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SUMMABILITY AND FOURIER ANALYSIS

GEORGE BRAUER

An integration on βN, the Stone-Cech compactification of
the natural numbers N, is defined such that if s is a bounded
sequence and ώ is a summation method evaluating" s to σ,

\sd φ — (7. The Fourier transform ψ of a summation method

ό is defined as a linear functional on a space of test functions
analytic in the unit disc: if

fiz) = y^f(n)zn, \z\ < 1, then ό(f) — \f(n)dό .
Λ = 0 J

A functional which agrees with the Fourier transform of a
regular summation method must annihilate the Hardy space
Hi. Oar space of test functions is often the space Mp of
functions / = Σf{n)zn, analytic in the unit disc, such that

| |/IU/P = lim sup[(l - τ)\ \f(rιt°reiθ)\»

is finite for some p > 1. A functional L which is well defined
on a space Mp for some p Ξ> 2 such that L(l/(1 — z)) = l agrees
with the Fourier transform of a summation method which is
slightly stronger than convergence.

Let s = {sn} be an infinite sequence of complex numbers, that is,
a continuous function on the discrete additive semigroup of natural
numbers N. The sequence s has a continuous extension sβ to βN,
the Stone-Cech compactification of N (sβ takes the value - if s is
unbounded). Throughout the paper, the symbol βZ denotes the
Stone-Cech compactification of the space Z, and the continuous exten-
sion of a function / defined on Z to βZ will be denoted by fβ; for a
description of the Stone-Cech compactification we refer the reader to
[2, pp. 82-93], We impose the norm

j I s\ I = lim sup [ sn \

= LUB\s'%7) , ie βN - N

on the space m0 of bounded sequences. Thus m0 is isometric to
C(βN — N), the ring of continuous complex functions on βN — N;
sequences differing by a null sequence are identified in m0.

Let ό denote a summation method-that is, a linear functional on
a subspace of m,,. We assume that the ό-transform of every sequence
s to which ό is applicable is either a continuous function on N or
else a continuous function on the half open unit interval I: [0, 1).
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For example, if φ is representable by a summation matrix A — (ank),
then the ^-transform of a sequence s is the sequence t given by

oo

in = Σ ank sk n = 0, 1, ,

which is continuous function on N; if φ is the Abel method ,s^f, then
the φ transform of s is the continuous function on I given by

oo

t(r) = (1 — r) Σ sn rn 0 rg r < 1 .

If φ is a regular and nonnegative summation method, then φ is a
functional of norm one on a closed subspace of m0. Moreover if we
denote the ^-transform of s by t then lim sup 111 is a semi-norm on
m0. Thus by the Hahn Banach theorem, the linear functional φ may
be extended to a nonnegative linear functional on m0 which satisfies

( 1 ) Iφ(s) I ̂  lim sup \t\ ,

for each bounded sequence s; we shall denote this extension of φ also
by φ] throughout the paper we will assume that φ has been extended
to m0 in such a way that (1) is fulfilled. Such an extension is never
unique, and the results to be described hold for each such extension
φ:

As a linear functional on m0, φ gives rise to a nonnegative measure
on βN which we also denote by φ. Since φ is a regular summation
method, the measure φ is concentrated on βN — N — we have

f dφ = 1. We shall write I s(%> for f sc^]d^ .

Using (1) we can show

REMARK. If s is a bounded sequence and φ is a regular non-
negative summation method which is representable by either a summa-
tion matrix or a sequence-to-function transformation, then

lim inf t ^ \ sdφ <̂  lim sup t ,

where t denotes the φ-transform of s.

The Abel summation method Jϊf induces translation-invariant
measures on βN. This summation method will play a vital role in
our discussion of Fourier transforms of sequences.

1* Lp Spaces* If p ^ 1 and φ is a regular summation method
which is representable either by a summation matrix or by a sequence-
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to-function transformation, we define Lp(φ) as the space of sequences
s with the property that for each ε > 0 there is a bounded sequence
s{ε) such that the sequence \s — sω\p has a φ transform whose limit
superior is bounded in absolute value by ε; this definition is more
restrictive than the usual definition of Lp spaces. If s is a sequence
in an Lp space we define

ί sdφ = lim ί sωdφ ,
J j8jv ε-»0 J βN

where {s(ε)} is a set of bounded sequences which approximate s in the
sense that for each ε > 0, there is a bounded sequence sω such that
the limit superior of the ^-transform of |s — s{ε)\p is less than ε in
absolute value. We norm Lp by:

V/p

dφ) = l i m

(Clearly the limit is independent of the choice of {sω}).
By Holder's inequality we have that for 1 <£ q £ p, Lp(φ) s Lq(φ),

and moreover | |s| | f f <̂  | | s | | p .
As usual we identify two sequences s and t in Lp(φ) if

| | 8 - t | | p = 0 .

THEOREM. Let φ be a regular nonnegative summation method and
let s be a sequence in Lp(φ), p >̂ 1. Let t denote the φ-transform of
\s\p. Then

lim inf t ^ \\s\pdφ ^ lim sup t < oo .

In particular if φ evaluates the sequence \sn\
p to σ, then

s — σ .

Proof. We deal only with the case where φ is represented by a
summation matrix A = (ank) — the case where φ is representable by
a sequence-to-function may be dealt with in a similar fashion. Let
sω be a set of bounded sequences approximating s, that is, for each
ε > 0 there is a bounded sequence sω such that

l im s u p ΣjUnk \sk - sk

ω\p ^ ε .

If we take ε = 1,
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l i m s u p Σ anlί \sk\
p

A u

^ 2" lim sup Σ α Λ / ί |8,/ : ) | p

-f- lim sup Σ ^A- ! sA. - s,/85 \p

H e n c e l i m s u p ί ί ; is finite,

Also

ί \s\pdA = l i m \ \s{s)\pdA .

Since each sω is a bounded sequence.

lim inf tn :g lim inf Σ α%A; | sA.
(Ξ) |p + CL

^ lim sup Σ a,,* |sC:) |p + Cx εUv

^ lim sup tP + C2ε
1/JJ ,

where CL and C2 are numbers not depending on 6. If we let ε tend
to zero we have the theorem.

Holder's inequality together with the technique of the above
proof may be used to yield:

THEOREM„ Let ό be a regular nonnegative summation metliod
and let s be a sequence in Lp(ό) p ^ 1. If t denotes the ό-transform
of s. then

lim inf t ^ 1 sdό ^ lim sup t .

Γ
/'?ι particular if ή evaluates s ίo σ, £/?,*m | s<ίό = σ .

2, Fourier transforms* The Fourier transform o of a summation
method 6 is defined as a functional on a space M of test functions
/(-) = ΣΓ-o f(n)zv analytic in the unit disc D: \z\ < 1, given bĵ

the Fourier transform S of a sequence s = {sn} is defined as the linear
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functional on M given by

s(f) = [ sβ-(fίn)Y-d, s/ ,
JβN

f(n) dJ^_ , feM,

where S/ is any measure on fiN — N induced by the Abel method.
The more customary definition of the Fourier transform, namely

as the function of [0, 2π] given by

\ exp( — i na)sn dJ^_ , 0 ̂  a < 2π ,

is insufficient; S. P. Lloyd has given examples of sequences s such

that | s n | = 1 for all a and such that \ exp(—i na)sndJ&[_ vanishes for
JN

all a cf [6]. Later we shall make some remarks about sequences s
which may be written

where the Fourier coefficients αu are given by the formulas

r
an = \ sk exp(-^ ank)ds^ ,

JβN

(that is, the sequence sk exp(ίak) is Abel summable for all a), where
each an is a number in [0, 2τr).

By Hp, p ^ 1 we understand the Hardy space of functions /
|/(rβ^)|pώ9 is bounded for 0 ^

0

r < 1 [cf. 5 pp. 39].

THEOREM. If L is a linear functional on a space of functions
analytic in D which agrees with the Fourier transform φ of a regular
summation method φ, then

(1)

for each feM which is also in Hγ\ also

(3) L(l/(l-3)) = 1.

Proof. If fe Hλ then f(z) = Σ . o / W Λ \z\ < 1, and {f(n)} is a

null sequence [cf. 5 pp. 70]. Since ψ is a regular method, φ must
evaluate {/(w)} to zero. Hence φ(f) = 0 for each / e fli Π ikf. To
establish (3) we simply note that since ψ is regular, it must evaluate
the sequence {1,1, •••} to one, that is (£(1/(1 — z)) = 1.
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Our spaces of test functions will be
( a ) the space Mp, p > 1, of functions

analytic in D, such that

\M = lim sup(l - rylPί\2')f(rιlP' exp iθ)\pdθ/2π]
1/P

is finite-throut the paper the symbol pr denotes the number p/(p — 1):
Two functions /, g are identified in Mp in case

(1 - r)PlP> [2π \f(τllpf exp iθ)
Jo

tends to zero as r tends to one. We norm each space Mp by
( b) the space of functions

such that

11/11̂  = limsup(l - r) |/(
r->l—

is finite. We identify two functions / and g in ΛL> in case

(1 — r) \f(r exp iθ) — g(r exp ΐ^)

tends to zero as r tends to 1. We norm MΌo by || | |¥ o o. For 1 < p < g < co
we have Mv s M, of [3 pp. 623-625].

A linear functional L on a normed space M will be said to be
w e l l d e f i n e d i f L(f) = L(g) w h e n e v e r \\f - g\\ = 0, f , ge M.

For p > 0 a sequence s will be said to be strongly Abel-p-sum-
mable to σ if

lim (1 - r) Σ |sw - σ l P r * = °

The method of strong Abel-p-summability is regular for p > 0.

THEOREM. If 2 ^ p < co 9 and L is a well-defined linear func-
tional on Mp such that

( 4 ) 1,(1/1-*) = 1 ,

then there is a summation method ψ which includes strong Abel-pf-
summability such that
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φ{f) = L(f) /€ MP .

Proof. We define a summation method φ by \ sdφ = L(»S),

where S(s) = Σ~=o s»s% whenever the right hand is defined. life Mpf

then L(f) is defined and φ(f) = ί /C^W = L(/). Now let {sn} be

strongly Abel-p'-summable to σ. Then (1 — r) Σ |sw — σ|pV* —» 0.
Since Σ isn — o)#* — £(s) — σ/(l — 2) we have, by the Hausdorff-Young

theorem cf [7, pp. 145], (1 - r) P \S(rι/pfeiθ) - σ/(l - r1ι*'ei$)\pdθ-+Q;
Jo

thus | |S — σ/(l — z)\\Mp = 0. Since L is well defined,

L(S) = σL(l/(l - «)) = α

by (4) Hence I sdφ = σ, that is, the method 0 includes strong-
JN

Abel-p'-summability.
Similarly

THEOREM. If L is a well defined linear functional on M«, which
satisfies (4), £A,ew there is a summation φ which includes strong-Abel-
1-summability such that φ(f) = L(f), fe M^

If a summation matrix A = (ank) has a sizable convergence field,
then lim^co maxfc |αH t f c | = 0; for example this condition must be satis-
fied if A has the Borel property (cf [3]).

We denote by A the the Fourier transform of the summation
method represented by the matrix A.

THEOREM. If A — (ank) is a non-negative regular row-finite sum-
mation matrix such that limw_oo l.u.b* \ank\ = 0, an0 ^ αn l ^ an2 •••,
then A(l/(1 — zeia) = 1 or 0 according as a is or is not congruent to
zero modulo 2π.

Proof. We have 1/(1 - zeia) = Σ~ = o e
inazn. If a = 0 (mod 2π),

then A(l/(1 - 2;eία)) = 1 by the regularity of A. If a Φ 0 (mod 2ττ),
then since the sequence {an k} is nonincreasing in k,

Λ;=0
^ 8a Jη

where ΎJ is the distance of the point a from the multiples of 2π.
Thus A evaluates to zero each sequence {eina} such that a is not a
multiple of 2τr, that is, A(l/(1 - zeia) = 0 if α ^ 0 (mod 2τr).
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THEOREM. Let P denote the Norlund summation method, so that
the P-transform of a sequence s is the sequence {Σΐ=oPn-kSk/Pn}j where
the numbers pn, Pn satisfy the conditions

p = y 0, k = 0(1) , Pn — - .

Then for almost all a in [0, 2π)

P(l/1 - z exp id) = 0 .

This result is proved in [1, pp. 325-328].

THEOREM. If s is a sequence in Lv(S$f), 1 < p g 2, then s is a
bounded functional on Mp, and

\\S\\P ̂  Iimsup(l - r) Σ | s J * r Λ ,
n — 0

Proof. If p ^ 2, then by the Hausdorff-Young theorem

Hence, if

exp (^}!" ̂ / 2 7 r ] ' / e M

), we have by Holder's inequality

^ lim sup (1 - r)fΣ|sJ'r")"'fΣ
l \ 0 / \0

1/p'

.,, lira sum[(l - r) V I

Since the last member is bounded, s is a bounded functional on Mp.
If s is a bounded sequence such that the sequence {\sn\

p} is Abel sum-
mable, then | | s | | ^ | | s | | p — when s is considered a linear functional
on Mp.

THEOREM. If s is a sequence in Lp(,S>f) 2 ^ p < ^

Pll ^ ||s||/limsup(l - r)ΣI^I^%

when s is considered a functional on Mv, provided that the sequence
{\sn\

p} is not Abel summdble to zero. If the sequence {\sn\
p} is Abel

summable, then \\s\\ ̂  | | s | | - // s(f) — 0 for all fe Mp, then \\s\\p = 0.

Proof. We let
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f(n) = \sn\»-% iίsnΦ0,

= 0 if βn = 0 .

If follows from the Hausdorff Young theorem that/(z) — ̂ j(n)zne Mp,
and

| |/H V j > ^ limsup[(l - r) Σ |/(») | 'V] 1 / ! "

- limsupΓ(l - r ) Σ | s n | p r " T " .

Hence if | |/IU p * 0,
p

- r) Σ | s , | p r ]I/f>' .

If the sequence {ί sTO}"} is Abel summable to a nonzero value,

If § annihilates Mp it must annihilate the function / defined above,
and thus | | s | | p — 0.

We make a few remarks about the sequence s which may be
written as exponential series

CO

sk = Σ α« exp(m^fc) fc = 0, 1, ,

where the numbers an lie in the interval [0, 2π) and the numbers an

are given by the formulas

an =
JβN

— lim (1 — r) Σ s/c exp( — iank)rk n — 0, 1, ,

(we assume that the sequence {sh exp (iak)} is Abel summable for
each a in [0, 2ττ)). We also have

an =

We have the following version of the Riesz Fisher theorem:

THEOREM. If Σ\aP\
2 < c°5 then the Fourier transforms of the

exponential polynomials

4 j ) = Σ an exv(iajc) , j = 1, 2, ,

'•converge to a bounded linear functional σ on M2J in the sense that
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l i m | | σ - s ( ί ) | | = 0 ,
3-+00

and

when each sij) is considered a functional on M2.

Proof. Let f(z) = Σ*f(Φn be a function in M2. Then

(£an exv(iank))
βN\ 3' J

o . exv(iank) \d^fjβ \\f\\Mz

which tends to zero as f and j " tend to infinity, where the above
integration is carried out with respect to k. Therefore, for each
fe M2 the sequence {sij)(f)} is a Cauchy sequence of numbers and
hence converges. Let σ(f) — lim sij)(f). It is readily verified that
σ(f) depends linearly on /. Also

hence if we regard σ as a functional on M29 \\σ\\ < ( Σ \aj\Ύ'2*
we take

where

then the sequence {\f(k)\}2 is Abel summable to Σ L i i ' α J 2 ; t h u s

( \
JβN

Since ««>(/) = Σ I«J2, l | s ( ί ) | | 2 = Σ ύ | «J 2 Since ||<r|| = l im,_ ||ί"> ||t
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