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MAXIMUM MODULUS THEOREMS FOR ALGEBRAS
OF OPERATOR VALUED FUNCTIONS

KENNETH O. LELAND

Let F be a family of functions on subsets of a real
Euclidean space E into a commutative subalgebra with iden-
tity T, of the algebra 7T of linear transformations of £ into
itself. If a suitable integration condition, motivated by
Morera’s theorem in complex function theory is placed on
the elements of F, F' becomes an algebra of ‘‘integrable”
functions which can be realized as the derivatives of trans-
formations of FE into itself. It is asked what properties of
the algebra of complex analytic functions from the complex
plane K into K are satisfied by such algebras F. Simple
examples show that analyticity and even differentiability
are lost. However various forms of the maximum modulus
theorem are still satisfied. Three such theorems are presented
here:

(A) If commutivity of T, is replaced by the requirement
that the elements of 7T, are ‘‘orientation preserving’ then
the elements of F' are maximized on the boundary of a

sphere.
(B) There exists N > 0, such that for all feF,

U= {tcE; ||t]| £1} < domain f, 2€ U,
implies
Hf@Il =N sup{l[fDOI; 11t =1}.
(C) For all fe F, U < domain f, xz< U, implies

Nf@) s =sup{ll f@Olls; 1 E]] =1},
where for Ae T, || Al|s is the spectral norm of A.

1. Introduction. The theory of complex valued integrable
functions was developed by Heffter [1], Macintyre and Wilbur [6],
and this author [4]. The generalization to the operator valued case
was introduced in [5].

The first two results of this paper employ degree theoretic meth-
ods from algebraic topology as developed in [3] to obtain similar
results. The methods of [3] represent a generalization to higher
dimensional speces of methods of G. T. Whyburn [8] in the plane,
employed by him to handle complex analytic functions. The third
result follows from a construction of the spectral norm of an operator
employing irreducible subspaces invariant under a family of operators.

Let K denote the complex plane. For ac K, set A,(z) = az for
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all ze K. Then A, is a bounded linear transformation of K thought
of as a real Euclidean space FE, into itself. Set 7, = {4,; a e K}.
Let f be a continuous function on an open set S < E, into the space
B, of bounded linear transformations of FE, into itself, and let P be
a path (rectifiable arc) with endpoints « and B8. Then for any sub-
division a« = 2, < ++- < 2,,, = 8 of P, a Riemann sum, the vector
R =31 f. (%, — 2) can be formed. If range f lies in T, then for
ze S, f, = f(?) = A,,, for some ¢(2) ¢ K, and we may write

R = 3 6(=)(zer, — 2) -

Taking the limit as the norm of the subdivision defining R approaches
zero, we obtain the vector 4 = Sﬁ f(®dz = gﬁ f.(dz). If range f< T,
aP aP

we can interpret 6 as the complex number Sﬂ #(z)dz.
f is said to be integrable if for closed paths (rectifiable simple
closed curves) C = S, we have g f (z)dzzg f.(dz) =0. If range f= TV,
C c

then S #(z)dz = 0 for all closed paths C = S, and by Morera’s theorem
c

¢ is analytic; consequently, f is itself Frechét differentiable, where
f!is a linear transformation of E, into B, for ze S.

The general case studied in this paper is obtained by replacing
E, by an arbitrary real Euclidean space E of dimension p, p > 1.
Let T be a commutative subalgebra of the Banach algebra of bounded
linear transformations of E into E and let F be the family of con-
tinuous integrable functions on open subsets of E into T.

Let feF, S = domain f simply connected. Let z,¢S and for

ze S, set g(z) = SZ f(2)dz. Then g maps S into E, and for ze S, the

Frechét derivative0 g. of g at z is the operator f(z) = f, of T.

In [5], employing arguments reminiscent of the proof of the
Cauchy-Goursat theorem, it is shown that the family of continuous
integrable functions on a simply connected subset of E into T form
an algebra.

In [5] differentiability and analyticity of integrable functions is
discussed. Simple examples of integrable but nondifferentiable func-
tions are given. Since the context of [5] and this paper is a real
variable context a definition of analyticity motivated by Schwarz’s
lemma was employed [2].

The development of this paper is no way affected if the only
paths of integration permitted are those formed from straight line
segments or arcs of circles.

2. Notation and definitions. Let @ denote the positive integers.
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If Z is a Banach space, 6 >0, ve Z, set U,(0) = {teZ; it — x|l < o},
U@©G) = Uy9), and U = Uy(l); and set V,0) = {teZ; ||t — x| = o},
V() = Vi6), and V = V,(1). If f is a function with domain S and
H < E, then the restriction f|H of f to H is the function g with
domain H N S such that g(x) = f(x) for all xte HN S. For H a sub-
space of E and G a family of functions defined on subsets of K, F'| H
denotes the family {f | H; fe F}.

An element 4 of B is said to be orientation preserving if 4
inverts and if the degree p«(A4) of A is one (or equivalently if the
determinant associated with A is positive). A collection of operators
Z of B is said to be an orientation preserving family if for all Ae Z,
7= 0, we have that if A 4 re inverts, then A -+ re is orientation

preserving.
For Ae B, set||Al|, = limsup,_..|| 4*|['/*. It shall be shown in
§ 7, that || - |, is a multiplicative semi-norm.

3. Statement of main results. Let 0 >1, and let f be an
integrable function on U (p) into B. Then the principle results of
this paper are:

(A) The strong maximum modulus theorem which states that
if range f lies in an orientation preserving family Z of B, Z a linear
subspace of B, then for all ze U,

@l = M=sup{l[f@®)I; teV}.

(B) The weak maximum modulus theorem which states that
there exists N > 0 such that if fe F, then for all ze U,

I F@) ]l = NM.

(C) The maximum spectral norm theorem which states that if
fe F, then for xe U,

F @), = sup{[[ f@) [l te V}.

We note that for £ and T isomorphic and isometric to K, that
T is an orientation preserving family and that in this case for Z = T,
(4) and (C) reduce to the standard maximum modulus theorem of
complex function theory.

4. Preliminaries. We shall need two lemmas from [5].

A subspace W S F is said to be invariant if T(W) < W. Let
27 be the family of all nontrivial irreducible invariant subspaces of
E, i.e., the family of all invariant subspaces H & E, H =+ {0}, such
that H contains no proper invariant subspace H, = {0}.
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LEMMA 4.1. For He s#, T, = T|H is a field with the same
dimension as H.

We observe from the fundamental theorem of algebra that T, is
isomorphic (but not necessarily isometric) to R or K.

Proof. Let AeT,, A+ 0. Then A is one-to-one on H. Indeed,
for De T, setting D, = D | H, we have

D[A(H)] = D[A(H)] = A[Dy(H)] = A[D(H)] < A(H) ,

and hence A(H) is an invariant subspace of H; and consequently,
since H is irreducible, A(H) = H.

Let xe H, x+ 0, and set 6(4) = A(x) for all Ae T,. Now range
0 = {A(z); Ae T} is clearly an invariant subspace of H and hence
range 0 = H. Suppose for A, Be T, 6(A) = 6(B). Then A(x) = B(x)
and (A — B)(z) = 0. Since A — B is not one-to-one on H, A — B = 0,
and thus ¢ is an isomorphism of 7T, onto H.

Let Ae T, Since A(H) = H, there exists ye H, such that
A(y) = ®. Now there exists a € T, such that 6(a) = y. Then a(zx)=1y
and 6(Aa) = (Aa)(x) = Afla(x)] = A(y) = . Since 0(e) = x, we have
Aa =e¢ and o = A, and thus T, is a field.

LemMA 4.2. Let f be an integrable function on U into B, and
S and W subspaces of E such that for xe U, te S, f(x)(t) lies in W.
Then for x,ye U such that y — x lies in S, we have

[f@) — fFI®) e W  for all te E .

Proof. For xe U, set g(x) = Sx f(»dz. Let x,yc U such that
0

x#*y and y—2€S, and let 2 =2, < «+- < 2,,, =¥y, n€w, be a
subdivision of the interval [z, y] of E. Then for

?:20, ly "'sn’Axi:le_xieSy

and hence f(x,)(dx;)€ W. Thus the Riemann sum .7 f(x)(dx;)e W.
Hence Ey f(rdze W and g(y) — g(x) = Sy f(R)dze W.
Let te E and r€ R such that ¢ + rt, y + rte U. Then

(y+rt) —(@+7t) =y —zeS,
and hence g(y + rt) — g(x + rt)e W. Thus for all te £
F@)®) — F@O = lim gy +rt) — gl — lim [ga-+rt) —g@)]r~
= lim{[g(y +7t) —g@@+rt)] - [9(y) —g@]} r~'e W .
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5. Strong maximum modulus theorem and the uniqueness
theorem. The principle result of this section is (A). The three
lemmas of this section involving orientation preserving operators are
also used to obtain (B) in §6. A simple consequence of (A4) or (B)
is the uniqueness theorem which states that an integrable function
of the family of functions in question, defined on U, is uniquely
determined by its value on the boundary V of U. Indeed by the
same methods used to prove (A4), the uniqueness theorem can be
shown to hold for an arbitrary algebra of integrable functions,
defined on U, without any condition of commutivity being placed on
the algebra.

(A) makes no requirement that the family of functions in question
even form on algebra. All results in this paper with the exception
of (A) and the uniqueness theorem are stated only for the com-
mutative case. It is conjectured that some kind of maximum modulus
theorem holds for noncommutative algebras of integrable functions.

From the standpoint of [3] the most obvious example of an
orientation preserving family is Z = {Ae B; AI = IA}, where [ is an
element of B such that I* = —e. In this case one can interpret F
as a complex Kuclidean space and Z as the family of complex homo-
geneous linear operators acting on E. A less obvious but important
example is Z, = {Ae B; A* = 0 for some ke w}.

Let re R, »r >0, Ac Z,, and suppose A -+ re does not invert.
Then there exists xe K, © = 0, such that (4 + 7re)(x) = 0. Then for
some ke w, A* =0, A(x) = —rz, and 0 = 0(x) = A*(x) = (—1)*r*x, and
2 =0. Thus A + re inverts for all » > 0, and hence from Lemma
5.3, below, A + re is orientation preserving for all » > 0. In §7 it
shall be shown for Ae B, that Ae Z, if and only if || A]||,=0. Let
F, be the family of all integrable functions on open subsets of K
into Z,.

A simple example of an orientation preserving family that is a
commutative algebra is that generated by the operator L acting on
E,=RPRPRPH---PR, ncw, such that for (v, ---, z,)e l,,
L(x, <+, a,) = (%, ++-, 2, 0. Glearly L” = 0.

The following two lemmas show that for a suitably chosen family
of integrable functions, the integrals of the elements of F satisfy a
maximum modulus theorem, allowing wus to obtain a maximum
modulus theorem (A) for the elements of F' proper.

LEMMA 5.1. Let f be a (Frechét) differentiable function on an
open set in K into E such that:

(1) U < domain f, and for xe U, if f. is an invertible element
of B, then f. is orientation preserving.
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(2) There evists a dense subset H of U such that for xe H, f, is
invertible.
Then for xe U, || f(v) || = sup{|| f(B) ||; te V]

Proof. This lemma may be found in [3]. The proof employs
degree theoretic methods from algebraic topology.

LEMMA 5.2. Let p > 1, and f an integrable function on U(0)
mto B such that for xe U(p), » >0, if f(x) + re inverts, then
f(@) + re is orientation preserving. Let F' be an algebra (not neces-
sarily commutative) of integrable functions on U(p) tnto B, with

identity, and let ge F’'. Set u(x) = Sxf(z)dz and v(x) = rgg(z)dz for
0 0
xe U(p). Then for w=u,v, ze U,

lw@) || = M = sup{l| ()]s te V}.

Proof. Set w=wu or v, and H, = {xve U; w, inverts}. If H, is dense
in U, the lemma follows from Lemma 5.1. Suppose now that H, is
not dense in U. We shall prove the lemma by uniformly approxi-
mating w by functions satisfying the hypothesis of Lemma 5.1.

Let z, 2, --- be a countable dense subset of U. For i€ w, set
C, = {reR; f(x;) + re or g(x;) + re does not invert}. Since E is finite
dimensional, C; must be finite for 7€ w, and thus C = Uy C, must
be countable. Let », > »r, > --- be a sequence in R — C which con-

verges to 0, and for xe U(p), 1€ w, set wu;(z) = Sx [f(z) + riz] dz and
oi@) = | 1@ + riafida.

Let tew, xe U(p). Then (u,), = f(x) + r,e is orientation pre-
serving if invertible by hypothesis, and trivially [g(x) + 7.¢]* is orien-
tation preserving if invertible. For ¢, je w, since r;€ C,»;¢C,, and
hence f(x;) + e and g(x;) + re invert. Whence [g(x;) +r;e]* inverts.
Then from Lemma 5.1, for ie w, xe U, w, = u; or v,

fwi(x) || = sup {[[w.(®)[[; te V}.

Letting 7 — 0, w, — w, and the lemma follows.

THEOREM 5.1. (Strong maximum modulus theorem). Let o > 1,
and let f be an integrable function on U(0) into an orientation pre-
serving family G of B, G a linear subspace of B. Then for xe U,

If@ = M=sup{llf@®)];teV}.

Proof. Let F’ b2 the family of all integrable functions on opsn
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subsets of K into G. Since G is a linear space, F'’ is a linear space
closed under the operation of translation.
For we U(o), set u(x) = S f(2)dz. For acV, 0<r< (p—1)2
o

xe U1+ 0)/2], set wu(q, r)(x) = [u(z + ra) —u(@)]r~. Let ¢>0.
Then there exists 0 < ¢ < p — 1, such that for xe E, 1 —d < ||| <
1+ 0, we have || f(z)]| = M + . Then for 0 <7 <4, v,xeV,

e, @)@) ] = || [w+ra) — w(@)] r |
= | 5:’”“f(z>dz = (M9 || ) —a] |

= (M+¢)|lrallr
=M+ ec.

For ve U, 0 < r <4, eV, we have
uw(r, @), = [f(x+ra)—f@)r'eG,
and hence from Lemma 5.2,

u(r, )(@) || = sup {[|u(r, )@)|l; te V= M+ ¢,
and
| f@)a)|] = hgl fu(r, @)l = M+ ¢ .

Thus for xe U, ac V, since ¢ is arbitrary, || f(x)(a)|| < M, and thus
I f@) ] = M.

One additional lemma and we will be able to obtain the unique-
ness theorem.

LeMMA 5.3. Let Ae T. Then:

(1) If p is even and there exists at most one element re R such
that A + re does mot invert, then if A itnverts, A is orientation pre-
serving.

(2) If p is odd, there exists at least one element re R such that
A + re does not tnvert.

3) If for all re R, »+# 0, A + re inverts, then A + re is orien-
tation preserving for all r > 0.

Proof. Let ae{—1, +1} and suppose for all s = 0, that 4 + «as
is invertible. Now extend the reals to include — <> and 4« and set
f(s) = A+ ase for 0 < s <1, set f(s) = A/s + ae for 1 < s < - and
set f(«) = ae. Then f is a continuous map of [0, -] into the space
of invertible elements of B and hence

(A) = 1t [F(0)] = pe[f(e0)] = re(ae) .
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We now handle (1). For some ae{—1, +1}, A + sae inverts for
all s > 0. Thus p(A) = (ce). Since p is even p(—e) = p(+e) =1,
and thus u(4) = 1.

We now handle (2). If A + se inverts for all se R, we have,
since p is odd, 1 = u(e) = #(4) = p(—e) = —1.

We now handle (8). Let » >0 and set 4, = A + re. Then
A, + se inverts for all s = 0 and hence p(A+7re) = p(A,) = ple) = 1.

To prove the lemma employing determinants, we observe that if
we set h(s) = det(A + se), then h is a polynomial of degree p which
vanishes if and only if A + se does not invert. Moreover for sc R,
if h(s) > 0, then ¢(A +se) =1 and if i(s) <0, (A +se) = —1. The
lemma would then follow from these facts:

(1) If p were even and % had at most one root r, then A(s) >0
for all se R, s = r,.

(2) If p were odd, then lim,,__i(s) = —c and lim, . k(s) = oo,
and thus for some r,€ R, h(r,) = 0.

(3) h(s) # 0 for se(0, ) and lim,., h(s) = o, implies h(s) >0
for all se (0, «).

THEOREM 5.2. (uniqueness theorem). Let o > 1, and let F’ be
an algebra (not necessarily commutative) of integrable functions on
U(p) into B, with identity, and let f, g€ F’'. Then if f(t) = g(t) for
all te V, then f(x) = g(x) for all xe U.

Proof. Set h=f—g, let 2, V, and set u(x) = Sz W (z)dz for

xe U(p). Then for all xe V, h*(x) = h(x) = 0, and thus fgor all xe V,
u(x) = 0. Hence from Lemma 5.2, for all z¢€ U,

llw(@) || < sup {||u@)]|l; te V} =0,
and u(x) = 0. Hence for xe U, tc E,
R (x)(t) = lim [u(x+7rt) —u(x)] " = lim 0/r = 0
and A*(x) = 0.
Thus range # lies in Z, and he F,. For xe U(p), set
(@) = S hz)dz
zo

Then v(x) = 0 for xe V. From Lemma 5.3, Z, is an orientation pre-
serving family. Hence we may apply Lemma 5.2 to v and obtain as
above in the case of u, for xe U, (f—g)(x) = h(x) = 0 and f(x) = g(x).

6. The weak maximum modulus theorem.
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THEOREM 6.1. There exists N > 0, such that for 6 >1, feF,
domain f = U(0), we have for xe U,

(1) I f@)| =NM,
where M = sup {|| f(®)]]; te V}.

Proof. For ze U(5), set g(x) = Y f(z)dz. We consider first the

case when there exist two distinet irreducible invariant subspaces
H, H, of E. In this case we shall employ H, ond H, to form a new
norm on T, || - ||, and maximize with respect to || - ||,

For ¢ =1, 2, let 6, be the natural homomorphism of & onto E, =
E/H,. For i=1,2 AecT, set ||A]l; =sup{]|0;A(t)]}; te V}, and set
NAl, = All, + 1| Allse Suppose A is an element of E such that
[[All, =0. If we show that A =0, we will have that || -], is a
norm on 7.

Let xe E. Now for ©+ =1,2, ||0;A]] =0 and 6,4 = 0, and hence
0 = [6;Al(x) = 0,]A(x)]. Thus A(x)e H; for 7 =1, 2, and thus A(x)
lies in the invariant subspace H, O H, of E. From the minimality
of H, H,, H N H, = {0}, and thus A(x) =0. Thus A =0 and ||| -],
is a norm.

Let 7 =1,2, and let =, ye U such that y — e H;. Then setting
S =W = H;, we have from Lemma 4.2, for all te E, [f(y)—f(x)](t) € H,,
and hence 0,f(y)(¢) — 0.f(¥)(¢) = 0:{[f(y) — f(@)](®)} =0. Thus 0,f(y) =
0:f(x) and || f()ll; = [l f@) [l;

Now there exist 0 < a < g8 such that for Ae T,

allAll=|lAl, =BIllAll.

Let e U. Then there exist v, y.€ V, such that y; — vxe H; for 7 =
1, 2, and thus

allf@I = f@ll=11f@IL+ 1@l =I1/@) . + [ F@) ]
=Wl + I @l = BIS@I I+ BILf (W) || = 28M,

and thus || f(®) || = NM, where N = 2pa"".

We now consider the case where there exists exactly one ir-
reducible invariant subspace H of E. If the dimension p of E is
even we will show that the hypothesis of Theorem 5.1 is satisfied.
If p is odd, we will be able, if T does not possess nonzero elements
with ranges lying in H, to reduce the argument to that employed in
the case of two invariant subspaces. Otherwise we shall be forced to
engage in a lengthy and detailed structural analysis of 7 and f.

Let Ae 7. Then there exists at most one element <€ R such
that A — re does not invert. Indeed suppose that there exist
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r, 1€ R, r, # 7, such that A — r,¢e and A — re do not invert. Let
1=1,2 and set V; = {x e E; (a — 7r;¢)(x) = 0}. Then for xe V,, Be T,
y = B(x), we have

(A — re)(y) = [(A—r:e)B](2) = B[(A—ri)(*)] = B(0) = 0,

and thus V; is an invariant subspace of E. Now V; must contain
an irreducible invariant subspace P;, and since H is unique, P; = H.
Thus P, =P, = H, and for xe H, x 0, 0 = A(x) —A(x) = rx—rax =
(r,—7)z. But then 7, # 7, implies z = 0.

If p is even, then from Lemma 5.3, T is an orientation preserv-
ing family, and hence from Theorem 5.1, (1) holds with N = 1.

We now consider the case when p is odd. Suppose for ce T,
o(E)< H, implies ¢ = 0, let 6 be the natural homomorphism of E
into E/H, and set ||A||’=||0A]|| for AeT. Then || -]/’ is a norm
on T and the argument reduces to that for || - ||,.

Now suppose there exists o,e T, 0,+# 0, such that o,(F)< H.
We shall write E as the direct sum of the null space S of o, and a
one-dimensional subspace W of FE, and shall write f in the form
e + o, where o(x)(y) = 0 for xe U(p), y€ H. We will show that p
is constant on S and thus that o is integrable on S (and hence on
all hyperplanes parallel to S) and that since S has even dimension
p—1, that o|S satisfies (1). It then remains to relate the behavior
of o in the direction of W to p to complete the argument.

We decompose f. Since p is odd, from Lemma 5.3, for Ae T,
there exists p,e R such that o, = 4 — p,e does not invert. For
xe U(p), A = f(x), set p(x) = p, and set o(z) = o,. Then f = pe + 0.

We decompose E. Set S = {xe E; g,(x) = 0}, let 2, V such that
oy(x;) = 0, and set W = {rxz,; re R}. If H is shown to be one-dimen-
sional, then since o,FE) < H, we would have that range o, is one-
dimensional, and thus that the null space S of ¢, is p—1 dimensional,
giving us E=S P W. Let BeH, B+0. Now for all AeT,
Hc {xe E; [A—p.e](x) =0}, and thus 0,(8) =[A—p0.(8 =0 and
AB) = p48. Then H’ = {rg; re R} is an invariant subspace of F
lying in H, and thus H'= H and H is one-dimensional. Also
o(x)(H) = {0} for x € U(p).

We now show that p is constant on S. Consider oo, = fo,— 00,.
We first show that oo, = 0 and thus that po, = fg,, and therefore
that po, is integrable.

Let xe U(o) and set @ = o(x). Then a(g) = 0. Now

E2E)2a4E)2...

is a sequence of invariant subspaces of FE, and H must lie in a*(E),
if a*(E) # (0) for ke w. Suppose a” = 0. Then a?(E) = {0} and for
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some 1< k<yp, kew, a/F) = a*(E) = a]a*(F)] = {0} and « is
one-to-one on «*(F). But then se H<Z a®(E) and a(B) = 0. Thus
a? = 0. Now for some z,€S, se R, a(x,) = %, + sx,. Then &(x,) =
a(z,) + sa(x,) = a(x,) + s[x,+sx,] = x, + sx, where z, = a(x,) + sz, € S.
Continuing, we obtain 0 = a’(z,) = x, + s"x,, where z,€S and
sfx,e W. Thus z, = s’2,=0 and s*» =0, s =0, and «ax) = z,€S.
Thus a(E)<=S. Now o,(S) = {0}, and thus ac,(F) = o|a(E)] = 0,S) =
{0} and ag, = 0.

For ze U, te S, we have [0(?)0,](f) = 0. Therefore, setting W=
{0}, we have from Lemma 4.2, for z, ye F such that y—aze S, that
[o(y)o,— p(z)o,](t) = 0 for all te E. In particular

0= [p(y)go_p(x)ao](xo) = [lo(y) - p(x)]oo(xo)

and hence since o,(x;) == 0, we have p(y) — po(x) = 0 and o(y) = p(x).
Thus on hyperplanes of the form = + S, xc E, p is constant and
o = f — pe is integrable. For se[—1, 1], set ¢(s) = o(sw,).

We now study the relationship between o( - )(x,), and p. Let
s,€R, |s,/<1, and let », y be distinct points of the line L =
{so%, + 8B; s€ R} such that x, ye U. Then p(y) = p(») = 4(s,). Since
S is an invariant subspace of E, ge HEZ S, and thus y — xz¢eS.
Now there exists 7, > 0 such that for 0 < 7w < 7w, the contour C =
[z, ] U ly, y +72 ] Uy + 72, x+72,] U [x+7x,, 2] as well as its interior
lies in U(9).

Let 0 < @ < m, Since a(z)(8) =0 for all ze U(o),

Sﬂ o(z)dz =0  and Ximo o(z)dz =0 .

. abaz,
Moreover, since for 0 < s < 7, (x+sx,) — (Y+sx,) =2 —yeS, we have
o(x+sx,) = p(y+sx,) and thus

Sﬁmo‘O(z)dz _ S:ﬂxop(z)dz .

z

Thus
0= SC f)dz = SC o(2)dz + Sop(z)edz

_ U* o(2)dz — gj””a(z)dz]

z

+ o@)(y—x) — o@+7ma)| (¥ +72,) — (¥ +70)]

Hence since p(x) = ¢(s,) and o(x+7x,) = é(s,+7), we have

T+
z

(2) [orm) =gl - = | o@ds — 7 [ otz

Now as w — 0, the right hand side of (2) must converge to
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o) () — o(y)(x,)
and thus ¢'(s,) exists and
¢'(s)(y—2) = a(@)(@) — a(y)(x,)

Let o/, y'e LNV, @’ = y'. Then ¢'(s)(¥' —2') = o(2") () —a(¥')(x,),
and

[8'(s0) | = [ o(@) (@) —a (W) (@o) || - [[¥' =" [|7 = 2], || y'—2" (|7,

where M, = sup{||o(®)|; te V}. Then for xe LN U, ¢'(s))(x—a’) =
o(x)(w,) — o(x')(x,), and

Ho@)(@) Il = [l ¢"(s)(@—2") + o (@) () [|
=g’ [l = [lw — 2" || + [[a(@)(@o) ||

3

() =2M |y — o' [|7 le — o' || + M,
= 3M,,

where clearly ||y’ — 2’| ||z — o'|| = 1.

We are now ready for the concluding arguments. For ac T, set
llell, = sup{lla@®)|l; te SN V} and set |||, = [Ja|, + [|a(x)||. Since
S has even dimension p — 1, we have for x€ U and the hyperplane
S, =2+ S8,

(4) Ho@) |l = sup {llo@®)|l; teS. NV} = M, .

Since T is the direct sum of {re;re R) and D = {ae T; a” = 0}
the mappings

Pire+a—r and Q:re+a—« (reR; cce D)

are uniquely defined linear transformations. Hence there exists N, >0
such that for z = r¢e + a, re R, ae D,

(5) [ri=1PE|[=N|=z|] and [la|=[Q®I| = N|zll,
and thus
(6) M, < N,M.

Clearly || - || is a norm on T and hence there exists N,> 0 such
that ||a|| £ N,||a]. for «e T. Then from equations (8) —(6) for
xe U, we have for some ye V,

@ = llo@e+o@) || = [[o@ell + [[o@) || = [o() | + N[l a(x)]].
=1o) | + N.[[o@) ]|l + N, [ o(@)(x,) ||
< N,M + N,M, + N,(3M,)
< N,M + N,N,M + 3N.N.M = NM ,
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where N = N,(1+4N,).

7. Maximal spectral norm theorem. Let f¢ F, U < domain f,
xe U. In this section we show that

©) Hf@) Il = sup {[[ SOl teV}.

Now for ne w, f*e F, and from the weak maximum modulus theorem,
Theorem 6.1, there exists N > 0, determined by F, such that

[ @) || = N sup{[|f"@®)1l}; te V},
and hence
(1) [ f@)" || = NY* sup {|[ f(O)"||'"; te V}.

If we let n— oo, we obtain || f(x)]||, from the left hand side of (1),
and would expect to obtain sup {|| f(¢)|l,; t€ V} from the right hand
side of (1), thus yielding us (C). The latter conclusion, however, is
not obvious and requires Lemma 7.3 in its proof. Thus, especially in
view of the lengthy and highly technical proof of Theorem 6.1, it is
highly desirable to have a direct proof of (C); which is given in
Theorem 7.2.

To this end we first prove (C) for a semi-norm || - ||,, defined in
terms of the family 57 of irreducible subspaces of E invariant under
T and show that this new semi-norm coincides with the spectral
semi-norm.

For He o7, e T, setting z, = x| H, set

ol = 1l = Tim sup [l a7 [ .

Then for ve T, we set |||, = sup{||«|ly;; He &#}. Clearly |z, <
Nell, < |lx]] for all xe T.

Let He o7 and set Z = T | H. From Lemma 4.1, Z is a field, and
from the fundamental theorem of algebra, Z is isomorphic to R or
K. However, the spectral norm need not coincide with the natural
operator norm on Z. Hence Z under the natural operator norm need
not be isometric to R or K.

Let f be a functional on T. f is said to be a semi-norm if for
all z, ye T, » > 0, we have

(1) f() =0

@2 flro) =rf(w).

3 flr+y) = f@) + fy)-

@) fxy) = f(@)f(y).

() f(e) = 1.

f is said to be multiplicative if f(2?) = f(x)* for ze T.
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We now show that the spectral norm is a multiplicative semi-norm
and hence trivially that || - ||, is a multiplicative semi-norm. This
can be obtained by complexifying T and applying standard arguments.
A direct argument for the real case consonant with the real variable
approach of this paper is given by Riesz-Nagy [7] and is quite
simple.

THEOREM 7.1. For ze T, set f(x) =| 2], = limsup,_. || 2" |""
Then f is a multiplicative semi-norm on T.

Proof. (Riesz-Nagy) Let xe T. We first show that lim,_..[[z"]]'"
exists. Setting a, = ||2"|| for n€ ®, we have for n, mecw, a,., =
x| Z 2] - [|2™]|] = au0n. Set a = inf {a)"; ne w} and let ¢ > 0.
Then for some mew, ai" <a + €/2. Let n>m, new. Then n =
mq + r where gew, and 0 < r < m. Clearly a, < (a,)%, and thus
al™ < al"al" = (a™™Mr e < (a+¢/2)™"al". Now as m— o, we have
gm/n = gm/(gm—+7r) — 1 and /" — 1, and thus for n sufficiently large
a < al*<a+ e Thus lim,.., || 2"||"" exists and is equal to a.

Now for z, ye T,

ey Il = Tim [ ()" [[4=

= lim || o"y* [[4* < Tim [|2” [ || {1~

= [zl llyll,
and

- . 2

a1l = Tim || @) 1 = [tim 1@ P [ = 1o -
Let A, BeT. We now show that [|A+B|.=||4ll, + || Bl

Set a = ||A|| and b= | B}|| and let ¢ >0. Then for some mecw,

[[A"['"* <p=|lAll, +¢/2 and [[B"|['" <q = ||B||, + ¢/2 for all n =
m, n€®. Thus for n=2m, necow,

la+Bri=S (Moo + S (Dpe-+ 3 (1)

S (e 5 (s 5 (M-t
E( )P q”“’] [1 +, Sup (a/p)* + sup (b/q)]
= (p+oM,

and || (A+B)*||'" < (p+q)M'", where M is independent of n. Thus
letting n — «, we have |A+B|, < p+q =zl + vl + e

The next lemma will allow us to conclude ||z||, = |l=||, for
xe T from the fact that || - ||, and || - ||, annihilate the same elements
of T.
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LEmMMA 7.1. Let f,, f» be semi-norms on T such that f,(x) = 0 if
and only if fux) =0 for xeT. Then there exists B> 0 such that
filx) = pfu(x) for all xe T. Moreover if f, and f. are multiplicative,
then f, = fo

Proof. Set S ={xeT; filzx) = 0}. Then for reR, =, yeT,
filre) = rfi(x) =r-0=0, and f,(x+y) < fi(x) + fi(y) =0, and S is a linear
subspace of E. Let @ be the quotient space T/S. Now for 7 =1, 2,
2,9y, €T such that © — ye S, we have | fi(x)—f:(»)| = file—y) =0
and thus fi(z) = fily). For ¢ =12 xeT, setting " =o + S, set
fi(@') = fi(x). Then f/, f; are norms on the finite dimensional space
Q. Hence there exist 0 < a < g such that af/(y) < f;(y) < BfI(Y)
for all ye Q. Whence af(z) < fi(x) < Bfi(x) for ze T.

Let 2e T, ne w, and suppose f; and f, are multiplicative. Then
afi(xz") = fi(a") =< Bfi(x") and since fi(x")'" = fi(x) for

t=1,2 alfi(z) = filx) = g"(@) .

Letting n — o, a'»—1, g'»—1, and hence f(z) =< fi(z) < fi(x) and
fi= Lo

LEMMA 7.2. For zeT, |z, =12 Moreover for ze T,
Hell, =0 if and only if x* = 0, where p is the dimension of E.

Proof. Set S, ={xeT;|lz|l.=0}, S;={xeT;|lz|, =0}, and
S={xeT; 2" =0}, The theorem follows if we show S =S, =8,
since if S, = S,, from Lemma 7.1, we would have ||z||, = ||«||. for
all ze T. Now for eS8, 0=[|0]{], =|/0”||, =]cl? and c€S,, and
for ze S, ||z, Z |||, =0, and 2z€S,. Thus SE S, & 8S,.

Let €S, and suppose o? = 0. Consider the sequence
E20(E) 22 0"(E) = {0} -

Clearly for some kef{l,2, ---, p—1}, 6% E) = ¢""(E) = o[c*(E)] = {0}
and o is one-to-one on W = ¢*(F). Since W is invariant under T
and W is finite dimensional, there exists He 57, such that H< W.
From Lemma 4.1, T, = T|H is a field. Now setting o, = 0| H and
e, = e | H, there exists a € T, such that o,@ = ¢,, Whence 1 = || ¢ ||, =
lowtlly = lloollzll@lly and 0 <|loyllx =|loll.. But then ogS,.

Thus 0? =0 and S, < S, and thus S= S, = S..

LEemMMA 7.3. For M > 1, there exists N > 0 such that for e T,
lle|] < M, we have for all n > p, ncw, ||2"|] < N| x| >,

Proof. Set S={oeT;|lol|l, =0} and let @ be the quotient space
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T/S. For zeT, my,=x+ S, set ||z, =||a]| =inf{[|z+0c]; cecS).
Then ||z||, = 0 if and only if ||z||, = 0 for € T. From Lemma 7.1,
there exists a = 1, such that [|z|, < a]/z]], for xe T. Fix zeT,
lz|| < M. Since z, = x + S is finite dimensional, there exists Z ez,
such that ||Z]|| = ||% || = ||2]|l,. Set 0 =2 — Z. Then o€ S and from
Lemma 7.2, o7 =

Let new, n > p. Then

foll = llz=Z[ = [zl + 1Z]] = 2] «]|
and
2] = || @+0)" g()w%z §(>nﬂi
= S (D zl-llol < izl M, < ol
< al|z|[rtM, ,
where

aM<,=az( )nxup-t—lnan <a$ (}) iz

< p—-lzz —

and thus [[2"|| = Nz |[[;77*.

II/\

THEOREM 7.2. (Maximal spzactral norm theorem). For fe F such
that U < domain f, and xe U,

[f@ |, = M=sup{llf()],;teV}.

Proof. We show that || f(x)|lx < M for all He 5 and thus
that [ f(@) [l = || f(@)[[n = sup{l| f(®) ||ln; He 22} = M. Let He 57
We first consider the case when H has dimension greater than one.
There are two ways of handling this case. First, applying the
fundamental theorem of algebra, we observe that T|H under the
spectral norm is isomorphic and isometric to K.  Suitably com-
plexifying H we obtain from classical complex variable theory that
I f@) [z = sup{|[f(D)|lzs te VN[e+H]} = M.

Proceeding directly we observe, setting Z = T'| H, that z — {0} is
connected, and hence p(z) =1 for all ze Z — {0}, and thus Z is an
orientation preserving family. For ne€ w, from Theorem 5.1.

@O [ F @[ <sup{[|f@®)"|; te VN [e+H]}, where f(t) = f(t)| H
for tedomain f. From Lemma 7.1, there exists a = 1 such that
for xeT, o = x| H, we have ||| < a||%]]l, = al|z|ly. Thus for
new, teV,
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NF@ < all f@ lla =l fF@1E < allFOl,
and thus from (1),
| F@) || < asap (|| £(&) |5 te VN [e+H]}

sasup{l|f@) Il te Vi
=aM".
Hence

1£@) llx = lim || F@) [ < lim @M = M .

We now handle the case when H has dimension one. Suppose
[| f@)]l; > M. For tedomain f, set g(t) = 2 fF()[M+ || f@)|[x]". Then
[[9() [z > 1, and M, = sup{[[g(®)|l; te V} <1.

Now from Lemma 7.3, there exists N > 0 such that ||g@t)"|| <
Nilg@)|z=> for te V, n > p, ncw. Let a, g be points of V such
that [a, 8] = UN[a+H]. There exists yela, 8], ¥ # 2, such that
lg@®) ||z =1 for all te[x, y]. Let A be an arc of V with endpoints
a and B. For tela, B], there exists »(¢) =R such that |»()| =
o)l and [g(®)](y) = r() vy for all ye H. Then for » > p, n even,
new, ¢ = (B—a)f|| B—al|, setting

P:Sﬂ g(ty'dt  and Q:S:Ag(t)"dt

¥, B

we have

~

Pt+Q= SWW gt)dt =0 and |[P||=1Q],
and

@I = | o lids < | Nllg@lrds < NMgo2m,

and

rt)ds = S 1ds

Zla,y]

B Y

1Pl = r(tyds = |

Sﬂ r(t)eds ;I = S

a, 8] Xla,B) ?lx y]

=lly—=ll,

where “ds” indicates integration with respect to path length, and
thus 0 <||ly —2|| = ||P||=||Q|| < NM ™" for all » > p, n even,
new. But then since M, < 1, we have ||y — 2|/ =0 and y = .

REFERENCES

1. L. Heffter, Begriinding der Functionentheorie auf alten and neuen Wegen, Springer,
Berlin, 1955.



138 KENNETH O. LELAND

2. K. O. Leland, A characterization of analyticity, Duke Math. J. 33 (1966), 551-565.

3. ————, Topological analysis of differentiable transformations, Compositio Math.,
18 (1967), 189-200.

4. —— Algebras of integrable operator valued fumctions, Preprint, submitted for
publication.

5. ————, Algebras of integrable functions. II, To appear in the Rocky Mountain J.
Math.

6. A. J. Macintyre and W. John Wilbur, A proof of the power series expansion with-
out differentiation theorey, Proc. Amer. Math. Soc., 18 (1967), 419-424.

7. F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, 1955.

8. G. T. Whyburn, Topological analysis, Second edition, Princeton, 1964.

Received December 2, 1970. This reseach supported by National Science Founda-
tion Grant GP-6311.

ILLINOIS INSTITUTE OF TECHNOLOGY





