $F_{nk} = \bigcap_{j=1}^{\infty} W_{nkj}$, where each W_{nkj} is open. For $j = 1, 2, \cdots$ let $\mathscr{H}_{nkj} = \mathscr{H}_{nk} \cup \{W_{nkj}\}$. Then each \mathscr{H}_{nkj} is an open cover of X and the sequence $\{\mathscr{H}_{nkj}: n, k, j \text{ in } N\}$ exhibits the G_s -diagonal property for X.

PROPOSITION 3.3. Every θ -refinable space with a G_{δ} -diagonal has a θ -separating cover.

Proof. Let X be a θ -refinable space and let $\mathscr{G}_1, \mathscr{G}_2, \cdots$ be open covers of X exhibiting the G_{ϑ} -diagonal property for X. For each n in N let $\mathscr{H}_{n1}, \mathscr{H}_{n2}, \cdots$ be a θ -refinement of \mathscr{G}_n . Then

$$\{\mathscr{H}_{nk}: n = 1, 2, \cdots, k = 1, 2, \cdots\}$$

is a θ -separating cover of X.

The following lemmas, due to Burke and Miscenko [19], play a key role in the proof of our theorem. For the sake of completeness we sketch the proof of Burke's result. (See Remark 1.9 in [6]).

LEMMA 3.4. (Burke) Let X be a regular, θ -refinable w Δ -space. Then there is a sequence $\mathcal{G}_1, \mathcal{G}_2, \cdots$ of open covers of X such that for each x in X,

- (a) $C_x = \bigcap_{n=1}^{\infty} \operatorname{st}(x, \mathcal{G}_n)$ is compact;
- (b) $\{\operatorname{st}(x, \mathcal{G}_n): n = 1, 2, \dots\}$ is a base for C_x .

Proof. Let $\mathscr{V}_1, \mathscr{V}_2, \cdots$ be a $w \Delta$ -sequence for X. By induction on *n* construct for each positive integer *n* a sequence $\mathscr{W}_{n1}, \mathscr{W}_{n2}, \cdots$ of open covers of X such that

(1) for $k = 1, 2, \dots, \{\overline{W}: W \text{ in } \mathscr{W}_{nk}\}$ refines \mathscr{V}_n and $\mathscr{W}_{ij}, 1 \leq i \leq n-1, 1 \leq j \leq n-1;$

(2) for each x in X there is a k in N such that $\operatorname{ord}(x, \mathscr{W}_{nk})$ is finite.

For $n = 1, 2, \cdots$ let $\mathscr{G}_n = \mathscr{W}_{n1}$. Then the sequence $\mathscr{G}_1, \mathscr{G}_2, \cdots$ satisfies properties (a) and (b).

LEMMA 3.5. (Miščenko) Let \mathscr{V} be a point-countable collection of subsets of a set X and let M be a subset of X. Then there are at most countably many finite minimal covers of M by elements of \mathscr{V} .

We now state and prove the main result in this section.

THEOREM 3.6. Let X be a regular, θ -refinable w Δ -space with a point-countable separating open cover. Then X is a Moore space.

Proof. We are going to show that X has a θ -separating cover and that every closed subset of X is a G_{δ} . It follows by Proposition 3.2 that X has a G_{δ} -diagonal and hence by Corollary 2.6 X is a Moore space.

Let \mathscr{V} be a point-countable separating open cover of X. We assume that $X \in \mathscr{V}$, and hence for every subset M of X there is a finite subcollection of \mathscr{V} which covers M, namely $\{X\}$. Let $\mathscr{G}_1, \mathscr{G}_2, \cdots$ be open covers of X such that for each x in X,

(a) $C_x = \bigcap_{n=1}^{\infty} \operatorname{st}(x, \mathcal{G}_n)$ is compact;

(b) $\{\operatorname{st}(x, \mathcal{G}_n): n = 1, 2, \cdots\}$ is a base for C_x . For each n in N let $\mathcal{H}_{n1}, \mathcal{H}_{n2}, \cdots$ be a θ -refinement of \mathcal{G}_n . Recall that

(c) \mathscr{H}_{nk} refines $\mathscr{G}_n, k = 1, 2, \cdots$;

(d) for each x in X there is a k in N such that $\operatorname{ord}(x, \mathscr{H}_{nk})$ is finite.

X has a θ -separating cover. For each pair of positive integers n and k and for each H in \mathcal{H}_{nk} let $H(n, k, 1), H(n, k, 2), \cdots$ be all finite minimal covers of H by elements of \mathcal{Y} , and let

$$\mathscr{K}_{n_{kj}} = \{H \cap V \colon H \in \mathscr{H}_{n_k}, V \in H(n, k, j)\}$$

To show that $\{\mathscr{K}_{nkj}: n, k, j \text{ in } N\}$ is a θ -separating cover of X, let x and y be two distinct points of X. Choose V_1 in \mathscr{V} such that $x \in V_1$ and $y \notin V_1$, and let $\{V_1, \dots, V_i\}$ be a finite cover of C_x by elements of \mathscr{V} such that $x \notin V_i$ for $i = 2, \dots, t$. Now $C_x \subseteq \bigcup_{i=1}^t V_i$ and so by (b) there is a n in N such that $\operatorname{st}(x, \mathscr{G}_n) \subseteq \bigcup_{i=1}^t V_i$. Choose k in N such that $\operatorname{ord}(x, \mathscr{H}_{nk})$ is finite, and let H be some element of \mathscr{H}_{nk} such that $x \in H$. Since \mathscr{H}_{nk} refines \mathscr{G}_n , $H \subseteq \operatorname{st}(x, \mathscr{G}_n)$

646

and so $H \subseteq \bigcup_{i=1}^{t} V_i$. Choose a minimal subcollection of $\{V_1, \dots, V_t\}$ which covers H and label it H(n, k, j). Note that $V_1 \in H(n, k, j)$. Thus $(H \cap V_1) \in \mathscr{H}_{nkj}, x \in (H \cap V_1)$, and $y \notin (H \cap V_1)$. Finally, suppose H_1, \dots, H_r are all elements of \mathscr{H}_{nk} containing x. Since $H_i(n, k, j)$ is finite for $i = 1, \dots, r$ it follows that $\operatorname{ord}(x, \mathscr{H}_{nkj})$ is finite. This completes the proof that X has a θ -separating cover.

Every closed subset of X is a G_{δ} . Let M be a closed subset of X. For each pair of positive integers n and k, and for each H in \mathscr{H}_{nk} such that $H \cap M \neq \emptyset$, let $H(n, k, j), j = 1, 2, \cdots$ be all finite minimal covers of $H \cap M$ by elements of \mathscr{V} . By repeatedly counting a cover if necessary, we may assume that H(n, k, j) exists for all j in N. For $j = 1, 2, \cdots$ let $H^*(n, k, j)$ denote the union of all elements of H(n, k, j), and let $W_{nkj} = \bigcup \{H \cap (\bigcap_{i=1}^{j} H^*(n, k, i)): H \in \mathscr{H}_{nk}, H \cap M \neq \emptyset\}$. Clearly each W_{nkj} is open and contains M. To complete the proof that M is a G_{δ} it suffices to show that if $x \notin M$ then there exist n, k, and j such that $x \notin W_{nkj}$.

First suppose that $C_x \cap M = \emptyset$. Choose *n* in *N* such that $\operatorname{st}(x, \mathcal{G}_n) \cap M = \emptyset$, and let *k* and *j* be any positive integers. Suppose $x \in W_{nkj}$. Then there is a *H* in \mathcal{H}_{nk} such that $x \in H$ and $H \cap M \neq \emptyset$. Now \mathcal{H}_{nk} refines \mathcal{G}_n and so $H \subseteq \operatorname{st}(x, \mathcal{G}_n)$. Hence $\operatorname{st}(x, \mathcal{G}_n) \cap M \neq \emptyset$ and this contradicts the choice of *n*.

Next suppose that $C_x \cap M \neq \emptyset$. Let $\{V_1, \dots, V_i\}$ be a finite cover of $C_x \cap M$ by elements of \mathscr{V} such that $x \notin V_r$, $r = 1, \dots, t$. Choose n in N such that $\operatorname{st}(x, \mathscr{G}_n) \subseteq (\bigcup_{r=1}^t V_r) \cup (X - M)$. Let k in N be such that $\operatorname{ord}(x, \mathscr{H}_{nk})$ is finite and let H_1, \dots, H_s be all elements of \mathscr{H}_{nk} which contain x and intersect M. For $i = 1, \dots, s$, $H_i \subseteq \operatorname{st}(x, \mathscr{G}_n)$ and so $H_i \cap M \subseteq \bigcup_{r=1}^t V_r$. Select from $\{V_1, \dots, V_i\}$ a minimal subcollection which covers $H_i \cap M$ and label it $H_i(n, k, j_i)$. Now $x \notin H_i^*(n, k, j_i)$ and so if we take $j = \max\{j_1, \dots, j_s\}$ then $x \notin W_{nkj}$.

4. α -spaces. A space with a σ -closure preserving separating closed cover is called a σ^{*} -space. This definition was introduced by Nagata and Siwiec in [21].

PROPOSITION 4.1. Every subparacompact space with a G_{δ} -diagonal is a σ^* -space.

Proof. Let X be a subparacompact space and let $\mathscr{G}_1, \mathscr{G}_2, \cdots$ be open covers of X exhibiting the G_{δ} -diagonal property for X. For each n in N let $\mathscr{F}_{n_1}, \mathscr{F}_{n_2}, \cdots$ be a σ -discrete closed refinement of \mathscr{G}_n . Then $\{\mathscr{F}_{n_k}: n = 1, 2, \cdots, k = 1, 2, \cdots\}$ is a σ -closure preserving

separating closed cover of X.

In [6] Burke showed that a regular $w \Delta$ -space is a Moore space if and only if it is a σ^* -space. His method of proof suggests introducing a new class of spaces which we call α -spaces. We shall show that σ^* -spaces are α -spaces and that a regular $w \Delta$ -space is a Moore space if and only if it is an α -space.

DEFINITION 4.2. A space X is an α -space if there is a function g from $N \times X$ into the topology of X such that for each x in X,

(a) $\bigcap_{n=1}^{\infty} g(n, x) = \{x\};$

(b) if $y \in g(n, x)$ then $g(n, y) \subseteq g(n, x)$.

Such a function is called an α -function for X.

PROPOSITION 4.3. Every σ^* -space is an α -space.

Proof. Let $\mathscr{F}_1, \mathscr{F}_2, \cdots$ be a σ -closure preserving separating closed cover of a σ^{\sharp} -space X. For n in N and x in X let

$$g(n, x) = X - \cup \{F \in \mathscr{F}_n \colon x \notin F\}$$
.

It is easy to check that the function g is an α -function for X.

PROPOSITION 4.4. Every space with a σ -point finite separating open cover is an α -space. In particular, every T_1 space with a σ -point finite base is an α -space.

Proof. Let $\mathscr{G}_1, \mathscr{G}_2, \cdots$ be a σ -point finite separating open cover of a space X. We may assume that $X \in \mathscr{G}_n$ for all n in N. For $n = 1, 2, \cdots$ and x in X let $g(n, x) = \cap \{G \text{ in } \mathscr{G}_n: x \text{ in } G\}$. Then the function g is an α -function for X.

The following characterization of semi-stratifiable spaces will be useful in proving the main theorem in this section.

LEMMA 4.5. The following are equivalent for a space X:

(a) X is semi-stratifiable.

(b) There is a function g from $N \times X$ into the topology of X such that (1) for each x in X, $\bigcap_{n=1}^{\infty} g(n, x) = \{x\}^{-}$; (2) if $x \in g(n, x_n)$ for $n = 1, 2, \cdots$ then the sequence $\langle x_n \rangle$ converges to x.

(c) There is a function g from $N \times X$ into the topology of X such that (1) for each x in X and n in N, $x \in g(n, x)$; (2) if $x \in g(n, x_n)$ for $n = 1, 2, \cdots$ then x is a cluster point of the sequence $\langle x_n \rangle$.

Proof. The equivalence of (a) and (b) is due to Creede [8], and

(b) \Rightarrow (c) is obvious. To complete the proof we show that (c) \Rightarrow (b). Thus, let g be a function satisfying (c), and assume that $g(n + 1, x) \subseteq g(n, x)$ for all n in N and x in X.

To prove (1) of (b), first let $y \in \bigcap_{n=1}^{\infty} g(n, x)$. Then by (2) of (c), y is a cluster point of the sequence $\{x, x, \dots\}$ and so $y \in \{x\}^-$. Next let $y \in \{x\}^-$. Then $x \in g(n, y)$ for $n = 1, 2, \dots$ so by (2) of (c) it follows that x is a cluster point of the sequence $\{y, y, \dots\}$. Thus $y \in g(n, x)$ for $n = 1, 2, \dots$ and so $y \in \bigcap_{n=1}^{\infty} g(n, x)$.

To prove (2) of (b), let $x \in g(n, x_n)$, $n = 1, 2, \cdots$ and suppose that the sequence $\langle x_n \rangle$ does not converge to x. Then there is a neighborhood W of x and a subsequence $\langle x_{n_k} \rangle$ of $\langle x_n \rangle$ such that $x_{n_k} \notin W$ for all k in N. Now $x \in g(n_k, x_{n_k}) \subseteq g(k, x_{n_k})$ for $k = 1, 2, \cdots$ so by (2) of (c), x is a cluster point of the sequence $\langle x_{n_k} \rangle$. But this is impossible, and so we conclude that $\langle x_n \rangle$ converges to x.

THEOREM 4.6. A regular w Δ -space is a Moore space if and only if it is an α -space.

Proof. By Propositions 4.1 and 4.3 every Moore space is an α -space. To complete the proof let X be a regular $w \Delta$ -space which is also an α -space and let us show that X is a Moore space. By Corollary 2.6 it suffices to show that X is semi-stratifiable.

Let $\mathscr{G}_1, \mathscr{G}_2, \cdots$ be a $w \Delta$ -sequence for X, let g be an α -function for X. We may assume that for x in X and n in N, $g(n + 1, x) \subseteq g(n, x)$. For x in X and $n = 1, 2, \cdots$ let $h(n, x) = g(n, x) \cap \operatorname{st}(x, \mathscr{G}_n)$. We shall show that the function h satisfies (c) of Lemma 4.5.

Clearly (1) of (c) is satisfied. To check (2) let $x \in h(n, x_n)$ for $n = 1, 2, \cdots$. Then for $n = 1, 2, \cdots$, $x \in \operatorname{st}(x_n, \mathcal{G}_n)$ and so $x_n \in \operatorname{st}(x, \mathcal{G}_n)$. Thus the sequence $\langle x_n \rangle$ has a cluster point y. Suppose $y \neq x$. Now $\{y\} = \bigcap_{n=1}^{\infty} g(n, y)$ and so there is a k in N such that $x \notin g(k, y)$. Since y is a cluster point of $\langle x_n \rangle$ there is a $m \ge k$ such that $x_m \in g(k, y)$. Since g is an α -function for $X, x_m \in g(k, y)$ implies $g(k, x_m) \subseteq g(k, y)$. But $x \in h(m, x_m) \subseteq g(m, x_m) \subseteq g(k, x_m)$ and so $x \in g(k, y)$, a contradiction. Thus x = y and x is a cluster point of $\langle x_n \rangle$.

COROLLARY 4.7. Every regular w Δ -space with a σ -point finite separating open cover is a Moore space.

COROLLARY 4.8. Every regular countably compact space with a σ -point finite separating open cover is metrizable.

5. A generalization of semi-stratifiable and $w \Delta$ -spaces. Let X be a space and let g be a function from $N \times X$ into the topology of

X such that for all x in X and n in N, $x \in g(n, x)$. Consider the following properties of the function g.

(A) If $x \in g(n, x_n)$ and $y_n \in g(n, x_n)$ for $n = 1, 2, \cdots$ then x is a cluster point of the sequence $\langle y_n \rangle$.

(B) If $x \in g(n, x_n)$ and $y_n \in g(n, x_n)$ for $n = 1, 2, \cdots$ then the sequence $\langle y_n \rangle$ has a cluster point.

(C) If $x_n \in g(n, x)$ for $n = 1, 2, \cdots$ then x is a cluster point of the sequence $\langle x_n \rangle$.

(D) If $x_n \in g(n, x)$ for $n = 1, 2, \cdots$ then the sequence $\langle x_n \rangle$ has a cluster point.

(E) If $x \in g(n, x_n)$ for $n = 1, 2, \cdots$ then x is a cluster point of the sequence $\langle x_n \rangle$.

(F) If $x \in g(n, x_n)$ for $n = 1, 2, \cdots$ then the sequence $\langle x_n \rangle$ has a cluster point.

In [10] Heath proved that developable spaces can be characterized in terms of a function g satisfying (A), and similarly $w \varDelta$ -spaces can be characterized in terms of a function g satisfying (B). Clearly 1^{st} countable spaces are characterized by (C), and (D) is precisely the definition of a q-space [18]. Finally, as proved in §4, semi-stratifiable spaces are characterized by a function g satisfying (E). These observations suggest introducing a new class of spaces, based on (F), which generalizes semi-stratifiable and $w \varDelta$ -spaces.

DEFINITION 5.1. A space X is a β -space if there is a function g from $N \times X$ into the topology of X such that

(a) for all x in X and n in N, $x \in g(n, x)$;

(b) if $x \in g(n, x_n)$ for $n = 1, 2, \cdots$ then the sequence $\langle x_n \rangle$ has a cluster point.

Such a function is called a β -function for X.

THEOREM 5.2. The following are equivalent for a regular space X:

(a) X is semi-stratifiable.

(b) X is a β -space with a G_{s}^{*} -diagonal.

(c) X is an α -space and a β -space.

Proof. Clearly (a) \Rightarrow (b) and (a) \Rightarrow (c). To prove (b) \Rightarrow (a) let g be a β -function for X and let $\mathscr{G}_1, \mathscr{G}_2, \cdots$ be a G_{δ}^* -sequence for X, where it is assumed that \mathscr{G}_{n+1} refines \mathscr{G}_n for all n. For x in X and n in N let $h(n, x) = g(n, x) \cap \operatorname{st}(x, \mathscr{G}_n)$. Then h satisfies (c) of Lemma 4.5 and so X is semi-stratifiable.

To prove $(c) \Rightarrow (a)$ let g be a β -function for X and let h be an α -function for X, where $h(n + 1, x) \subseteq h(n, x)$ for all n in N and x

650

in X. For x in X and $n = 1, 2, \cdots$ let $k(n, x) = g(n, x) \cap h(n, x)$. Then k satifies (c) of Lemma 4.5 and so X is semi-stratifiable.

REMARK 5.3. The implication $(d) \Rightarrow (a)$ of Corollary 2.6 and Theorem 4.6 can be proved using the above theorem together with Creede's result that every regular semi-stratifiable $w \Delta$ -space is a Moore space.

6. Summary. The relationship between some of the classes of spaces considered in this paper can be summarized in a diagram as follows.

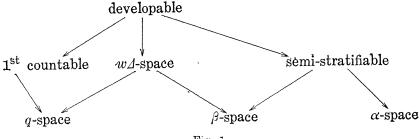


Fig. 1

References

1. R. H. Bing, Metrization of topological spaces, Canad. J. Math., 3 (1951), 175-186.

2. C. J. R. Borges, On stratifiable spaces, Pacific J. Math., 17 (1966), 1-16.

3. ____, On metrizability of topological spaces, Canad. J. Math., 20 (1968), 795-804.

4. D. K. Burke and R. A. Stoltenberg, A note on p-spaces and Moore spaces, Pacific J. Math., **30** (1969), 601-608.

D. K. Burke, On subparacompact spaces, Proc. Amer. Math. Soc., 23 (1969), 655-663.
, On p-spaces and w1-spaces, to appear.

7. J. G. Ceder, Some generalizations of metric spaces, Pacific J, Math., 11 (1961), 105-126.

8. G. Creede, Concerning semi-stratifiable spaces, Pacific J. Math., 32 (1970), 47-54.

9. V. V. Filippov, On feathered paracompacta, Soviet Math. Dokl., 9 (1968), 161-164.

10. R. W. Heath, Arc-wise connectedness in semi-metric spaces, Pacific J. Math., 12 (1962), 1301-1319.

11. R. E. Hodel, A note on subparacompact spaces, Proc. Amer. Math. Soc., 25 (1970), 842-845.

12. M. Katetov, Complete normality of cartesian products, Fund. Math., 35 (1948), 271-274.

13. D. E. Kullman, A note on developable spaces and p-spaces, to appear in Proc. Amer. Math. Soc.

14. D. J. Lutzer, A metrization theorem for linearly orderable spaces, Proc. Amer. Math. Soc., 22 (1969), 557-558.

15. L. F. McAuley, A note on complete collectionwise normality and paracompactness, Proc. Amer. Math. Soc., 9 (1958), 796-799.

16. E. Michael, A note on paracompact spaces, Proc. Amer. Math. Soc., 4 (1953). 831-838.

R. E. HODEL

17. _____, On Nagami's Σ -spaces and some related matters, Proceedings of the Washington State University Conference on General Topology (1970), 13-19.

A note on closed maps and compact sets, Israel J. Math., 2 (1964), 173-167.
A. S. Miščenko, Spaces with point-countable bases, Soviet Math. Dokl., 3 (1962), 855-858.

20. J. Nagata, A note on Filipov's theorem, Proc. Japan Acad., 45 (1969), 30-33.

21. J. Nagata and F. Siwiec, A note on nets and metrization, Proc. Japan Acad., 44 (1968), 623-627.

22. A. Okuyama, On metrizability of M-spaces, Proc. Japan Acad., 40 (1964), 176-179.

23. F. Siwiec, Metrizability of some M-spaces, to appear.

24. H. H. Wicke and J. M. Worrell Jr., Characterizations of developable spaces, Canad. J. Math., 17 (1965), 820-830.

Received June 8, 1970.

DUKE UNIVERSITY