PACIFIC JOURNAL OF MATHEMATICS
Vol. 40, No. 1, 1972

EVERY GENERALIZED PETERSEN GRAPH HAS
A TAIT COLORING

FRANK CASTAGNA AND GEERT PRINS

Watkins has defined a family of graphs which he calls
generalized Petersen graphs. He conjectures that all but the
original Petersen graph have a Tait coloring, and proves the
conjecture for a large number of these graphs. In this paper
it is shown that the conjecture is indeed true.

DEFINITIONS. Let % and k be positive integers, k< n — 1, n +#
2k. The generalized Petersen graph G(n, k) has 2n vertices, denoted
by {0,1,2, -+, —1;0", 1", 2", ++-, --+, (n — 1)’} and all edges of the
form (1, ¢ + 1), (2, ), (@', (¢ + k)’) for 0 < ¢ < »n — 1, where all numbers
are read modulo n. G(5, 2) is the Petersen graph. See Watkins [2].

The sets of edges {(3,7 + 1)} and {(#, (¢ + k)’)} are called the
outer and inner rims respectively and the edges (¢, 7') are called the
spokes.

A Tait coloring of a trivalent graph is an edge-coloring in three
colors such that each color is incident to each vertex. A 2-factor of
a graph is a bivalent spanning subgraph. A 2-factor consists of dis-
joint circuits. A Tait cycle of a trivalent graph is a 2-factor all of
whose circuits have even length. A Tait cycle induces a Tait coloring
and conversely.

The method that Watkins used in proving that many generalized
Petersen graphs have a Tait coloring was to prove that certain color
patterns on the spokes induce a Tait coloring. Our method for the
remaining cases consists of the construction of 2-factors and of proof
that these 2-factors are Tait cycles under appropriate conditions.

We restrict ourselves to the generalized Petersen graphs G(n, k)
with the properties:

n—1
2

nodd, n =17, (n, k) =1,and 2 < k <

All other cases (and some special instances of the above) were
dealt with by Watkins.

We construct three types of 2-factors. The first typs is a Tait
cycle when k is odd. The second type is a Tait cycle when k is even
and n = 3(mod 4) and also when k is even and » = 1(mod 4) with £
even. (As (n,k) =1, we define £ as the unique positive integer
< m, for which £k = 1(mod %).) The third type takes care of the
remaining graphs.
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The principal tool in the proofs is the automorphism ¢ (hence-
forth fixed) of G(n, k) defined by () = n — %; (?') = (n — 7). In each
case @ induces an automorphism (also called @) of the constructed
2-factor. To facilitate notation we write n = 2m + 1.

CONSTRUCTION 1. The subgraph H of G(n, k) has the following
edges:

(a) On the outer rim: m + k,m+k+1),m+k+ 1, m+k+
2), +++,(m—1,0),(0,1),(1,2), -+, (m — k,m — k + 1),
m—k+2m—-—k+3),m—k+4,m—Fk~+25),- -,
m+k—2 m+Fk—1).

The last line may bs written as (m — k + 27, m — k + 27 + 1),
1<j<k—-1.

(b) Spokes: (m + k, (m + k), (m —k + 1, (m — k + 1)), (m —
E+2,m—-—k+2)),«--(m+k—1(m+ k—1)).

(¢) On the inner rim: (#,(C+ k), m+1=i1=n-—1
@, C—k) k1< m.

ExaMpPLE. G(11, 3)

0
FIGURE 1

Clearly H is a 2-factor, and @(H) = H. If C, is the circuit of
H which contains 0, then @(C)) = C,. If C, has odd length, then it
must contain an odd number of edges of the form (¢, — ) and (@', —7’).
The only candidates are:

(A) (m,m 4+ 1)
® ((»-%)'(3))
o (7). (%)
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The edge (C) is not in H by our construction. Either the presence
of (A) in H or the existence of edge (B) will imply that % is even.
We conclude that if k& is odd C, has even length.

Let m —k+2=<t1=<m+ k—1. Then either ¢,4,7+ 1, (7 + 1)
ori,4,1— 1, (¢ — 1) are 4 consecutive vertices on a circuit of H. We
call such sets 4-sets. If every point of a circuit is on a 4-set, then
the circuit has even length.

Now consider a vertex 7/, m + k<i1<n—1lor0it<m—k+1,
which is not on C,. The circuit of H which contains 7' passes con-
secutively through the the vertices ¢, (¢ + k), (¢ + 2k)' -+ (2 + 7k)’,
@+ (r + Dk)', where 1 +rk<m —k+ 11+ (r+Dk>m—k + 1,
r = 0. The vertex (¢ + (r + 1)k)’ is on a 4-set, and also 7 + (r + Dk <
m, hence the circuit continues through the vertices 7 + (» + 1)k, 7 +
r+Dkx1, @G+ @r+DEkx1),E+rkEx£1)--- (2 x1). The circuit
continues to (1 +1— k)’ and by an identical argument eventually
returns and hits 4" or (¢ + 2)’ or (2 — 2)’. In the first case the circuit
is complete and it is easily seen that it has even length. The other
two cases lead to a contradiction; for assume (w.l.o.g) that the circuit
is on (¢, (¢ + 1), (¢ + 2)’). Then by the above argument the circuit
will eventually hit either (¢ + 1)’ again or else (¢ + 8)’. But the first
case is impossible, because H is bivalent. Hence the circuit contains
(@ + 3)’ and further (¢ + 4)’ -.- (m — k + 1)’, but this contradicts our
assumption, as (m — k + 1)’ is on C,.

CONSTRUCTION 2. H has the following edges:

(a) On the outer rim: (n —1,0),(0,1),(2,3),---,(27,27 +1)---
(n — 3, n — 2).

(b) Spokes: all, exeept (0, 0').

(¢) On the inner rim: (0, %), k', 3k'), --- (25K, (2] + LK), ---,
((n — D¥', 0').

(For the sake of clarity we have written ck’ instead of the for-
mally more correct (ck)’.)

ExamMpPLE. G(15,4). See Figure 2.

Again, one checks easily that H is a 2-factor and that (H) = H.
Looking at the edges (A), (B), and (C) of Construction 1, we note
that (C) is not an edge if % is even. If edge (A) occurs, then m =
(m — 1))2 is even and n = 1(mod 4). If edge (B) occurs, and we write
k/2 = jk(mod n), j < m, then j is odd by our construction. But then
k= 2jk(mod n) = (2 — 1) = 0(modn) =n =2j — 1=n = 1(mod 4).

Hence if 7 = 3(mod 4) and % is even none of the lines (4), (B),
and (C) occur, and we may conclude by the argument used in Con-
struction 1 that the circuits through 0 and 0’ have even length. All
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FIGURE 2

the points of every other circuit belong to a 4-set, and hence also
have even length. Therefore H if a Tait cycle if n» = 3(mod 4) and &
is even.

If n=1(mod4) and k£ and k£ are both even, then the edge
((E+1),1)={, (k+1)y)= ('K, (k' + 1K) exists in H, and so does
the edge (— 1, — (k + 1)’). We then obtain the circuit:

O’y k,7 ky k + 17 (k =+ 1)'3 1,y ly Oy - 1y - 1,!
k1), —(+ 1), —k —K, 0

which has length 14 and contains both 0 and 0'.

We conclude that in this case H is again a Tait cycle.

CONSTRUCTION 3. For this construction we assume n = 1(mod 4),
k even, k' odd and > n/2. This last assumption is no real re-
striction, because if k= is odd and < m/2, then Construction 1 gives
a Tait cycle for G(n, k™) and Watkins has shown that G(n, k) and
G(n, k™) are isomorphic. Finally we need to assume £k > 2; this
restriction was not needed in Constructions 1 and 2.

H has the following edges:

On the outer rim: (—1,0),(0,1),(2,3), -++,(k — 4,k — 3), (k — 2,
E—1,kk—-—1kF, k+1,Ek+2,--n—k—2n—k-1),(n—Fkn—
E+1D, n—k+1,n—k+2),n—k+3,n—k+4), -+, (n—3,n—2).

Spokes: all except (0°0"), (k — 1, (k — 1)), (n — k + 1, (n — k + 1))).

On the inner rim: (0/, k'), K, 3k'), -+, (n — K™Y, (n — k™ +
DE), (n — k7 4+ DE, (n — k7 + 2)F), (n — k™ + 3K, (n — k= + k),
oo, (B = 2K, (K — DE), (B — DE, 'K, (K + DE, (B~ + 2)k),
cee, ((n = DE, O).
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ExaMpPLE. G(17, 4)

FIiGURE 3

H is a 2-factor, as long as n — k' + 1 < k™' — 1, which assures
that the constructed edges on the inner rim cover all vertices of the
inner rim. But this condition holds whenever k= > (n + 1/2) or alte-
natively when k' > (n/2), and k£ > 2. It is clear that @(H) = H.

Since n = 1(mod 4), m is even and (m, m + 1) is not an edge of
H. As (n — k/)2 is not an integer H does not have an edge ((n — k)/2)’,
(n + k)/2)"). Finally, since n — k' +1=n—-12=m<m+1=
m+1)2=<Fk*—1, and m is even, H does not contain the edge
(mk', (m + DE) = (= ¥/2, k'/2). As before we conclude that the
circuits containing 0 and 0’ have even length. The circuit con-
taining 0 also contains n — 1,(n — 1)/, (k — 1)’ and 1,1, (n — k + 1),
while the circuit containing 0’ also contains ¥', k, k — 1,k — 2, (k — 2)’
and(n — k)/,n—k,n—k+1,n—k+ 2 (n—k -+ 2). Hence the other
circuits only contain vertices of 4-sets and every circuit of H has
even length.

We note that our constructions are not mutually exclusive. For
example, Construction 1 also produces a Tait cycle, when %k is even,
and the largest positive integer ¢ such that ¢k < n is an odd number.

We conclude with a new conjecture. G.N. Robertson [1] has
shown that G(n, 2) is Hamiltonian unless # = 5(mod 6). As G(n, 2) =
G(n, (n + 1)/2) = G(n, (n — 1)/2) = G(n, n — 2) (see [2]), none of these
graphs has a Hamiltonian if » = 5(mod 6). We conjecture that all
other generalized Petersen graphs are Hamiltonian. In all examples
that we have worked out G(n, k) possesses a Hamiltonian H with
®(H) = H, but our three constructions are Hamiltonians only in a
minority of cases.
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