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UNIFORM FINITE GENERATION OF THE AFFINE GROUP

FRANKLIN LOWENTHAL

A connected Lie group H is said to be uniformly finitely
generated by a given pair of one-parameter subgroups if there
exists a positive integer n such that every element of H can
be written as a finite product of length at most n of elements
chosen alternately from the two one-parameter subgroups.
Define the order of generation of H as the least such n. It
is shown that the order of generation of the affine group is
either 4 or 5 while its connected Lie subgroups (with two ex-
ceptions) have order of generation equal to their dimension.

A connected Lie group H is generated by a pair of one-parameter
subgroups if every element of H can be written as a finite product
of elements chosen alternately from the two one-parameter subgroups.
If, moreover, there exists a positive integer n such that every ele-
ment of H possesses such a representation of length at most n, then
H is said to be uniformly finitely generated by the pair of one-para-
meter subgroups. In this case define the order of generation of H as
the least such n; otherwise define it as infinity. Since the order of
generation of H will, in general, depend upon the pair of one-parameter
subgroups, H may have many different orders of generation. However,
it is a simple consequence of Sard's theorem [4] that the order of
generation of H must always be greater than or equal to the
dimension of H.

The orders of generation of the isometry groups of the Euclidean
and Non-Euclidean geometry are known. The order of generation of the
isometry group of the spherical geometry may be any integer ^ 3; it is
determined by the cross-ratio of the fixed points of the pair of elliptic
one-parameter subgroups [1]. The order of generation of the isometry
group of the Euclidean geometry is infinite if both one-parameter sub-
groups are elliptic and it is 3 if one is elliptic and the other parabolic
[2] The order of generation of the isometry group of the hyperbolic
geometry is finite if both one-parameter subgroups are elliptic, 3 if
exactly one is elliptic and 4 in all other cases except that it is 6 if
both are hyperbolic with interlacing fixed points [2].

Here all possible orders of generation of the affine group, i.e., the
group of all transformations w = az + β (a, β complex, a Φ 0) and of
all its connected Lie subgroups are determined. It is shown that for
the affine group the possible orders of generation are 4 and 5 while
its connected Lie subgroups (excluding the isometry group of the
Euclidean geometry and the group w = az + β, a > 0) have order of
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generation equal to their dimension.

II* Preliminaries* The affine group A, as defined above, may
also be viewed as the group of 2 x 2 complex invertible matrices of

the form ί ? j J. It is easily shown that the Lie algebra §1 of the

affine group consists of all 2 x 2 complex matrices Cl Q). These are

in 1 — 1 correspondence with the transformations ε = jw + 3 of the
complex plane, so that 21 may be viewed as the set of these (infini-
tesimal) transformations; this viewpoint will be adopted throughout
this paper. By identifying the (proper) subalgebras of §t and using
exp, it can be shown that the proper connected Lie subgroups of A,
excluding the isometry group of the Euclidean geometry and the one-
parameter subgroups, are (to within an inner automorphism) (cf. [3])
(1) (a) w = ea+bi)tz + β (t real, β complex); for each fixed real number

b this is a 3-dimensional subgroup of the affine group.
(b) w = z + β; the 2-dimensional translation group.
(c) w = az, a Φ Q\ the 2-dimensional subgroup that leaves the

origin fixed.
(d) w = az + b (a, b real, a > 0); the 2-dimensional component of

the identity of the real affine group.
The one-parameter subgroups of A, identified by the procedure out-

lined above, may be viewed as the solutions of the differential system

(2) — = ΎW + δ κ>(0, z) = z
dt

i.e., for each ί, — oo < £ < +oo5 w{t, z) is an element of A and the set
of all solutions (2) forms a one-parameter subgroup. Under the trans-
formations of the Lie algebra induced by an inner automorphism of
A, the discriminant γ2 of the infinitesimal transformation ε is an ab-
solute invariant. An infinitesimal transformation ε together with the
one-parameter subgroup that it generates is classified as loxodromic
if its discriminant has nonzero imaginary part, and as elliptic, parabolic
or hyperbolic if its discriminant is real and respectively negative, zero
or positive. The infinitesimal transformations of the subgroups of A
are respectively:

(3) (a) ε = (1 + bi)w + δ for w = e

a+bi)tz + β.
(b) ε = 3 for the translation group.
(c) ε = ΊW for the group that leaves the origin fixed.
(d) ε = qw + r (q, r real) for the real affine group.

The affine group A as well as all its subgroups listed in (1) except
for the group w — eιz + β can be generated by an appropriate pair of
one-parameter subgroups [3]. A pair of infinitesimal transformations
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whose one-parameter subgroups genenrate A can be simultaneously-
transformed into the normal form

( 4 ) ε = yw, η = X(w - 1) I m ( —

by means of a suitable inner automorphism of A. To establish this
one need merely determine necessary and sufficient conditions for ε, η,
σ = [ε, η] = η(dejdw) — ε(dη/dw), [ε, σ], and [η, σ] to span a 4 dimen-
sional vector space over the reals. A similar analysis shows that a
pair of infinitesimal transformations whose one-parameter subgroups
generate the subgroups of A listed in (1) (except for l(a) with & = 0)
can be simultaneously transformed into the respective normal form

(a) ε = (1 + bi)w, b Φ 0, rj = 1; ε loxodromic, Ύ] parabolic or
ε = (1 + bί)w, rj = (1 + bϊ)(w — 1), b Φ 0; both loxodromic

(b) e = l , ? = δ
* ' (c) ε = 7w, η = Xw Im(λ/τ) =£ 0

(d) ε = w, ΎJ — 1; ε hyperbolic, 57 parabolic or
e = w,57 = w — 1 ; both hyperbolic

by an inner automorphism.
Denote by Tt{z) and Ss(z) the one-parameter subgroups generated

by ε and η respectively. The orbit under ε of the point zQ is defined
as {Tt(z0), —00 < ί < +00}; in an analogous manner one defines the
orbit of z0 under η. The orbit of z0 is a line parallel to the transla-
tion vector, a circle centered at the fixed point, a ray emanating from
the fixed point or a spiral centered at the fixed point as ε is respec-
tively parabolic, elliptic, hyperbolic or loxodromic. The lemma below
gives a simple sufficient condition for a curve to intersect a spiral orbit.

LEMMA 1. Let C denote the range of the continuous map f: [0, 1]—•
complex plane and suppose /(0) = 0, f(u) ^ 0 on any subinterval [0, 6].
Assume there exists a ray L emanating from the origin (0 $ L) and an
a > 0 such that /([0, a])f]L = 0 . Then in any neighborhood of the
origin, C and the spiral orbit {zoe

rt, — °o < £ < + o o } of z0Φ 0 under
ε — ΊW (Im(72) Φ 0) must intersect infinitely often. In particular,
the conclusion holds if /'(0) exists and is not zero.

Proof. The proof is based on the fact that C is connected; the
details are omitted.

IIL THEOREM 1. The order of generation of all the proper con-
nected Lie subgroups of the affine group listed in (1) (except l(a) with
6 = 0 ) is always equal to the dimension of the respective subgroup.

Proof, (a) Tt(z) = e{ι+H)tz and Ss(z) = z + siίτ]=lor Ss(z) =
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ea+bi)sz + 1 _ ea+u)s if ^ = ( i _|_ bi)(w - 1). Let V(z) = e{ι+bi)tz + β =

e{ι+bίH(z — σ), where σ = — β/ea+bί)t, be an arbitrary element of the sub-
group. Note that V(σ) = 0 and that F(0) lies on the spiral orbit of
— σ under ε. The orbit of 0 under η is either the real axis if η = 1
or a spiral centered at 1 if η = (1 + bi)(w — 1). By Lemma 1 both
curves must intersect the spiral orbit of σ under ε. Choose ίL and sL

such that SS]Ttι{z) takes σ into 0. Since SSlTh(z) is an element of the
subgroup, SSlTtl(0) must lie on the spiral orbit of — σ under ε. Choose
U such that Ttβ8lTtl(0) = 7(0). Since V and Ttβ8lTtl agree on σ, 0
(and oo), it follows that TtβS]Ttχ = F.

(b) Γ,(s) = s + 1 , Ss(z) = z + sδ. Since S.Γ^s) = Γ«S.(«) = z + ί + sδ
to represent an arbitrary translation V(z) =z z + β as a product of
length 2 it suffices to choose s and t such that £ + sδ = /S—this is
possible as Im S Φ 0.

(c) Γt(s) = &% S.(z) = eXsz. Since SsTt(z) = TtS8(z) = e?t+λ% to

represent V(z) = az = elO80Cz as a product of length 2 it suffices to
choose s and £ such that Ύt + Xs = log α—this is possible as Im(λ/τ) ̂  0.

(d) Tt(z) = e*« and S.(«) = ^ + s if 9 7 = 1 or S.(«) = e8z + 1 - e8

iΐ 7] — w — 1. In the first case, since S8Tt(z) = e*2 + s, to represent
an arbitrary real affine transformation V(z) = az + 6, α > 0 as a product
of length 2 choose s = 6, £ = In a. In the second case note that
SsTt(z) = es+tz + 1 - es and TtS.(z) = e8+tz + e f (l - er). If 6 < 1, F(β)

can be represented as a product SsTt(z) by choosing s = ln(l — 6) and
t — ln(α/(l — &)). If 6 ^ 1, then a + b > 0 and F(z) can be represented
as a product TtSs(z) by choosing £ = In (α + δ), s = In (α/(α + δ))

IV* THEOREM 2. T%e order of generation of the affine group is
4 except that if one infinitesimal transformation is elliptic and the
other hyperbolic then it is 5.

Proof. Tt(z) = ertz, Ss(z) = eλsz + 1 - e;% Im (λ/τ) Φ 0. Assume first
that at least one infinitesimal transformation is loxodromic—without
loss of generality let it be ε. To represent and arbitrary affine trans-
formation V(z) = az + β = az + σ—a where σ = a + β = V(l) as a
product TtβHTtβSl{z) of length 4 it is necessary and sufficient that
the two equations

(6) TtβHTtβ8ι{l) = σ

be satisfied. If t0 — tγ + ί2, 80 = ^! + s2 equation (7) is satisfied if and
only if

(8) 7ί0 + λs0 = log a (mod 2πi) .
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Since Im (λ/γ) Φ 0 it is always possible to satisfy equation (8) with
real numbers t0 and s0. Thus it suffices to prove that equation (6) can
be solved with real numbers tly t2, st and s2 such that tt +1 2 ~ tQ, sL + s2 —
s0. Note that as SSl(ϊ) = 1, equation (6) is independent of sx; hence it
suffices to prove that there are real numbers tlf t2 and s2 with ίx + ί2 = t0

such that

( 9 ) ert*(eλ9*e7tί + (1 — eλsή) = σ

or equivalently that there are real numbers tx and s2 such that

(10) βr<*0-«i>(e* 2er«i + (1 - eλsή) = (7

If σ = er*°, equation (10) will be satisfied if s2 = 0. If σ Φ eγt°, then
equation (10) is equivalent to

(11) — 1 ~~ β ^ 2 = ert> .
σe~rh _ e ί a

If F(s2) = (1 - e^)\((7β~~r<() - β̂ S2)» then JP(0) == 0, F'(0) = λ\(l - σe~γtήΦ

0. Hence by Lemma 1 there exist real tx and s2 that satisfy equation
(11) and the proof in case at least one infinitesimal transformation is
loxodromic is complete.

If neither infinitesimal transformation is loxodromic, it follows
from (4) that one is elliptic and the other hyperbolic; assume without
loss of generality that e = ίw, rj — w — 1. First it will be shown that
the affine transformation V0(z) = —2 + 2 (a = — 1, σ = 1) cannot be
expressed as a product of length 4. If V0(z) were expressible as a
product ThSS2TtlSSl(z), equations (8) and (11) with 7 = ί, λ = 1 require
that

(12) it0 + s0 = πi (mod 2πi) and

(13) } . ~ gS2

s2 = e1^

both be satisfied. Now (12) implies that e~ito = — 1. Since

(14) < 1 for all real s2

equations (12) and (13) cannot be simultaneously satisfied.
If V0(z) were expressible as a product SS2ThSSlTtl(z), then equation

(12) must be satisfied together with

(15) SS2ThSSlTh(0) = V0(0) = 2 .

Now (12) implies that s0 = 0, i.e., s, = -s2 and with this substitution
(15) becomes
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(16) e4±l = e«>
e*2 — 1

which has no solution.

To prove that in case ε is elliptic, and rj hyperbolic the order of
generation of A is 5 it suffices to represent V(z) = az + β as a product
THSS2Tt2SSlTh(z) of length 5. This is possible if and only if there exist
real numbers tlf t2, ί8, 8t and s2 such that the equations

(17) it0 + s0 = l o g a, t o = t, + t2 + ί8, s o = s , + s 2

(18) e<ί8(eV*(l - eSl) + 1 - e*2) = β

can be simultaneously satisfied. Clearly it suffices to prove the exist-
ence of real numbers ί2, s1 and s2 such that

(19) SL + s2 = Re log a = In | a |

(20) eV*K1 - eSί) + 1 - es* = -1 /31

both hold, since if equation (20) holds £3 can be chosen so that equa-
tion (18) holds and tγ can then be chosen so that equation (17) holds.
In view of equation (19) equation (20) becomes

(21) e"*(e8* - \a\) = e8* - 1 - \β\ .

If \a\ = 1 + |/31, choose t2 = 0; otherwise a simple application of the
intermediate value theorem shows that for some real s the function

(22, F(s) = • " V Γ N " 8 '

assumes the value —1.

V* Let n Φ oo be the order of generation of a connected Lie group
H by Tt and Ss. It is of interest to determine whether every element
of H can, in fact, be represented as a product of length n whose last
element is a Tt; a dual quenstion may be asked of Ss (both questions
are trivial in the commutative case). Note that any element that can
be expressed as a product of length <n can be expressed both as a
product of length n whose last element is a Tt and one whose last
element is an Ss by inserting the identity I = TQ = So an appropriate
number of times.

If there is an inner automorphism of the group (or even if there
is any automorphism of the group) that interchanges Γt-and S9, then
both questions must have the same answer. The same conclusion holds
under the quite different assumption that n is even; if an element is
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not representable as a product of length n ending in a Γ(, then its
inverse is not representable as a product of length n ending in an S8.

THEOREM 3. // both infinitesimal transformations are loxodromic,
then every element of the group w = ea+hi)tz + β (b Φ 0) has both a
representation at as product of length 3 ending in a Tt and one of length
3 ending in an Ss. If ε is loxodromic, ΎJ parabolic, then every element
of the group has a representation as a product of length 3 ending in
a Tt but there are elements of the group that cannot be represented as
a product of length 3 ending in an S8.

Proof. In both cases the existence of a product of length 3 ending
in a Tt was shown in the proof of Theorem 1. If both infinitesimal
transformations are loxodromic, then there is an automorphism of the
group that interchanges Tt and S3. If e is loxodromic, η parabolic
(assume η = 1) then the translations w = z + β, Im β Φ 0, cannot be
represented as a product S82TtβSl(z) since this would imply that Ttl, £x Φ
0, were also a translation.

THEOREM 4. If one infinitesimal transformation is hyperbolic and
the other parabolic, then every real a fine transformation has both a
representation as a product of length 2 ending in a Tt and one of
length 2 ending in an Ss. If both ε = w and rj = w — 1 are hyperbolic,
then all real affine transformations w = az + b with a + b ̂  0 cannot
be expressed as a product of length 2 ending in a Tt and those with
6 ;> 1 cannot be expressed as a product of length 2 ending in an Ss.

Proof. See the proof of Theorem 1.

THEOREM 5, If at least one infinitesimal transformation is loxo-
dromic, then every affine transformation has both a representation as
a product of length 4 ending in a Tt and one of length 4 ending in an
Ss. If e = iw is elliptic, ΎJ = w — 1 is hyperbolic, then every element
of the affine group can be represented as a product of length 5 ending
in a Tt but none of the transformations w = — az + b, a > 0, b — α ^ l
can be represented as a product of length 5 ending in an Ss.

Proof. Assume at least one infinitesimal transformation is loxo-
dromic. That every affine transformation can be represented as a
product of length 4 ending in a Tt was, in fact, established in the
proof of Theorem 2; since the order of generation is even, the dual
result for Ss follows.

Assume ε = ίw, η = w — l. The assertion concerning products ending
in a Tt again was established in the proof of Theorem 2. Next observe
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that a simple modification of the argument used in Theorem 2 to show-
that V0(z) — —2 + 2 was not representable as a product Tt2SS2ThSSl(z)
shows that all transformations V{z) — — az + b, α > 0 b — α ̂  1 (and
hence V(l) ^ 1) are not so representable. If V(z) = —az + b were
equal to S85ThSS2TtlSSl(z), then it would follow that

(23) SJV(z) = ThS82ThS8l(z) .

But one may directly verify t h a t S73

ιV(z) = — cz + d, c > 0 , d — c ^ l

(note t h a t the ray x > 1 as well as {1} are both orbits under η).
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