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MAXIMUM MODULUS THEOREMS FOR ALGEBRAS
OF OPERATOR VALUED FUNCTIONS

KENNETH 0. LELAND

Let F be a family of functions on subsets of a real
Euclidean space E into a commutative subalgebra with iden-
tity TO of the algebra T of linear transformations of E into
itself. If a suitable integration condition, motivated by
Morera's theorem in complex function theory is placed on
the elements of F, F becomes an algebra of " integrable"
functions which can be realized as the derivatives of trans-
formations of E into itself. It is asked what properties of
the algebra of complex analytic functions from the complex
plane K into K are satisfied by such algebras F. Simple
examples show that analyticity and even differentiability
are lost. However various forms of the maximum modulus
theorem are still satisfied. Three such theorems are presented
here:

(A) If commutivity of To is replaced by the requirement
that the elements of To are "orientation preserving" then
the elements of F are maximized on the boundary of a
sphere.

(B) There exists N > 0, such that for all feF,

U = {teE; 11 111 ^ 1} <= domain /, x e Ό ,

implies

(C) For all feF, D c domain /, xe 0, implies

ll/(s)ll.^sup{||/(ί)||.; II t || = 1} ,

where for AeT0, \\ A \\s is the spectral norm of A.

1* Introduction* The theory of complex valued integrable
functions was developed by Heffter [1], Macintyre and Wilbur [6],
and this author [4]. The generalization to the operator valued case
was introduced in [5].

The first two results of this paper employ degree theoretic meth-
ods from algebraic topology as developed in [3] to obtain similar
results. The methods of [3] represent a generalization to higher
dimensional speces of methods of G. T. Whyburn [8] in the plane,
employed by him to handle complex analytic functions. The third
result follows from a construction of the spectral norm of an operator
employing irreducible subspaces invariant under a family of operators.

Let K denote the complex plane. For ae K, set Aa(z) = az for
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122 KENNETH 0. LELAND

all z e K. Then Aa is a bounded linear transformation of K thought
of as a real Euclidean space E2 into itself. Set Tί — {Aa; ae K}.
Let / be a continuous function on an open set S £ E2 into the space
B2 of bounded linear transformations of E2 into itself, and let P be
a path (rectifiable arc) with endpoints a and β. Then for any sub-
division a — x0 < < xn+1 = β of P, a Riemann sum, the vector
•# = Σ?=ιΛi(^»+i — ̂ ) c a n be formed. If range / lies in T2', then for
ze S, fz = f(z) — Aφ(z) for some φ(z) e K, and we may write

R = Σ
i
Σ
i=--0

Taking the limit as the norm of the subdivision defining R approaches

S β fβ

f(z)dz = \ fz{dz). If range / s T2\
aP JaP

S β

φ(z)dz.
<xP

f is said to be integrable if for closed paths (rectifiable simple

closed curves) C g S , we have f f(z)dz = ί fz(dz) = 0. If range / c Γ/,
then \ ^(^)d^ = 0 for all closed paths C g S , and by Morera's theorem
Φ is analytic; consequently, / is itself Frechet differentiate, where
fz is a linear transformation of E2 into B2 for ze S.

The general case studied in this paper is obtained by replacing
E2 by an arbitrary real Euclidean space E of dimension p, p > 1.
Let T be a commutative subalgebra of the Banach algebra of bounded
linear transformations of E into E and let F be the family of con-
tinuous integrable functions on open subsets of E into T.

Let feF, S = domain / simply connected. Let zoeS and for
f(z)dz. Then g maps S into i£, and for z e S, the

z°
Frechet derivative ^ of g at 2 is the operator f(z) = /z of T7.

In [5], employing arguments reminiscent of the proof of the
Cauchy-Goursat theorem, it is shown that the family of continuous
integrable functions on a simply connected subset of E into T form
an algebra.

In [5] differentiability and analyticity of integrable functions is
discussed. Simple examples of integrable but nondifferentiable func-
tions are given. Since the context of [5] and this paper is a real
variable context a definition of analyticity motivated by Schwarz's
lemma was employed [2].

The development of this paper is no way affected if the only
paths of integration permitted are those formed from straight line
segments or arcs of circles.

2 Notation and definitions. Let ω denote the positive integers.
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If Z is a Banach space, δ > 0, xe Z, set ET̂ S) = {£ e Z; || ί — a || < 3},
U(δ) = U0(δ), and J7 = Z70(l); and set F,(<5) - {t e Z; \\t - x || - S},
F(<?) = F0(δ), and F ~ F0(l). If / is a function with domain S and
H cj £7, then the restriction /1 if of / to if is the function # with
domain H Γ) S such that #(x) = /(#) for all xe H Π S. For H a sub-
space of E and G a family of functions defined on subsets of E, F\H
denotes the family {/ \H; fe F).

An element A of B is said to be orientation preserving if A
inverts and if the degree μ(A) of A is one (or equivalently if the
determinant associated with A is positive). A collection of operators
Z of B is said to be an orientation preserving family if for all Ae Z,
r ;Ξ> 0, we have that if A + re inverts, then A + re is orientation
preserving.

For AeB, set ||\A \\s = lim sup^ M (| An | | i y \ It shall be shown in
§7, that !| ||, is a multiplicative semi-norm.

3. Statement of main results* Let p > 1, and let / be an
integrable function on U (p) into B. Then the principle results of
this paper are:

(A) The strong maximum modulus theorem which states that
if range / lies in an orientation preserving family Z of B, Z a linear
subspace of B, then for all xe U,

| | /(a) II ^M= sup {|| f(t) ||; ί e F} .

(B) The weak maximum modulus theorem which states that
there exists N > 0 such that if fe F, then for all xe U>

\\f(x)\\ ^NM.

(C) The maximum spectral norm theorem which states that if
feF, then for xe U,

\\f(x)\\s^suV{\\f(t)\\s',teV}.

We note that for E and T isomorphic and isometric to K, that
T is an orientation preserving family and that in this case for Z = T,
(A) and (C) reduce to the standard maximum modulus theorem of
complex function theory.

4. Preliminaries. We shall need two lemmas from [5].

A subspace W^E is said to be invariant if T(W) ϋ W. Let
csέf be the family of all nontrivial irreducible invariant subspaces of
E, i.e., the family of all invariant subspaces Hg=E, HΦ {0}, such
that H contains no proper invariant subspace Ho Φ {0}.
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LEMMA 4.1. For He <%?, To == T\H is a field with the same

dimension as H.

We observe from the fundamental theorem of algebra that To is
isomorphic (but not necessarily isometric) to R or K.

Proof. Let Ae To, A Φ 0. Then A is one-to-one on H. Indeed,
for D e T, setting DQ = D \ H, we have

D[A(H)] = DolA(H)] = A[D0(H)] = A[D(H)] s A(H) ,

and hence A(H) is an invariant subspace of H; and consequently,
since H is irreducible, A(H) — i ϊ

Let x e H, XΦO, and set Θ(A) = A(α?) for all A e 5P0 Now range
θ = {A(ίc); 4 e Γ } is clearly an invariant subspace of H and hence
range θ = H. Suppose for A, Be To, Θ(A) = Θ(B). Then A(x) = 5(a?)
and (A — B)(x) = 0. Since A — 5 is not one-to-one on H, A — B = 0,
and thus # is an isomorphism of To onto H.

Let A 6 To. Since A(iJ) = iί, there exists y e H, such that
A(y) = x. Now there exists ae To such that θ(a) — y. Then a(x) = y
and ^(Λα) = (Aa)(x) = A[a(x)] — A(y) — x. Since θ{e) — x, we have
Aa = e and α: = A~\ and thus To is a field.

LEMMA 4.2. Lei / be an integrable function on U into B, and
S and W subspaces of E such that for xe U, te S, f(x)(t) lies in W.
Then for x, yeU such that y — x lies in S, we have

[/(«) ~ f(v)](t)eW for all teE.

f(z)dz. Let x, ye U such that

0

x Φ y and y — x e S, and let x — xQ < < xn+1 = y, ne ω, be a
subdivision of the interval [x, y] of E. Then for

i = 0, 1, , n, ΔXi = xiΛι - ^ e S ,

and hence /(^)(z/^) e W. Thus the Riemann sum Σoπ f(Xi)(4Xi) e W.

Hence [ f(z)dze W and ^ ) - g(x) = [ f(z)dze W.
)x jx

Let teE and reR such t h a t a? + rt, y + r ί e U. Then

(?/ + rί) - (x + r ί ) = y - x e S ,

and hence g(y + rt) — g(x + rί) e W. Thus for all teE

f(v)(t) - f(x)(t) = lim[g(y + rt)-g(y)]r-1 ~ lim [g(x + rt)-g(x)]r"1

0 0

r—>0
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5* Strong maximum modulus theorem and the uniqueness

theorem. The principle result of this section is (A). The three
lemmas of this section involving orientation preserving operators are
also used to obtain (B) in § 6. A simple consequence of (A) or (B)
is the uniqueness theorem which states that an integrable function
of the family of functions in question, defined on U, is uniquely
determined by its value on the boundary V of U. Indeed by the
same methods used to prove (A), the uniqueness theorem can be
shown to hold for an arbitrary algebra of integrable functions,
defined on J7, without any condition of commutivity being placed on
the algebra.

(A) makes no requirement that the family of functions in question
even form on algebra. All results in this paper with the exception
of (A) and the uniqueness theorem are stated only for the com-
mutative case. It is conjectured that some kind of maximum modulus
theorem holds for noncommutative algebras of integrable functions.

From the standpoint of [3] the most obvious example of an
orientation preserving family is Z = {Ae B; AI = I A), where / is an
element of B such that Γ = —e. In this case one can interpret E
as a complex Euclidean space and Z as the family of complex homo-
geneous linear operators acting on E. A less obvious but important
example is Zo = {Ae B; Ak = 0 for some keω).

Let reR, r > 0, Ae Zo, and suppose A + re does not invert.
Then there exists xe E, x Φ 0, such that (A + re)(x) = 0. Then for
some ke ω, Ak = 0, A(x) = —rx, and 0 = 0(x) = Ak(x) = ( —1)V% and
x = 0. Thus A + re inverts for all r > 0, and hence from Lemma
5.3, below, A + re is orientation preserving for all r > 0. In § 7 it
shall be shown for AeB, that Ae ZQ if and only if || A | | 8 = 0 . Let
Fo be the family of all integrable functions on open subsets of E
into ZQ.

A simple example of an orientation preserving family that is a
commutative algebra is that generated by the operator L acting on
En - R®R($R® . . . 0 Λ , neωy such that for (xl9 - , xn) e En,
L(xl9 •, xn) = (.τ2, , xn, 0). (Slearly Ln = 0.

The following two lemmas show that for a suitably chosen family
of integrable functions, the integrals of the elements of F satisfy a
maximum modulus theorem, allowing us to obtain a maximum
modulus theorem (A) for the elements of F proper.

LEMMA 5.1. Let f be a (Frechet) differentiable function on an
open set in E into E such that:

(1) U £ domain /, and for xe U, if f'x is an invertible element
of B, then f[ is orientation preserving.
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(2) There exists a dense subset H of U such that for x e H, f'x is
invertible.
Then for xe U, \\f(x)\\ ^ sup {|| f(t) ||; te V).

Proof. This lemma may be found in [3]. The proof employs
degree theoretic methods from algebraic topology.

LEMMA 5.2. Let p > 1, and f an integrable function on U(p)
into B such that for xe U(p), r > 0, if f(x) + re inverts, then
f(x) + re is orientation preserving. Let Ff be an algebra (not neces-
sarily commutative) of integrable functions on U(p) into B, with

f(z)dz and v(x) — \ g~(z)dz for
o ' Jo

xe U(ρ). Then for w = u, v, xe U,

\\w(x)\\ ^ M = sup {\\ f(t)\\; te V} .

Proof. Set w = u or v, and Hw = {x e U; wf

x inverts}. If Hw is dense
in U, the lemma follows from Lemma 5.1. Suppose now that Hw is
not dense in U. We shall prove the lemma by uniformly approxi-
mating w by functions satisfying the hypothesis of Lemma 5.1.

Let xlf x2i ••• be a countable dense subset of U. For ieω, set
d = {re R; f{Xι) + re or g(x ̂  + re does not invert}. Since E is finite
dimensional, C{ must be finite for ieω, and thus C= UΓ Ci must
be countable. Let rϊ > r2 > be a sequence in R — C which con-

lf(z) + r{z] dz and
o

Let ieω, xe U(p). Then (uz)'x — f(x) + i\e is orientation pre-
serving if invertible by hypothesis, and trivially [g(x) + r^f is orien-
tation preserving if invertible. For i,jeω, since Ti$ C, ViίCj, and
hence f{x3) + r{e and g{x3) + r,te invert. Whence [tfC^-f^e]2 inverts.
Then from Lemma 5.1, for ieω, xe U, w% = u{ or viy

W ^sup{\\wt(t)\\;te V} .

Letting i —* 0, Wi—>w, and the lemma follows.

THEOREM 5.1. (Strong maximum modulus theorem). Let p > 1,
and let f be an integrable function on U(p) into an orientation pre-
serving family G of B, G a linear subspace of B. Then for xe U,

| | ^ J l f = s u p { | | / ( ί ) | | ; ί e V] .

Proof. Let F' bs the family of all integrable functions on open
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subsets of E into G. Since G is a linear space, F' is a linear space
closed under the operation of translation.

For xe U(p), set u(x) = Γ f(z)dz. For aeV, 0 < r < (ρ-l)/2,
Jo

x e U[(l + ρ)/2], set u(a, r)(x) = [u(x + ra) - u(α )] r"1. Let ε > 0.
T h e n t h e r e e x i s t s 0 < o < p — 1, s u c h t h a t for xe E, 1 — o ^ \\x\\ ^
1 + o, w e h a v e || / ( α ) ]| ^ Λf + ε. T h e n for 0 < r < 3, x,ae V,

u{r, a)(x) || = || [̂ (α + rα) - u(x)] r~ι \\

r"1 ^ (ikf+ε) || (x + ra)-x]

- M+ e .

For xe U,0 < r < δ, ae V, we have

Φ, α)i - [/(« + rα)-/(α?)]r- 1 6 G ,

and hence from Lemma 5.2,

|| w(r, α)(a?) || ^ sup {|| u(r, a){t) W teV} £ M+ ε ,

and

i| f(x)(a) || = Km || w(r, α)(α?) II ̂  M + ε .
r-*0

Thus for .τe U, ae V, since ε is arbitrary, ||/(.τ)(α)|| ^ ikf, and thus

One additional lemma and we will be able to obtain the unique-
ness theorem.

LEMMA 5.3. Let Ae T. Then:
(1) // p is even and there exists at most one element reR such

that A + re does not invert, then if A inverts, A is orientation pre-
serving.

(2) // p is odd, there exists at least one element reR such that
A + re does not invert.

(3) // for all reR, r Φ 0, A + re inverts, then A + re is orien-
tation preserving for all r > 0.

Proof. Let ae{ — l, +1} and suppose for all s ^ 0, that A + as
is invertible. Now extend the reals to include — ĉ  and + °o and set
f(s) = A + ase for 0 <: s ^ 1, set f(s) = A/s + ae for 1 < s < oo and
set /(o-3) — ae. Then / is a continuous map of [0, co] into the space
of invertible elements of B and hence

μ(A) - μ[f(0)] - M/(oo)] - μ(ae) .
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We now handle (1). For some ae { — 1, +1}, A + sae inverts for
all s >̂ 0. Thus μ(A) = μ(αe). Since p is even μ{ — e) = M + e) = 1,
and thus %(A) = 1.

We now handle (2). If A + se inverts for all seR, we have,
since p is odd, 1 = μ(e) = μ(A) = μ{ — e) — — 1.

We now handle (3). Let r > 0 and set Ao = A + re. Then
A) + ^ inverts for all s ^ 0 and hence μ(A + re) = μ(A0) = μ(e) = 1.

To prove the lemma employing determinants, we observe that if
we set h(s) = det(A + se), then h is a polynomial of degree p which
vanishes if and only if A + se does not invert. Moreover for s e R,
if h(s) > 0, then μ(A + se) = 1 and if h(s) < 0, μ(A + se) = -1. The
lemma would then follow from these facts:

(1) If p were even and h had at most one root r0, then h(s) > 0
for all s e R, s Φ r0.

(2) If p were odd, then lims_+_00^(s) = — oo and l i m ^ ^ s ) = oo,
and thus for some r0 e R, h(r0) = 0.

(3) h(s) Φ 0 for se (0, oo) and l im,^ h(s) — oo, implies h(s) > 0
for all se (0, oo).

THEOREM 5.2. (uniqueness theorem). Let p > 1, and let F' be

an algebra (not necessarily commutative) of integrable functions on

U(p) into By with identity, and let /, ge F\ Then if f(t) — g(t) for

all teV, then f(x) = g(x) for all x e U.

h2(z)dz for

xe U(ρ). Then for all xe V, h\x) = h(x) = 0, and thus for all xe V,
u(x) = 0. Hence from Lemma 5.2, for all xe U,

\\u(x)\\£suv{\\u(t)\\;teV} = 0,

and u(x) = 0. Hence tor xe U, te E,

h\x){t) = lim [iφ + r^-ΐφ)] r"1 = limO/r = 0

and h2(x) — 0.

Thus range h lies in Zo and heF0. For *τe ί/^o), set

5 χ

h(z)dz .

Then v(x) — 0 for α e F. From Lemma 5.3, ZQ is an orientation pre-
serving family. Hence we may apply Lemma 5.2 to v and obtain as
above in the case of u, for xe U, (f — g)(x) — h(x) = 0 and f(x) — g(x).

6* The weak maximum modulus theorem*
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THEOREM 6.1. There exists N> 0, such that for δ > 1, feF,
domain f — U(d), we have for xeU,

(1)

where M = s u p {|] f(t) \\;teV}.

f(z)dz. We consider first the

0

case when there exist two distinct irreducible invariant subspaces
H19 H2 of E. In this case we shall employ Hγ ond H2 to form a new
norm on Γ, || ||0, and maximize with respect to || ||0.

For i = 1, 2, let θi be the natural homomorphism of E onto E^ =
E/H*. For i = l ,2 ,AeΓ, set || A ||« - sup {|| θ,A{t) ||; ί e F}, and set
|| A||o = || A||i + || A||2. Suppose A is an element of E such that
II A Ho = 0. If we show that A = 0, we will have that || ||0 is a
norm on T.

Let a;e£. Now for ΐ = 1, 2, ||0 fA|| = 0 and ^Λ = 0, and hence
0 = [θiA](x) = 0<[A(α)]. Thus A(α) e 22* for i = 1, 2, and thus A(B)
lies in the invariant subspace Hγ Π fli of £7. From the minimality
of fli, fΓ2, Hλΐ\H2^ {0}, and thus A(α) = 0. Thus A = 0 and ||| ||0
is a norm.

Let i = 1, 2, and let x, y e U such that 7/ — xe Hi. Then setting
S = 17 = fl., we have from Lemma 4.2, for all ί e E, [f(y)-f(x)] (t) e Hif

and hence ΘJ(y)(t) - ΘJ{x){t) - ΘAlfiv) ~ /(*)](«)} - 0. Thus
and | | / ( ! / ) ||4 = | | / ( « ) II*.

Now there exist 0 < α: < β such that for AeΓ,

Let x e U. Then there exist yίy y2 e V, such that y{ — xe Hi for i =
1, 2, and thus

(α?) II, =

^ II /(2/i) Ho + ||/(2/2)||o ^ /5 II / ω II + /s II /(2/2) II ^

and thus \\f{x) \\ ̂  iVikΓ, where N = 2βor\
We now consider the case where there exists exactly one ir-

reducible invariant subspace H of E. If the dimension p of E is
even we will show that the hypothesis of Theorem 5.1 is satisfied.
If p is odd, we will be able, if T does not possess nonzero elements
with ranges lying in H, to reduce the argument to that employed in
the case of two invariant subspaces. Otherwise we shall be forced to
engage in a lengthy and detailed structural analysis of T and /.

Let Ae T. Then there exists at most one element reR such
that A — re does not invert. Indeed suppose that there exist
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rlf r2 G R, rιΦ r2 such that A — rte and A — r2e do not invert. Let
i = 1, 2, and set Vt = {α; e #; (α - nβ)(x) =. 0}. Then for xeVi9 BeT,
y = !?(#), we have

(A - ne)(y) = \(A-rfi)B\{x) = B[{A-r<β)(*)\ = 5(0) = 0 ,

and thus Vi is an invariant subspace of E. Now y< must contain
an irreducible invariant subspace Pif and since H is unique, P< = if.
Thus P,=: P2 = H, and for α? e iϊ, a? =£ 0, 0 = A(x)-A(x) = r ^ - r2x =
(rx — r2)x. But then rx ^ r2 implies x = 0.

If p is even, then from Lemma 5.3, T is an orientation preserv-
ing family, and hence from Theorem 5.1, (1) holds with N = 1.

We now consider the case when p is odd. Suppose for σ e T,
o(E) £ H, implies σ = 0, let # be the natural homomorphism of Z?
into E/H, and set || A| | ' = ||^A|| for 4 e Γ . Then || . ||' is a norm
on Γ and the argument reduces to that for || ||0.

Now suppose there exists σQ e T, σQΦ 0, such that σQ(E) S H.
We shall write E as the direct sum of the null space S of σ0 and a
one-dimensional subspace W of i?, and shall write / in the form
pe + σ, where σ(x)(y) — 0 for x e U(p)9 y e H. We will show that p
is constant on S and thus that σ is integrable on S (and hence on
all hyperplanes parallel to S) and that since S has even dimension
p — 1, that σ\S satisfies (1). It then remains to relate the behavior
of σ in the direction of W to p to complete the argument.

We decompose /. Since p is odd, from Lemma 5.3, for AeT,
there exists pΛe R such that σA = A — pAe does not invert. For
x e U(p), A — f(x), set p(x) = ^ and set σ(x) = σΛ. Then / = pe + σ.

We decompose E. Set S = {# e E; σo(x) = 0}, let x0 e V such that
σo(xo) Φ 0, and set W = {rα;0; r e i?}. If ί ί is shown to be one-dimen-
sional, then since σo(E) g H, we would have that range σ0 is one-
dimensional, and thus that the null space S of σ0 is p — 1 dimensional,
giving us # = S 0 W. Let βeH, β Φ 0. Now for all 4 e T ,
HξΞ= {xeE;[A — pAe](x) = 0}, and thus σjβ) = [A - ^ ] (/S) = 0 and
A(/5) = ^/S. Then ί ί ' — {rβ; reR} is an invariant subspace of E
lying in H, and thus H' = H and i ϊ is one-dimensional. Also
σ(x)(H) = {0} for xeU(p).

We now show that ^ is constant on S. Consider pσ0 = fσ0 — σ<70.
We first show that σσ0 = 0 and thus that pσ0 = fσ0, and therefore
that pσQ is integrable.

Let x e U(p) and set a = σ(x). Then α(/3) = 0. Now

E 2 a{E) 3 α 2 ^ ) 3 . . .

is a sequence of invariant subspaces of E, and i ϊ must lie in ak(E),
if α*(#) Φ (0) for fc 6 ω. Suppose ap Φ 0. Then ap(E) Φ {0} and for
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some 1 £ k < p, keω, ak{E) = ak+i(E) = a[ak(E)] Φ {0} and a is
one-to-one on ak(E). But then βeH^ak(E) and a{β) Φ 0. Thus
av = 0. Now for some xLe S, se R, a(x0) = xλ + sx0. Then α:2($0) =
a(x^) + sa(xQ) = a(xt) + s|X + s£0] = x2 + s2xQ1 where x2 = a(xλ) + sxι e S.
Continuing, we obtain 0 = cxp(x0) — xp + spx0, where xp e S and
8px0 e W. Thus xp = spx0 = 0 and sp = 0, s = 0, and 6φ 0) = x, e S.
Thus α(£;) s S. Now σo(S) = {0}, and thus aσo(E) = σo[a(E)] S ^o(S) =
{0} and aσ0 = 0.

For ^ e U, teS, we have [/θ(^)σ0](ί) = 0. Therefore, setting W —
{0}, we have from Lemma 4.2, for x, y e E such that y — xeS, that

= 0 for all teE. In particular

0 = [p(y)σo-ρ(x)σo](xQ) = [p(y) - ρ(x)]σo(xo)

and hence since σo(^o) Φ 0, we have p(y) — p(x) = 0 and ρ{y) = ρ(x).
Thus on hyperplanes of the form x + S, x e E, p is constant and
σ — f— pe is integrable. For s e [ - l , 1], set φ(s) = p(sx0).

We now study the relationship between σ( )(x0), and ,o. Let
sQeR, | s o | < l , and let x, y be distinct points of the line L =
{sQxQ + sβ; seR) such that x,yeϋ. Then p(y) = ô(a ) = 0(so) Since
S is an invariant subspace of E, βe HS S, and thus y — xe S.
Now there exists 7ΓO > 0 such that for 0 < π < π0 the contour C =
[̂ , 1/] U [i/, 7/+τrα;0] U [y + πxθ1 x-\-πxQ] u [x + πxQ, x] as well as its interior
lies in U(δ).

Let 0 < π < τr0. Since σ(z)(β) = 0 for all 2;e Z7(δ),

σ(z)dz = 0 and I σ(z)dz = 0 .

.τ Jx + πxQ

Moreover, since for 0 ^ s ^ π, (,τ + sa;0) — (j/ + sx0) = x — y e S, we have

0) and thus

S x + πx0 Cy + πXQ

p(z)dz = I ρ(z)dz .

Thus

0 = f /(2)d« = ( σ(z)dz + \ p(z)edz
JC JC JC

σ(z)dz - \ σ(z)dz\

+ ρ(x) (y - x) — ρ(x + ίτα;0) [ (y + ττx0) - (α;

Hence since p(x) = φ(s0) and pfa + πxo) = ^(so + τr), we have

( 2 ) [̂ (SO + T Γ ) - ^ ) ] ^ " " 1 ^ / - ^ ) = ^~x Γ+rtίβV(2)d« - 7Γ"
Ja;

Now as 7Γ —• 0, the right hand side of ( 2 ) must converge to
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σ(x)(xQ) - σ(y)(xQ)

and thus φ'(s0) exists and

Φ'(so)(y-x) = σ(x)(x0) - σ(y)(xQ) .

Let x\ y'e L n V, x' Φ y'. Then ψ'(sQ)(y'-x') = σ(xOW-tf(/)(.<>,
and

\y'-x' \\~ι ^

where ikΓσ = sup {11 σ(t) \\; teV}. Then for xeLΠU, ψr(sQ)(x-xf) =
σ(x)(x0) - σ(x')(x0), and

(I σ(x)(x0) || = || 0'(so)(*-s') + ΦOW II

1

where clearly || yr — x'\\~ι \\ x — x'\\ ^ 1.
We are now ready for the concluding arguments. For ae T, set

\\a\l = s u p { | | α ( ί ) | | ; ί e S Π F } and set | | α | | 2 = HαH, + | | < φ o ) l | . Since
5 has even dimension p — 1, we have for xe U and the hyperplane

6 = & + S,

(4) ' || σ(x) |L ^ sup {|| σ(t) |L; ί e Sx Π F} ^ ik?σ .

Since T is the direct sum of {re; re R) and D = {ae T; ap = 0}
the mappings

P: re + a > r and Q\ re + a > a (reR c eD)

are uniquely defined linear transformations. Hence there exists No > 0
such that for z = re + a, r e R, a e D,

( 5 ) | r | = | P ( « ) | ^ ^ 0 | | « | | and || a\\ = \\ Q(z) || <Ξ No \\ z || ,

and thus

( 6) ilC ^ 2V0M.

Clearly || ||2 is a norm on T and hence there exists iVΊ > 0 such
t h a t | | α | | £ N.Wa]], for a e Γ . Then from equations ( 3 ) — ( 6 ) for
xe U, we have for some yeV,

= \\p{x)e + σ{x)\\ gS | | ^ ( φ | | + ||<τ(a;)|| ^ | p(x) \ + N, \\ σ(x) ||2

^ N0M + iV.iVoikf +
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where N =

7* Maximal spectral norm theorem* Let feF, U £ domain /,
x e U. In this section we show that

(C) l l / ( « ) | | . ^ s u p { | | / ( ί ) | | . ; ί e F } .

Now for ne o), fneF, and from the weak maximum modulus theorem,
Theorem 6.1, there exists N > 0, determined by F, such that

\\P(x)\\^N suv{\\p(t)\\};teV},

and hence

(1) \\f(x)Λ\\^^N^ supίU/^rir; teV} .

If we let n—>co, we obtain | |/(α;) | | β from the left hand side of ( 1 ) ,
and would expect to obtain sup {||/(ί) ||β; t e V) from the right hand
side of (1), thus yielding us (C). The latter conclusion, however, is
not obvious and requires Lemma 7.3 in its proof. Thus, especially in
view of the lengthy and highly technical proof of Theorem 6.1, it is
highly desirable to have a direct proof of (C); which is given in
Theorem 7.2.

To this end we first prove (C) for a semi-norm || | |m defined in
terms of the family £%f of irreducible subspaces of E invariant under
T and show that this new semi-norm coincides with the spectral
semi-norm.

For He Sίf, xeT, setting x0 = x \ H, set

\\X\\H = II ffoll. = l imsup| |a# | | 1 / Λ

Then for xeT, we set ||ίc||« = sup {|| x \\π; He Sίf). Clearly |μτ| |m ^
|| x\\s <; || a; || for all x e T .

Let He £ίf and set Z = T \ H. From Lemma 4.1, Z is a field, and
from the fundamental theorem of algebra, Z is isomorphic to R or
K. However, the spectral norm need not coincide with the natural
operator norm on Z. Hence Z under the natural operator norm need
not be isometric to R or K.

Let / be a functional on T. f is said to be a semi-norm if for
all x, ye T, r > 0, we have

(1) f(x) ̂  0.
(2) f(rx) = rf(x).

(4) f(xy)^f(x)f(y).
(5) f(e) = l.

f is said to be multiplicative if f(x2) = f(xf for x e T.
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We now show that the spectral norm is a multiplicative semi-norm
and hence trivially that || \\m is a multiplicative semi-norm. This
can be obtained by complexifying T and applying standard arguments.
A direct argument for the real case consonant with the real variable
approach of this paper is given by Riesz-Nagy [7] and is quite
simple.

THEOREM 7.1. For xeT, set f(x) = || x \\s = lim s u p ^ || xn \\lln.
Then f is a multiplicative semi-norm on T.

Proof. (Riesz-Nagy) Let xeT. We first show that
exists. Setting an = ||a?*|| for neω, we have for n,meω, an+m =
|| xn+m || ^ || xn || || xm || = anam. Set a = inf « ' " ; neω} and let ε > 0.
Then for some meω, alim < a + ε/2. Let n> m, neω. Then n =
mq + r where qeω, and 0 ^ r < m. Clearly an ^ (am)qar and thus
aT ^ a9jnaιjn = (α^m) ? w /X / w ^ ( α + ε ^ ^ ^ α ^ . Now as n-+ oo, we have
gm/w = qm/(qm + r) —> 1 and αJ/Λ —* 1, and thus for ^ sufficiently large
a ^ αi/w ^ α + ε. Thus l im^^ || xn \\ιln exists and is equal to a.

Now for x, ye T,

%—>co

= \\χ\\.\\v\\.
and

__ Γ l ί m II /y.2» II1/2Λ I _ II /y. 112
— I A l l l l (I Λ/ II I — II J/ I | s

\_n->oo J

Let A, BeT. We now show that || A + B\\. ^ || Λ | | . + | | B | | . .
S e t a = || A \\ and 6 = | | J5 | | and let ε > 0. Then for some meω,
|| A" W11" < p = || AII. + ε/2 and || S K H1'" < ί = || B | | . + ε/2 for all n ^
m , » e β ) . Thus for n ^ 2m, neω,

||(A + B) | | ^ Σ ίjVϊ1 1-'+ "ΪΓβV?- '+ Σ

= Σ (?)ί><(r-<(α/i')< + Σ " ( J ) ? ' ? - ' + Σ

^ \f,(f)Piqn-iλ • Γl + sup (o/p)» + sup

and || (A + B)n\\lln ^ (^ + ̂ )M1/U, where ikf is independent of w. Thus
l e t t i n g n — > o o 9 w e h a v e || A + B \ \ 8 <Z p + q = \\x\\9 + \\y\\8 + e .

The next lemma will allow us to conclude || # IL = I! #IL f° r

xeT from the fact that || | |m and || ||, annihilate the same elements
of T.
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LEMMA 7.1. Let f19 f2 be semi-norms on T such that f{x) — 0 if
and only if f2(x) — 0 for xe T. Then there exists β > 0 such that
f(x) <: βf2(x) for all xe T. Moreover if f and f2 are multiplicative,
then f = /2.

Proof. Set S = {x e T; f(x) = 0} Then for r e R, x, yeT,
f(rx) = rf(x) = r 0 - 0, and f(x + y) ^f(x) + f(y) = 0, and S is a linear
subspace of E. Let Q be the quotient space T/S. Now for i = 1, 2,
a?, y, e T such that x — ye S, we have | fi(x) — fi(y) I ̂  f%(x—y) — 0
and thus /<(#) = /»(!/). For i = 1, 2, α?e Γ, setting x' = a; + S, set
jΓ/(α?O = fi(x). Then //, /2' are norms on the finite dimensional space
Q. Hence there exist 0 < a < β such that af[{y) ^ f[{y) ^ βf[(y)
for all i/ G Q. Whence af(x) <: f2(x) ^ βf{x) for X G T .

Let xeTy neω, and suppose / : and f2 are multiplicative. Then
) and since f(xnyin = /f(α?) for

ί = 1, 2, α^ Λία) g /2(x) ^ /β
1^/1(^) .

Let t ing ^ —> co, α:1/u -> 1, /S1/% -> 1, and hence f(x) ^ /2(a;) ^ f(x) and

LEMMA 7.2. .For x e Γ , || x \\s = \\x | | m . Moreover for xe T,

\\x\\s = 0 if and only if xp = 0, where p is the dimension of E.

Proof. Set Sm = {xe T; \\ x | | m - 0}, Ss = {xe T; \\ x | | . - 0}, and

S = {xeT; xp = 0}. The theorem follows if we show S = Ss = Sm,

since if Ss — Sm1 from Lemma 7.1, we would have \\x\\s — \\x\\m for

all xeT. Now for σeS, 0 = | | 0 | | . = | | ^ | | s - IkH? and σeSs, and

for ^ G S S , | |α ; | | m £ \\x\\, = 0, and » e S m . Thus S g S , g S m .

Let σ e Sm and suppose σp Φ 0. Consider the sequence

2 2 o-p(E) φ {0} .

Clearly for some ke{l, 2, •-., p - 1 } , (Jfc(£;) = ^ + 1 ( J E ; ) - σ l σ * ^ ) ] Φ {0}

and cr is one-to-one on W = σk(E). Since W is invariant under T

and TΓ is finite dimensional, there exists Hej%?, such t h a t HξΞ:W.

From Lemma 4.1, TQ = T\H is a field. Now sett ing σ0 = σ\H and

e0 — e I if, there exists α e T 0 such t h a t σQa = e0. Whence 1 = || β01|// =

\\σoa\\H <, || σ0 | U | | ^ | | / Z and 0 < || σ0 \\H ^ || σ | |β. But then σ$Sm.

Thus o p - 0 and Sm £ S, and t h u s S = Sm = Ss.

LEMMA 7.3. For M> 1, ί/^rβ ea^ste iV > 0 swcfe ίAαί for xeT,
\x\\ ^ ikί, we have for all n> p, neω, \\xn\\ <̂  iV || a? | | Γ ? ) + i .

Proof. Set S = {σe Γ; || cr | | s = 0} and let Q be the quotient space
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T/S. F o r x e T, x0 = x + S , s e t | | a | | o = | | x o | | - i n f {\\x + σ\\; σ e S } .
Then | | α | | 0 = 0 if and only if | |α?||, = 0 for xe T. From Lemma 7.1,
there exists a >̂ 1, such that ||α?||0 ^ # 11̂ 11. for xeT. Fix xeT,
\\x\\ ^ M. Since x0 = x + S is finite dimensional, there exists xexQ

such that || ic || = || x0 || — || x ||0. Set σ — x — x. Then σe S and from
Lemma 7.2, σp = 0.

Let neω, n > p. Then

and

\χ»\\ = \\(χ+σ)«\\ =

< 3 = II v Ho

where

a

and thus | |α* | | ^ iV||a;||rp+1.

THEOREM 7.2. (Maximal spectral norm theorem). For feF such
that U S domain /, and xe U,

Proof. We show that || f(x) \\H ^ M for all He^ and thus
that | |/(a?)| |. = ||/(a?)|L = s u p { | | / ( » ) | | 1 Γ ; £ r e ί s r } ^ i l ί . Let F e ^ .
We first consider the case when H has dimension greater than one.
There are two ways of handling this case. First, applying the
fundamental theorem of algebra, we observe that T \ H under the
spectral norm is isomorphic and isometric to K. Suitably com-
plexifying H we obtain from classical complex variable theory that
II f(x) II* 3* sup{||/(ί)|U; teVΠ [x + H]} £ M.

Proceeding directly we observe, setting Z = T \ H, that z — {0} is
connected, and hence μ(z) = 1 for all zeZ — {0}, and thus Z is an
orientation preserving family. For neω, from Theorem 5.1.

(1) \\f(x)*\\£svp{\\f(t)*\\;teVΓί[x + H]}, where f(t) = f(t) \ H

for 16 domain /. From Lemma 7.1, there exists a :> 1 such that
for xeT, x0 = x | H, we have
neω, teV,

^ a\\xa = ax Thus for
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| |/(ί) || £ a II f{tγ \\B = a || f(t) \\l £ a \\f{t) | | : ,

and thus from (1),

= a Mn .

Hence

|| fix) \\s = lim || /(*)" IΓ' ^ lim altnM = M .

We now handle the case when H has dimension one. Suppose
\\f(x)\\H>M. Forίedomain/, set sr(ί) = 2/(ί)[Jlf + ||/(a?) l^]-1. Then
\\g(x)\\π>l, and Mo = sup {|| g(t) \\s; t e V) < 1.

Now from Lemma 7.3, there exists N > 0 such that ||#(XΓll ^
•AΠIs^IlT^1 for ίe V, n > p, weω. Let a, β be points of V such
that [α, β] = U Π [x + H]. There exists ye [a, β], y Φ x, such that
\\g(t) \\H ̂  1 for all te [x, y\. Let A be an arc of V with endpoints
a and /9. For t e [a, β], there exists τ(t) a i? such that | r(t) \ =

and [̂ (0](?/) = r(t) y for all y e H. Then for n > p, n even,
) | | - α | | , setting

P = [β g(tγdt and Q = Γ

we have

P + Q - l flr(ί)»dί = O and | | P | | = | | Q | | ,

and

I I Q I I ^ Γ \\g(t)n\\ds^[a N\\g(t)\\:-p+1ds ^ NM0

n'p+12π

and

where "ds" indicates integration with respect to path length, and
thus 0 < || y - x || ^ || P\\ = \\ Q \\ £ NM?~P+1 for all n > p, n even,
neω. But then since Mo < 1, we have || y — x \\ — 0 and y = x.
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