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ASYMPTOTICS FOR A CLASS OF
WEIGHTED EIGENVALUE PROBLEMS

PHILIP W WALKER

Abstract: This paper deals with the asymptotic behavior at
infinity of the solutions to /(y) = λwy on [a, oo) where / is an
nth order ordinary linear differential operator, λ is a nonzero
complex number and w is a suitably chosen positive valued
continuous functions. As an application the deficiency in-
dices of certain symmetric differential operators in Hubert
space are computed.

1* Preliminaries* Throughout the first three sections / will
denote an operator of the form,

(1.1) S(v) = y{n) + Σ PkV{n'k) on [α, oo) ,

where each of p2, , pn is a continuous complex valued function on
[α, oo). In view of the transformation indicated on p. 309 of [2] it
results in no great loss of generality to take the coefficient of y{n~~1]

to be zero, and in order to simplify the exposition we shall do this.
We shall be concerned with the behavior at infinity of the solutions
to

(1.2) s{y) = Xwy on [α, oo)

where λ is a nonzero complex number and w is an appropriate weight
(i.e., positive valued continuous function). For a given / we shall
consider the weights w indicated by the following definition. £f(a, oo)
denotes the Banach space of all complex valued measurable functions
which are absolutely Lebesgue integrable on [α, oo).

DEFINITION. If / is as in 1.1 the statement that w is an /-admis-
sible weight means that

(1) w is differentiate, strictly increasing, and unbounded on

(2) each of [w'/w1+ίln]' and [(w'/wy(l/wιfn)] is continuous on [α, oo)
and is in £f{a, oo); and

(3) pόlw
u-ι)ln G £f{a, oo) for j = 2, 3, . , n.

For example if s(y)(t) = y"{t) ± tay{t) for t ^ 1 and w(t) = P then
w will be an /-admissible weight if and only if β > 0 and β >
2(α + 1).

We shall demonstrate that when w is an /-admissible weight the
solutions of 1.2 have a particularly simple asymptotic behavior and

501



502 PHILIP W. WALKER

we shall establish that every operator of the form 1.1 has admissible
weights.

Our asymptotic theorem relies on the classic perturbation theorem
of Norman Levinson [2, Therem 8.1 p. 92 or 10]. Recent related works
include [3, 7, 8, 9,11, and 12]. The results in §4 complement those
of reference [13].

2* Results* Our main results are stated in the following two
theorems.

THEOREM 1. If / is as in 1.1 and U is a continuous function
on [a, oo) there is an ̂ -admissible weight w with w(t)^> U(t) for t^a.

THEOREM 2. // / is as in 1.1, w is an ^-admissible weight, and
X is a nonzero complex number then equation 1.2 has n linearly
independent solutions yu , yn such that for k = 0, , n — 1

y{jt){t)wa*(t)e~μth{t) >μ) as t > oo ,

where

h(t) = Γ wlln ,
Ja

Λi» •••>#» a r e the distinct nth roots of λ, and ak_γ = (n — 2k + l)/2n
for k = 1, , n.

3* Proofs* The proof of Theorem 1 will be facilitated by the
following results.

LEMMA. If r > 1 and 1 < c < d there exist positive constants Mr

and Nr, depending only on r, and a function f defined on [0, 1] such
that

(1) / is continuously differentiate, strictly increasing, /(0) = c,
/(I) - d, and /'(0) = 0 = /'(I);

(2) [f'lfrY exists and is continuous on [0, 1] and has the value
0 at 0 and at 1; and

(3) \[Γ/rY(x)\^Mrc^ and [{fflfff^\{x)^Nrc^ for all
xe[0,1].

Proof. Given r > 1 and 1 < c < d let g: [0, 1] —> [0, 1] be a twice
continuously diίferentiable fuction such that g(0) = 0, g(ϊ) = 1, g'(x)>0
for a? G (0, 1), and #'(0) - g"(0) = g'(ΐ) = g"(l) = 0 (e.g. let g(x) = h(h(x))
where Λ(a?) = (2a? - a2)2). Then let / : [0, 1] -> [c, d] be given by
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clearly /(0) = c and /(I) = d. Since each of g and the function
whose value at x is (Ij2)xz - (l/3)x3 is strictly increasing on [0,1]
and since 1 — r < 0 and l<c<d we see that / is strictly increasing
on [0, 1]. Using the above listed properties of g we see that / ' is
continuous on [0, 1] and that /'(0) = 0 = /'(I). Computation shows
that

[/7/Ί - (6/(r

and

1/7/1' - (6/(r -

Hence condition (2) of the lemma is satisfied. Letting Mr be a bound
for (6/(r - l))f(l - 2g){gff + {g - gz)g") on [0, 1] we see that

I lf/f]'(x) I £ Mr&-r for x e [0, 1] .

Noting that cι~r ^ (f{x)Y~r ^ d 1 ^ for x e [0, 1] and letting Nr be a
bound for [(6/(r - 1))(^ - flr2)^']2 on [0, 1] we see that

for £€[0, 1], and the lemma is proved.

Proof of Theorem 1. We shall make use of the fact that if U
is a continuous function on [α, oo) and 7 is a positive number there
is a weight w such that U jwf e :2^(α, oo). To see this let to be such
that

W(0 (ί - α + I)2

Given an / as in 1.1 and a continuous function U on [α, co)
choose weights v2, v3, , vn such that pi/^ί"""u/fte δ?(α, °°) for j =
2, , ^ and let ^ be a weight such that ^ (ί) ^ max{ϊ7(ί), ^2(ί), ,vjt)}
for all ί ^ α. Next let {ĉ jΓ-i be a strictly increasing sequence of
numbers with ck ^ &2w and ck ^ maximum of v(t) for ί 6 [α + έ — 1, a + k\
and let fk be a function satisfying the conclusion to the lemma with
r = l + 1/n, c — ck and ώ = cA+ι for each k. Let ^ be defined by

w(0 = Λ(* — α — fc + 1) for t 6 [α + k - 1, α + fc] .

Clearly then w satisfies condition (1) in the definition of admissible
weight, and since w(t) ^ v(t), we see that w(t) >̂ U(t) and w satisfies
condition (3) of the definition. To see that condition (2) is satisfied
note that
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= Σ Γ i ιnιn+ίinγ\

λ - 1 1+ίln

and

= £ Γ K/ί/ΛW'Ί
k~lJo

^ Σ N1+llnc^ ^ N1+lln Σ AT2 <
Λ l fcl

Proo/ 0/ Theorem 2. We shall establish the theorem by showing
that the standard vector-matrix formulation,

(3.1)

0 1 0 . . . 0 0

0 0 1 ••. 0 0

V

0 0 0 •.. 0 1

pn) -pn^ -2V_ 2 p2 0

of equation (1.2) has a fundamental matrix YQ such that

Q(t) Y0(t)E (t) > L as t > 00 ,

where

Q = diag [wai, , w"n]

with ak = (n — 2k + l)/2w for fc = 1, , n;

E(t) - diag [e-^Λ(ί), , e-
μ«kW]

with JMJL, , μn the distinct nth. roots of λ and

h(t) = Γ w1/w

Ja

and

μl

Using this notation we begin by letting 7 be a fundamental
matrix for equation (3.1). Since h is strictly increasing on [a, 00) we
may let g be the function inverse to it (h(g(s)) = s for s ^ 0) and
let Z(s) = Q(g(s)) Y(g(s)) for s ^ 0. Noting that g'(s) = l/h\g(s)) and
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that Q(g(s)) is nonsingular we see that Z is a fundamental matrix
for

(3.2) z'(s) =

[Q(g(s)M(g(s))Q-\g(s)) + Q'(g(s))Q-ι(g(s))]Φ)

where M is the coefficient matrix on the right hand side of equation
(3.1). Computation shows that equation (3.2) is the same as

(3.3)

where

z'(s) = [A + a{s)D + R(s)]z(s), s ^ 0

A =

0

0

0

λ

1

0

0

0

0
1

•
0

0

... o

... o

•
... o... o

0

0

•
1
0

(n x n),

a(s) = [w'/w

D = diag [a19 , an] ,

and R(s) is the n x n matrix having

as its n, n — j + 1 entry for 2 ^ j ^ n and zero for all other entries.
Since h(t) ~> oo as t —> °o and

Γ dt

we see from condition (3) of the definition of ^-admissible weight that
ί R I e oSf (0, oo) since by condition (2) of the definition it is the case
that [w'/w1+lln]' and [w'/w)\l/wlln)] are in J*f(a, ©o) we see from simi-
lar "changes of variable" that a' and a2 are in -2^(0, °°). Since
a'eJ*f(a, oo) and α' is continuous, a has a limit at co and since
a2 e =5^(0, oo) this limit must be zero. The characteristic roots of A
are μu * ,μ Λ . Hence for j 1 = 1, •••, n we may let λ̂  be the con-
tinuous function such that Xj(s) —• μs as s —> oo and \5{s) is a charac-
teristic root of A + α(s)D for s ^ 0.

We now shall show that λ, — μ5e Jϊ?(0, oo) for each j . Following
the procedure used in [9] we note that

0 = det [A + a(s)D - λ^s)/]
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where F is a bounded function. (Racall that a(s) —> 0 and X5(s)-+μά

as s —> oo.) Noting that Σ?=Λ = 0 we then have

and

From which we conclude that

and

I λy(s) - μ,

Since Xj(s)—>μjφ0 as s—*oo, since a2e^f(a, oo) and since i*7 is
bounded we see that | λy(s) — μ, 1 is for all large s dominated by a
function in £f(Q, oo); hence λ, — μse£?(0, oo).

Thus all the hypotheses of Thorem 8 1 p. 92 of [2] are satisfied
and noting that the jth column of L is an eigenvector of A correspond-
ing to μό we are able to conclude that there exist numbers sl9 , sn

and a fundamental matrix Zo for equation (3.3) such that

Z0(s)G(s) > L as s > co

where

G(s) = e x p { d i a g [ - j ' λ l f • • • , - £ K ^ .

Since λy — μje^f(ay oo) it follows that there is a nonsingular diago-
nal constant matrix H such that

Z0(s)H diag [<r^s, , e~^s] > L as s > oo .

(See the procedure followed at the end of the proof of Theorem 2.3
in [12].) Since each of Z0H and Z is a fundamental matrix for
equation (3.3) there is a constant nonsingular matrix C such that
Z o i ϊ = ZC. Letting Yo be ΓC and recalling that Z(s) =
we have

) diag [e~^% , β~^s] > L as s > oo .

Hence Q(ί) Y0(t)E(t) —> L as £ -+ oo and the theorem is proved.

4* Application* If w is a weight on [α, oo) we denote by Jϊf2

(w: α, oo) the Hubert space of all complex valued measurable y such
that

I \y\2w<oo
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with the obvious inner product. If / is an nth formally self-adjoint
(in the sense defined in [2]; see in particular 13 and 14 p. 204) oper-
ator, w is a weight,

£gr = {y\ye^f2(w: α, oo), yin-1} is absolutely continuous

and (II w) /(y) e £f\w\ a, oo)} ,

£&J = {y\ye & and has compact support interior to [a, oo)} .

and L and L'o are the restriction of (IIw) / to 3t a n d ^ ό respectively
then LQ is a densely defined symmetric operator in £f\w. α, <»),
hence admits a closure Lo in this space, and L* = L where * denotes
adjoint operator in £f%(w\ α, oo). Verification of these assertions closely
parallels that for the case w = 1 found in [1], [4], and [11].

The deficiency indices of LQ are (nly n2) where ns is the dimension
of the subspace of solutions to

/(y) = (-iy+ίiwy

which lie in Sf2(w: α, oo), (Actually for / formally self-adjoint any λ
in the upper half plane may be used for i and any λ in the lower half
plane for - i . See [4 Theorem 19, p. 1232, 5, and 6].)

By use of Theorem 2 we may conclude the following.

THEOREM 3. Let / be as in 1.1 and let w be an /-admissible
weight.

(1) If n is even and Im λ Φ 0 the dimension of the subspace of
solution to equation 1.2 which lie in <2f2(w: α, oo) is n/2.

(2) If n = 4tk + 1 = 2m + 1 and Reλ > 0 or if n = 4k + 3 =
2m + 1, and Reλ < 0 the dimension of the subspace is m.

(3) // n = 4k + 1 = 2m + 1, and Reλ < 0 or if n = 4k + 3 =
2m + 1, and Re λ > 0 the dimension is m + 1.

Proof. We begin by noting that for c realf w an ^-admissible
weight for some s, and £ c [ α , oo) with Z? of infinite Lebesgue measure
(for the first application below we will take E = [α, oo)),

(4.1) [ exp { Γ wiln [c + (l/n)(w'/w1+1/*)]\ dt ,

is finite if c < 0 and infinite if c > 0. To see this recall that in the
proof of Theorem 2 we showed that a(s) — [w'/w1+lln] (g(s)) —• 0 as
s — oo. Hence [w'/V+1/i(£) = a(h(t)) -> 0 as ί -* oo. Since w(t) -* oo
as ί->oo we then see that wlln(t)[c + (l/ri)(w'lwι+ίίn)(t)] >c for c>0
and < c for c < 0 for all large ί and the above assertion is immediate.

We next observe from Theorem 2 that if w is an /-admissible
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weight then equation 1.2 has n lineary independent solutions Uί9 , Un

(with Uj = (w(α))(w~1)/2%) such that

(4.2) I Uj(t) \2w(t) = (1 + o(l)) exp { j * w1/ίl[2 RejMy+ (l/w)(ιι?7wι+ι^)]l .

If w = 2m and I m λ ^ O we may arrange the nth roots of λ so
that

, < Reμ2 < < Reμm < 0 < Reμm^ < < Reμn .

Thus each of Uu •••, Um will lie in J^ 2(w: α, ©©); and if cm+1, cm+2,
• , cw are not all zero and j is the largest integer with m + l^j ^n
such that cd Φ 0 then

Σ cm+kUm+k = CjUjil + o ( l ) ) $ J^\w: a,oo).
k = l

Hence the first assertion of the theorem is established.
In case I m λ ^ O the last two assertions follow analogously upon

noting that in Case 2 if Im λ Φ 0 the w-th roots may be arranged so
that

, < < Reμm < 0 < Reμm+1 < <

and that in Case 3 they may be arranged so that

, < < Reμm+1 < 0 < Reμm+2 < < Reμm .

If λ is real and positive and n — 4k + 1 the roots may be ar-
ranged so that

, = Reμ2<ReμB

= Reμ4 < < Re//2fc_1

= Reμ2k < 0 < Reμ2k+1

= Reμ2h+2 < <

t < Reμn ,

and so that if μs = μj+ι then Im μj+1 > 0. Then each of Ulf , U2k

is in βSf(α, <^), and each of Z72fc+1> •••,£/» is not in Sf\a9 ©o). It
remains to be shown that no nontrivial linear combination of U2k+19

• ••, Un lies in β5f2(α, ©o) and to do this it is sufficient to show if
2k + 1 ^ j < n with i odd then no nontrivial linear combination of
Uj and Uj+ι lies in =5f2(α, ©o).

Suppose that cJJs + c2Uj+ιe Sf%{w: a, ©o) with cx and c2 not both
zero and j odd with 2A; 4- 1 ^ i < ^. Since U3 g . S ^ 2 ^ : α, ©o), it
follows that <?! ̂  0 and U, + c?7 i+16 ^f2(w: a, oo) where c = c2/Ci.
From Theorem 2 and the definition of ί/Ί, , t/i, we have that
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Us(t) + cUj+1(t) = Uj(t) [1 + c{Uj+1{t)IUά{t))\ is

(4.3) (1 + o(l)) Us(t) {l + (e + o(l)) exp [ £ 2i (Im jHi+1) w
1'-]} .

For all large t. Hence | c | = 1 for if | c \ Φ 1 the term in { } would
be bounded away from zero for all large t and this would contradict
the fact that U3 £ Sf\w\ α, °o). Letting E={t\ modulus of term in 4.3
in { } is ^ τ/"2Γ} we see since w is increasing that E is of infinite
measure. (Think of the exponential term in 4.3 or giving the position
of a particle on the unit circle at time t moving counterclockwise at
an ever increasing rate.) Hence from 4.3 we see that for some con-
stant K,

[ I Uό |
2 w ^ K Γ I U3 + cUj+ι |2 w < - .

But from 4.1 and 4.2 we see that

must be the case. This contradiction shows then that cJJj + c2Uj+ίg
^f2(w: a, co).

The proofs of the remaining assertions when λ is real are
naalogous.
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