SUMMABILITY AND FOURIER ANALYSIS

GEORGE BRAUER

An integration on βN , the Stone-Cech compactification of the natural numbers N, is defined such that if s is a bounded sequence and ϕ is a summation method evaluating s to σ , $\int \! sd\ \phi = \sigma$. The Fourier transform ϕ of a summation method ϕ is defined as a linear functional on a space of test functions analytic in the unit disc: if

$$f(z)=\sum_{n=0}^{\infty}\hat{f}(n)z^{n},\;|z|<1,\; ext{then}\;\;\phi(f)=\int\!\!\hat{f}(n)d\phi\;.$$

A functional which agrees with the Fourier transform of a regular summation method must annihilate the Hardy space H_1 . Our space of test functions is often the space M_p of functions $f = \Sigma \hat{f}(n)z^n$, analytic in the unit disc, such that

is finite for some p>1. A functional L which is well defined on a space M_p for some $p\geq 2$ such that L(1/(1-z))=1 agrees with the Fourier transform of a summation method which is slightly stronger than convergence.

Let $s = \{s_n\}$ be an infinite sequence of complex numbers, that is, a continuous function on the discrete additive semigroup of natural numbers N. The sequence s has a continuous extension s^{β} to βN , the Stone-Cech compactification of N (s^{β} takes the value α if s is unbounded). Throughout the paper, the symbol βZ denotes the Stone-Cech compactification of the space Z, and the continuous extension of a function f defined on Z to βZ will be denoted by f^{β} ; for a description of the Stone-Cech compactification we refer the reader to [2, pp. 82-93]. We impose the norm

$$egin{aligned} ||s|| &= \limsup |s_n| \ &= LUB \, |s^s(\gamma) \;, \quad \gamma \in eta N - N \end{aligned}$$

on the space m_0 of bounded sequences. Thus m_0 is isometric to $C(\beta N - N)$, the ring of continuous complex functions on $\beta N - N$; sequences differing by a null sequence are identified in m_0 .

Let ϕ denote a summation method-that is, a linear functional on a subspace of m_0 . We assume that the ϕ -transform of every sequence s to which ϕ is applicable is either a continuous function on N or else a continuous function on the half open unit interval I: [0,1).

For example, if ϕ is representable by a summation matrix $A = (a_{nk})$, then the ϕ -transform of a sequence s is the sequence t given by

$$t_n = \sum_{k=0}^{\infty} a_{nk} \, s_k \qquad \qquad n = 0, \, 1, \, \cdots \, ,$$

which is continuous function on N; if ϕ is the Abel method \mathcal{A} , then the ϕ transform of s is the continuous function on I given by

$$t(r)=(1-r)\sum_{n=0}^{\infty}s_n\,r^n \qquad \qquad 0 \leq r < 1$$
 .

If ϕ is a regular and nonnegative summation method, then $\underline{\phi}$ is a functional of norm one on a closed subspace of m_0 . Moreover if we denote the $\underline{\phi}$ -transform of s by t then $\lim\sup |t|$ is a semi-norm on m_0 . Thus by the Hahn Banach theorem, the linear functional $\underline{\phi}$ may be extended to a nonnegative linear functional on m_0 which satisfies

$$|\phi(s)| \leq \limsup |t|,$$

for each bounded sequence s; we shall denote this extension of ϕ also by ϕ ; throughout the paper we will assume that ϕ has been extended to m_0 in such a way that (1) is fulfilled. Such an extension is never unique, and the results to be described hold for each such extension ϕ :

As a linear functional on m_0 , $\underline{\phi}$ gives rise to a nonnegative measure on βN which we also denote by ϕ . Since $\underline{\phi}$ is a regular summation method, the measure $\underline{\phi}$ is concentrated on $\underline{\beta} N - N$ we have $\int_{\underline{\theta}^N} d\underline{\phi} = 1$. We shall write $\int s d\underline{\phi}$ for $\int s^{[\underline{\theta}]} d\underline{\phi}$.

Using (1) we can show

REMARK. If s is a bounded sequence and ϕ is a regular non-negative summation method which is representable by either a summation matrix or a sequence-to-function transformation, then

$$\lim\inf t \leqq \int_{\beta_N} \! s d \underline{\phi} \leqq \lim\sup t$$
 ,

where t denotes the ϕ -transform of s.

The Abel summation method $\underline{\mathscr{L}}$ induces translation-invariant measures on $\underline{\beta}N$. This summation method will play a vital role in our discussion of Fourier transforms of sequences.

1. L^p Spaces. If $p \ge 1$ and ϕ is a regular summation method which is representable either by a summation matrix or by a sequence-

to-function transformation, we define $L^p(\phi)$ as the space of sequences s with the property that for each $\varepsilon > 0$ there is a bounded sequence $s^{(\varepsilon)}$ such that the sequence $|s-s^{(\varepsilon)}|^p$ has a ϕ transform whose limit superior is bounded in absolute value by ε ; this definition is more restrictive than the usual definition of L^p spaces. If s is a sequence in an L^p space we define

$$\int_{eta_N} s d\phi = \lim_{arepsilon o 0} \int_{eta_N} s^{(arepsilon)} d\phi$$
 ,

where $\{s^{(\varepsilon)}\}\$ is a set of bounded sequences which approximate s in the sense that for each $\varepsilon>0$, there is a bounded sequence $s^{(\varepsilon)}$ such that the limit superior of the ϕ -transform of $|s-s^{(\varepsilon)}|^p$ is less than ε in absolute value. We norm L^p by:

$$||s||_p = \left(\int |s|^p \, d\phi
ight)^{\!1/p} \, = \lim_{arepsilon o 0} \left[\int |s|^{(arepsilon)}|^p d\phi
ight]^{\!1/p} \, .$$

(Clearly the limit is independent of the choice of $\{s^{(\varepsilon)}\}$).

By Holder's inequality we have that for $1 \le q \le p$, $L^p(\phi) \subseteq L^q(\phi)$, and moreover $||s||_q \le ||s||_p$.

As usual we identify two sequences s and t in $L^p(\phi)$ if

$$||s-t||_{n}=0$$
.

THEOREM. Let ϕ be a regular nonnegative summation method and let s be a sequence in $L^p(\phi)$, $p \geq 1$. Let t denote the ϕ -transform of $|s|^p$. Then

$$\lim\inf t\leqq\int |s|^p d\phi\leqq \lim\sup t<\infty$$
 .

In particular if ϕ evaluates the sequence $|s_n|^p$ to σ , then

$$\int |s|^p d\phi = \sigma.$$

Proof. We deal only with the case where ϕ is represented by a summation matrix $A=(a_{nk})$ — the case where ϕ is representable by a sequence-to-function may be dealt with in a similar fashion. Let $s^{(\varepsilon)}$ be a set of bounded sequences approximating s, that is, for each $\varepsilon > 0$ there is a bounded sequence $s^{(\varepsilon)}$ such that

$$\limsup \sum_{k=0}^{\infty} a_{nk} \, |s_k - s_k^{(arepsilon)}|^p \leqq arepsilon$$
 .

If we take $\varepsilon = 1$,

$$egin{aligned} &\limsup \sum_{k=0}^\infty a_{nk} \left| s_k
ight|^p \ & \leq 2^p \Big[\limsup \sum_{k=0}^\infty a_{nk} \left| s_k
ight|^p \ &+ \limsup \sum_{k=0}^\infty a_{nk} \left| s_k - s_k
ight|^p \Big] \ & \leq 2^p \left[\limsup \sum a_{nk} \left| s_k
ight|^p + 1
ight]. \end{aligned}$$

Hence $\limsup |t|$ is finite.

Also

$$\int |s|^p dA = \lim_{arepsilon o 0} \int |s^{(arepsilon)}|^p dA$$
 .

Since each $s^{(s)}$ is a bounded sequence.

$$\begin{split} & \lim\inf t_n \leqq \liminf\sum a_{nk} \, |s_k{}^{(\varepsilon)}|^p + C_1 \, \varepsilon^{1/p} \\ & \leqq \int |s^{(\varepsilon)}|^p dA + C_1 \, \varepsilon^{1/p} \\ & \leqq \lim\sup \sum_{k=0}^\infty a_{nk} \, |s^{(\varepsilon)}|^p + C_1 \, \varepsilon^{1/p} \\ & \leqq \lim\sup t_p + C_2 \, \varepsilon^{1/p} \; , \end{split}$$

where C_1 and C_2 are numbers not depending on ε . If we let ε tend to zero we have the theorem.

Holder's inequality together with the technique of the above proof may be used to yield:

THEOREM. Let ϕ be a regular nonnegative summation method and let s be a sequence in $L^p(\phi)$ $p \geq 1$. If t denotes the ϕ -transform of s, then

$$\liminf t \le \int s d\phi \le \limsup t$$
.

In particular if ϕ evaluates s to σ , then $\int_{\beta \lambda} s d\phi = \sigma$.

2. Fourier transforms. The Fourier transform $\hat{\underline{\phi}}$ of a summation method $\underline{\phi}$ is defined as a functional on a space M of test functions $f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$ analytic in the unit disc D: |z| < 1, given by

$$\begin{split} \hat{\underline{\phi}}(f) &= \int_{\underline{\hat{\rho}}_{N-N}} (\hat{f}(n))^{\underline{\hat{\rho}}} \, d\underline{\hat{\phi}} \\ &= \int_{\underline{\hat{\rho}}_{N}} \hat{f}(n) d\underline{\hat{\phi}} \; ; \end{split}$$

the Fourier transform \hat{s} of a sequence $s = \{s_n\}$ is defined as the linear

functional on M given by

$$egin{aligned} \hat{s}(f) &= \int_{ ilde{eta}^N} s^{ ilde{arrho}}(\hat{f}(n))^{ ilde{arrho}} d \, \underline{\mathscr{S}} \;\;, \ &= \int \! s_n \hat{f}(n) \; d \, \underline{\mathscr{S}} \;\;, \quad f \in M \;, \end{aligned}$$

where $\underline{\mathscr{S}}$ is any measure on $\underline{\beta}N-N$ induced by the Abel method.

The more customary definition of the Fourier transform, namely as the function of $[0, 2\pi]$ given by

$$\int_{N} \exp(-i \ n \underline{lpha}) s_n \, d \underline{\mathscr{S}}$$
 , $0 \leq \underline{lpha} < 2\pi$,

is insufficient; S. P. Lloyd has given examples of sequences s such that $|s_n|=1$ for all $\underline{\alpha}$ and such that $\int_{\mathcal{N}} \exp(-i \, n\underline{\alpha}) s_n \, d\underline{\mathscr{L}}$ vanishes for all $\underline{\alpha}$ cf [6]. Later we shall make some remarks about sequences s which may be written

$$s_k = \sum_n a_n \exp(i \ \underline{\alpha}_n \ k)$$
,

where the Fourier coefficients a_n are given by the formulas

$$a_n = \int_{s_N} s_k \, \exp(-i \, \alpha_n k) d \mathcal{A}$$

(that is, the sequence $s_k \exp(i\alpha k)$ is Abel summable for all α), where each α_n is a number in $[0, 2\pi)$.

By H_p , $p \ge 1$ we understand the Hardy space of functions f analytic in D: |z| < 1 such that $\int_0^{2\pi} |f(re^{i\theta})|^p d\theta$ is bounded for $0 \le r < 1$ [cf. 5 pp. 39].

Theorem. If L is a linear functional on a space of functions analytic in D which agrees with the Fourier transform $\hat{\phi}$ of a regular summation method ϕ , then

$$(1) L(f) = 0$$

for each $f \in M$ which is also in H_1 ; also

$$L(1/(1-z))=1$$
.

Proof. If $f \in H_1$ then $f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$, |z| < 1, and $\{\hat{f}(n)\}$ is a null sequence [cf. 5 pp. 70]. Since ϕ is a regular method, ϕ must evaluate $\{\hat{f}(n)\}$ to zero. Hence $\hat{\phi}(f) = 0$ for each $f \in H_1 \cap M$. To establish (3) we simply note that since ϕ is regular, it must evaluate the sequence $\{1, 1, \dots\}$ to one, that is $\hat{\phi}(1/(1-z)) = 1$.

Our spaces of test functions will be (a) the space M_p , p > 1, of functions

$$f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n$$

analytic in D, such that

$$||f||_{M_p} = \lim_{r o 1-} \sup (1-r)^{1/p'} \Big[\int_0^{2\pi} |f(r^{1/p'} \, \exp \, i heta)|^p d heta/2\pi \Big]^{1/p}$$

is finite-throut the paper the symbol p' denotes the number p/(p-1): Two functions f, g are identified in M_p in case

$$(1-r)^{p/p'}\int_0^{2\pi}|f(r^{1/p'}\exp{i heta})| \ -g(^{1/p'}\exp{i heta})|^pd heta$$

tends to zero as r tends to one. We norm each space M_p by $||\ ||_{M_p}$, (b) the space of functions

$$f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$$

such that

$$||f||_{_{M_{\infty}}} = \lim_{r \to \infty} \sup(1-r) |f(r \exp i\theta)|$$

is finite. We identify two functions f and g in M_{∞} in case

$$(1-r)|f(r\exp i\theta)-g(r\exp i\theta)|$$

tends to zero as r tends to 1. We norm M_{∞} by $|| ||_{M_{\infty}}$. For $1 we have <math>M_p \subseteq M_q$ of [3 pp. 623-625].

A linear functional L on a normed space M will be said to be welldefined if L(f) = L(g) whenever ||f - g|| = 0, f, $g \in M$.

For p>0 a sequence s will be said to be strongly Abel-p-summable to σ if

$$\lim_{r \to 1} (1 - r) \sum_{n=0}^{\infty} |s_n - \sigma|^p r^n = 0.$$

The method of strong Abel-p-summability is regular for p > 0.

Theorem. If $2 \leq p < \infty$, and L is a well-defined linear functional on M_p such that

$$L(1/1-z)=1,$$

then there is a summation method ϕ which includes strong Abel-p'-summability such that

$$\hat{\phi}(f) = L(f)$$
 $f \in M_p$.

Proof. We define a summation method ϕ by $\int_{\beta N} s d\phi = L(S)$, where $S(z) = \sum_{n=0}^{\infty} s_n z^n$, whenever the right hand is defined. If $f \in M_p$, then L(f) is defined and $\hat{\phi}(f) = \int_N \hat{f}(n) d\phi = L(f)$. Now let $\{s_n\}$ be strongly Abel-p'-summable to σ . Then $(1-r) \sum |s_n - \sigma|^{p'} r^n \to 0$. Since $\sum (s_n - \sigma) z^n = S(z) - \sigma/(1-z)$ we have, by the Hausdorff-Young theorem cf [7, pp. 145], $(1-r) \int_0^{2\pi} |S(r^{1/p'} e^{i\theta}) - \sigma/(1-r^{1/p'} e^{i\theta})|^p d\theta \to 0$; thus $||S - \sigma/(1-z)||_{M_p} = 0$. Since L is well defined,

$$L(S) = \sigma L(1/(1-z)) = \sigma$$

by (4). Hence $\int_N s d\phi = \sigma$, that is, the method ϕ includes strong-Abel-p'-summability.

Similarly

THEOREM. If L is a well defined linear functional on M_{∞} which satisfies (4), then there is a summation ϕ which includes strong-Abel-1-summability such that $\hat{\phi}(f) = L(f)$, $f \in M_{\infty}$.

If a summation matrix $A = (a_{nk})$ has a sizable convergence field, then $\lim_{n\to\infty} \max_k |a_{n,k}| = 0$; for example this condition must be satisfied if A has the Borel property (cf [3]).

We denote by \hat{A} the the Fourier transform of the summation method represented by the matrix A.

THEOREM. If $A=(a_{nk})$ is a non-negative regular row-finite summation matrix such that $\lim_{n\to\infty} |\operatorname{l.u.b}_k| |a_{nk}| = 0$, $a_{n0} \ge a_{n1} \ge a_{n2} \cdots$, then $\widehat{A}(1/(1-ze^{i\alpha})=1)$ or 0 according as α is or is not congruent to zero modulo 2π .

Proof. We have $1/(1-ze^{i\alpha})=\sum_{n=0}^\infty e^{in\alpha}z^n$. If $\alpha\equiv 0\pmod{2\pi}$, then $\widehat{A}(1/(1-ze^{i\alpha}))=1$ by the regularity of A. If $\alpha\neq 0\pmod{2\pi}$, then since the sequence $\{a_n\}$ is nonincreasing in k,

$$\left|\sum_{k=0}^{\infty}a_{nk}e^{ik\alpha}\right|\leq 8a_{n0}/\eta$$

where η is the distance of the point α from the multiples of 2π . Thus A evaluates to zero each sequence $\{e^{in\alpha}\}$ such that α is not a multiple of 2π , that is, $\hat{A}(1/(1-ze^{i\alpha})=0)$ if $\alpha \neq 0 \pmod{2\pi}$.

THEOREM. Let P denote the Norlund summation method, so that the P-transform of a sequence s is the sequence $\{\sum_{k=0}^{\infty} p_{n-k} s_k / P_n\}$, where the numbers p_n , P_n satisfy the conditions

$$P_n = \sum\limits_{k=0}^n p_k$$
 , $p_k = 0(1)$, $P_n
ightharpoonup \infty$.

Then for almost all α in $[0, 2\pi)$

$$\hat{P}(1/1-z\exp i\alpha)=0.$$

This result is proved in [1, pp. 325-326].

Theorem. If s is a sequence in $L^p(\underline{\mathscr{A}})$, $1 , then <math>\hat{s}$ is a bounded functional on M_p , and

$$||\hat{s}||^p \leq \limsup (1-r) \sum_{n=0}^{\infty} |s_n|^p r^n$$
,

Proof. If $p \leq 2$, then by the Hausdorff-Young theorem

$$egin{align} & \left(\sum_{n=0}^{\infty} |\widehat{f}(n)|^{p'} r^n
ight)^{1/p'} \ & \leq \left[\int_{0}^{2\pi} |f(r^{1/p'} \exp{(i heta)}|^{p} d heta/2\pi
ight]^{1/p} \;, \quad f \in M_p \;. \end{cases}$$

Hence, if $s \in L^p(\mathscr{N})$, we have by Holder's inequality

$$egin{aligned} &|\hat{s}(f)| & \leq |\int_{eta N} \{s_n \widehat{f}(n)\} d\underline{\mathscr{M}} \ & \leq \lim_{r o 1^-} \sup \ (1-r) \Big(\sum_{n=0}^\infty |s_n|^p r^n\Big)^{1/p} \Big(\sum_{n=0}^\infty |\widehat{f}(n)|^{p'} r^n\Big)^{1/p'} \ & \leq ||f||_{\mathcal{M}_p} \lim \sup [(1-r) \Big(\sum_{n=0}^\infty |s_n|^p r^n\Big)\Big]^{1/p} \ . \end{aligned}$$

Since the last member is bounded, \hat{s} is a bounded functional on M_p . If s is a bounded sequence such that the sequence $\{|s_n|^p\}$ is Abel summable, then $||\hat{s}|| \leq ||s||_p$ — when \hat{s} is considered a linear functional on M_p .

Theorem. If s is a sequence in $L^p(\mathscr{L})$ $2 \leq p < \infty$, then

$$||\hat{s}|| \ge ||s||/\limsup (1-r) \sum |s_n|^p r^n$$
,

when \hat{s} is considered a functional on M_p , provided that the sequence $\{|s_n|^p\}$ is not Abel summable to zero. If the sequence $\{|s_n|^p\}$ is Abel summable, then $||\hat{s}|| \ge ||s||$. If $\hat{s}(f) = 0$ for all $f \in M_p$, then $||s||_p = 0$.

Proof. We let

$$\hat{f}(n) = |s_n|^{p-2}\overline{s_n} \quad \text{if } s_n \neq 0 , \ = 0 \quad \text{if } s_n = 0 .$$

If follows from the Hausdorff Young theorem that $f(z) = \sum \hat{f}(n)z^n \in M_p$, and

$$||f||_{\mathcal{H}_p} \le \limsup[(1-r)\sum_{n=0}^{\infty}|\hat{f}(n)|^{p'}r^n]^{1/p'}$$

= $\limsup[(1-r)\sum_{n=0}^{\infty}|s_n|^pr^n]^{1/p'}$.

Hence if $||f||_{\mathcal{H}_p} \neq 0$,

$$\|\hat{s}\| \ge \|\hat{s}(f)\| \|f\|_{M_p}$$

 $\ge \|s\|_p p \limsup (1-r) \sum |s_n|^p r^n]^{1/p'}.$

If the sequence $\{|s_n|^p\}$ is Abel summable to a nonzero value,

$$||\hat{s}|| \ge ||s||_p ||s||_p ||s||_p ||s||_p$$
 .

If \hat{s} annihilates M_p it must annihilate the function f defined above, and thus $||s||_p = 0$.

We make a few remarks about the sequence s which may be written as exponential series

$$s_k = \sum_{n=0}^{\infty} a_n \exp(i\alpha_n k)$$
 $k = 0, 1, \dots,$

where the numbers α_n lie in the interval $[0, 2\pi)$ and the numbers α_n are given by the formulas

$$a_n = \int_{\beta_N} s_k \exp(-i\alpha_n k) d\underline{\mathscr{L}}$$

$$= \lim_{\beta_N} (1 - r) \sum_{k=0}^\infty s_k \exp(-i\alpha_n k) r^k \qquad n = 0, 1, \dots,$$

(we assume that the sequence $\{s_k \exp(i\alpha k)\}$ is Abel summable for each α in $[0, 2\pi)$). We also have

$$a_n = \hat{s}(1/1 - z \exp(-i\alpha_n)).$$

We have the following version of the Riesz Fisher theorem:

Theorem. If $\sum |a_p|^2 < \infty$, then the Fourier transforms of the exponential polynomials

$$s_{k}^{(j)} = \sum\limits_{n=i}^{j} a_{n} \exp(ilpha_{n}k)$$
 , $j=1,\,2,\,\cdots,$

converge to a bounded linear functional σ on M_2 , in the sense that

$$\lim_{i\to\infty}\|\sigma-\widehat{s}^{(i)}\|=0,$$

and

$$||\sigma||^2 = \sum_{n=1}^{\infty} |a_n|^2 = \lim_{j=\infty} ||\widehat{\mathfrak{s}}^{(j)}||_2^2$$
 ,

when each $\hat{s}^{(j)}$ is considered a functional on M_2 .

Proof. Let $f(z) = \sum \hat{f}(n)z^n$ be a function in M_2 . Then

$$\begin{split} \mid \widehat{s}^{(j')}(f) - \widehat{s}^{(j'')}(f) \mid \\ &= \int_{\beta_N} \left(\sum_{j'}^{j''} \alpha_n \exp(i\alpha_n k) \right) \widehat{f}(k) d \underline{\mathscr{L}} \\ &\leq \left(\int_{\beta_N} \mid \sum_{j'}^{j''} \alpha_n \exp(i\alpha_n k) \mid^2 d \underline{\mathscr{L}} \right)^{1/2} ||f||_{M_2} \\ &\leq \left(\sum_{n=j'}^{j''} |\alpha_n|^2 \right)^{1/2} ||f||_{M_2} , \end{split}$$

which tends to zero as j' and j'' tend to infinity, where the above integration is carried out with respect to k. Therefore, for each $f \in M_2$ the sequence $\{\hat{s}^{(j)}(f)\}$ is a Cauchy sequence of numbers and hence converges. Let $\sigma(f) = \lim \hat{s}^{(j)}(f)$. It is readily verified that $\sigma(f)$ depends linearly on f. Also

$$|\sigma(f)| = |\lim \hat{s}^{(j)}(f)|$$

 $\leq \left(\sum_{n=0}^{j} |a_n|^2\right)^{1/2} ||f||_{M_2};$

hence if we regard σ as a functional on M_2 , $||\sigma|| < (\sum |a_j|^2)^{1/2}$. If we take

$$f(z) = \sum \hat{f}(k)z^k$$
,

where

$$\hat{f}(k) = \sum_{n=0}^{j} a_n \exp(-i\alpha_n k) ,$$

then the sequence $\{|\hat{f}(k)|\}^2$ is Abel summable to $\sum_{n=1}^{j} |a_n|^2$; thus

$$\int_{\beta N} |\hat{f}(k)|^2 d \underline{\mathscr{A}} = ||f||_{M_2^2} = \sum_{n=1}^j |a_n|^2.$$

Since $s^{(j)}(f) = \sum_{n=1}^{\infty} |a_n|^2$, $||\hat{s}^{(j)}||^2 = \sum_{n=1}^{j} |a_n|^2$. Since $||\sigma|| = \lim_{j \to \infty} ||\hat{s}^{(j)}||$, $||\sigma||^2 = \sum_{n=1}^{\infty} |a_n|^2$.

REFERENCES

- 1. N. Bary, A treatise on trigonometric series, Vol. 2, Pergamon Press, New York, 1964.
- 2. L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, New Jersey, 1960.
- 3. G. Hardy and J. E. Littlewood, A convergence criterion of Fourier series, Math. Z., 28 (1928), 612-634.
- 4. J. D. Hill, Summation of sequences of 0's and 1's, Math. Ann., (2), $\bf 46$ (1945), $\bf 556-\bf 562$.
- 5. K. M. Hoffman, Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, New Jersey, 1962.
- 6. S. P. Lloyd, On the L^2 space of a Banach limit, Proc. Amer. Math. Soc., **20** (1969), 429-433.
- 7. A Zygmund, Trigonometric series, Second edition, New York Chelsea, 1952.

Received August 6, 1970. This research was supported by N. S. F. Grant 7686.

University of Minnesota