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AN ADJUNCTION THEOREM FOR LOCALLY
EQUICONNECTED SPACES

ELpoN DYER AND S. EILENBERG

The locally equiconnected spaces (LEC spaces) can be
characterized as the spaces X with the property that if
fo, fi: Z— X are mappings which are “sufficiently close to-
gether” and which agree on a subspace A of Z, then f, is
homotopic to f; relative to A (fo = firel A); i.e., there is a
morphism F:Z x [ > X with F|Z X 0=f,, F|Z x 1= f; and
F(a,t) = foa for all a€ A and te l.

The notion of “close” is measured by a morphism ¢: X x
X — I with ¢(z, ') =0 if and only if x = 2’. We then require
that ¢o(foZ, f18) < 1 for all £ Z implies that f, = firel A.

There is a universal test pair (u,D): let u = ¢~'[0,1>
and D = ¢7'0. Let f, and f; be the restrictions to u of the
projections X <X X — X onto the first and second coordinates.
Then f, and f: agree precisely on D. A homotopy f, = firel D
exists if and only if D is a strong deformation retract of u
in X x X.

We note two things. First, the existence of a homotopy
fo = firel D implies the existence of the homotopies in the
general case described in the first paragraph. Second, the
existence of a map ¢ and homotopy f; = firel D is equivalent
to the diagonal map

4 X— XXX

being a cofibration.

We say more on this point below.

The class of LEC spaces has been the subject of considerable
investigation (see Dugundji [1] for background) and such spaces have
a number of convenient homotopy theoretic properties. To establish
contact with a more familiar class of spaces, we recall that every
metric absolute neighborhood retract (ANR) is LEC and that every
finite dimensional metric LEC space is an ANR. (See [1]).

One of the beautiful results on ANR’s is the Whitehead Adjunc-
tion Theorem for compact ANR’s [7]. This has been the subject of
several generalizations [3] and [4]. The object of this paper is to
present an adjunction theorem for LEC spaces analogous to White-
head’s but with no restriction on the LEC spaces involved. A corol-
lary is that every cell-complex is locally equiconnected.

I. Preliminaries. We do not wish to be too specific about the
category of spaces under consideration. Specific categories for which
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670 E. DYER AND S. EILENBERG

all of the ensuing arguments are valid are the category of compactly
generated Hausdorff spaces [6] (which includes metrizable spaces and
locally compact Hausdorff spaces) and the category of quasi-topological
spaces [5]. A third category in which they are valid is the category
of compactly generated weakly Hausdorff spaces; i.e., spaces in which
the topology is generated by continuous maps of compact Hausdorff
spaces; there appears to be no material in print on this category.

The terms continuous mapping and morphism will be used inter-
changeably. A morphism f: A — X is an injection provided it is one-
to-one into and has the property that a sufficient condition for a
function g: Y— A to be a continuous mapping is that the composition
fg be one. If f is an inclusion and an injection, then A4 is said to
have the subspace topology or the itnduced topology. Dually, a mor-
phism p: X — B is a projection provided it is onto and has the pro-
perty that a sufficient condition for a function ¢: B— Y to be a con-
tinuous mapping is that the composition ¢p be one. In this case B
is said to have the quotient or decomposition topology determined
by ».

A subset A of the space X has a halo in X if there is a morphism
q: X — I such that A = ¢7'0. Such a morphism is called a haloing
function for A. Note that only G, closed subsets can have haloes.
If, in addition to having a halo in X, A is also a retract of X, then
A 1is said to be a halo retract of X.

A morphism k: X — 1 is a numeration of an open set U in X
provided U = X — k7'1. An open set U is numerable if there exists
a numeration of it.

In each of the above categories, there are arbitrary function spaces
M(X, Y) in which the exponential law is valid and the evaluation map
is a morphism.

For a space X the path space PX is the subspace of M(R™, X) x
R*, where R* is the half-line of nonnegative real numbers, of all
pairs («, I) with a(t) = a(l) for all ¢ = 1. A path is a point («, ) of
PX; the number [ is said to be the lemgth of the path (a, ). We
define two morphisms

N PX— X
and

7:PX— X

by 7, 1) = a0 and 7.(a, 1) = al.
We next state several lemmas and propositions to be used later.
We omit proofs of the more routine of these.

LEMMA I.1. Let p: X — I be a morphism and +: X — I be a func-
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tion such that
(i) v is a morphism, u = @ < 0, 1], and
(i) y=o.

Then + is a morphism.

LEMMA 1.2, Let ¢: X —1I,4: Y —1I, and h: X X I — Z be mor-
phisms such that

Mz, t) s independent of t if @(x) =0.
Let W be the subspace of X X Y x I
W={z,y,te X X Y X I|tyy < pa}
and l: W— Z be the function

(M, ty(y)/px) if pu#0

Uz, y, £) =
@ %0 = 1w 0) if Pr=0.

Then 1 is a morphism.
Proof. Let v: C— W be a morphism, where C is compact Haus-
dorff. The map v is given by coordinates
V:C— X, 7:C—>Y and v:C—1T.
The definition of W requires that
Vi (Y7) = PV .

Let a: C x I — 1 x I be defined by afe, t) = (tpv.c, , Vse-pv.c) and D =
a {4 U0 =< I}. Since « is continuous, D is compact; and so, 7, D—C
is a projection since it is onto. The composition

71 l

DSl w527

is
Ivm(e, t) = lye = U, 7oe, 75C)
{h(m ﬂ/scﬂi) it Pre =0
= P

- 1

(v, 0) it Pve=0
_ {h(vlc, t) if Pve=#0

(e, 0) if Pve=20
= h(ve, t) ,

which is a morphism. Since 7 ;: D — C is a projection, this implies Iv
is a morphism. But since this is true for every morphism v: C — W,
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it follows that [ is a morphism.

LEmMA 1.3. For C compact Hausdorff, the function
sup: M(C, R) — R

defined by sup f = sup {fe|ce C} s a morphism.

ProposITION 1.4. The function
j: PY— M, Y) X R*

defined by j(a, 1) = (&, 1), where at = a(t-1), is an injection.

Proof. It is clear that j is a morphism and is a set-theoretic
injection. We have only to show that if f: C— PY is a function,
where C is compact Hausdorff, such that jf is a morphism, then f is

a morphism.
We assume jf is a morphism. This implies both xjf and mjf

are morphisms.
If supx,jf = 0, then Im f is contained in the subspace of PY of

paths of length 0. This subspace is homeomorphic to Y and is mapped
by 77 homeomorphically onto the subspace of constant paths in
M(I, Y). Thus, since x,jf is a morphism, so is f.

Otherwise, let

@:C——1 be @c = mjfe/sup m,Jf -

Let Dc C x I be {¢, t|t < @c}. The composition

D—sCxI-{oy

is a morphism, where f(c, t) = fe(tm.jfe) is adjoint to m,jf and the first
morphism is defined by (¢, t) — (e, t/Pc).

Let E be the subspace of C x R* of all pairs (¢, s) with s < m,jfc
and map E to D by sending (¢, s) to (e, s/sup w.jf). Finally, define
v:C X R — E by
¢, U, if w < mife
¢, mife, if mwife < u.

v(e, w) = {
The composition

CxR -1 FE D Y

is a morphism taking (¢, w) to (fe)(u). Its adjoint is 7, f: C — M(R*, Y),
which is thus a morphism. Since 7,f is the morphism x,jf, it follows
that f is a morphism.
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LEMMA 1.5. Let g: X — PY and f: X— R* be morphisms such
that 0 C (m,9)7'0. Then the fumnction
g: X— PY
defined by ga(t- fx) = gu(t-mgx), te I, with m.g = f, i1s a morphism.

Proof. § is well-defined since f7'0C (w9)~'0. =,J§ = m®Jjg and
7,J§ = f are morphisms; thus, j§ is a morphism. Since j is an injec-
tion, it follows that § is a morphism.

The following companion theorems are proved by variants of a
method of G. S. Young in [8]. We recall that a morphism f: 4 — X
is a cofibration provided the diagram

A 1. x

AxIL x 1

is a weak pushout; i.e., given F: A Xx I — Y and ¢g: X — Y with Fe, =
gf, there exists a G: X x I — Y (not necessary unique) such that Ge, =
gand Gf x I = F.

THEOREM 1.6. Ewery cofibration f: A — X 1is an injection of A on
a closed subset of X which has a halo.

THEOREM 1.7. Let A be a closed subset of X and i: A — X be the
injection. Then the following properties are equivalent:

(1) ¢ is a cofibration.

(ii) AXIUX x0 ts a retract of X x I,

(iii) there exist a halo U of A and a morphism

hMXxI—X
such that
Mz, 0) =z, h(a,t) = a, h(u, 1) e A

for xe X, acA,tel, and ue U,
(iv) there exist a halo V of A and a morphism

h: VxI— X
such that
h(v, 0) = v, h(a, t) = a, h(v,1)c A
for veV,ac A, and tel, and
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(v) there exist a haloing function @ for A in X and a mor-
phism
h:V— PX, where V=90, 1>,
such that
nh =1, n.h(v) C A, lh=@|V.
II. Properties of LEC spaces. We shall define a space X to be
locally equiconmected (abbreviated LEC) provided the diagonal map
4: X— X x X
is a cofibration. This is in agreement with earlier usage [1].
THEOREM II.1. The space X is LEC if and only tf there exist
morphisms
B X x X—1
9. V—PX, for V=FK"01>,

such that

(i) k7'0 = D, the diagonal in X x X and

(i) 79 =m |V, 0.9 = 7wV and lg =k, where w, and 7w, are the
projections of X X X omto its first and second factors and for a path
a, la is the length of the path.

We shall refer to a pair of morphisms (%, g) having the properties
of this theorem as LEC-data for X.

Proof of Theorem. If 4: X — X x X is a cofibration, then by
condition (v) of Theorem 1.6 there exist morphisms

p: X x X—— 1, with D=0, and
h: V— P(X x X), where V=970 1>,

such that Av is a path from v to D of length ®». Let k = 29 and
define

g: V—PX

to be g = mh — wh. Since hv0 = v, gv is a path in X from z,v to 7.
Its length is 2¢pv = kv.
Suppose (k, g) are LEC-data for X. Let @ = k and define

h: V— P(X x X), V=97'[0,1>,

to be (g, m,). Since gv is a path from wv to v, hv is a path from
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v to (mw, mw)e D. Its length is kv = @w.

THEOREM II.2. If X, X,, --+, X, are LEC, then X = [, X; s
LEC.

Proof. Since 4,: X; — X, x X; is a cofibration for each 1,
is a cofibration. This morphism composed with the twisting homeo-

morphism
T:[I(Xi x X)) — X x X

is the diagonal map for X. Thus, 4, is a cofibration and X is LEC.

THEOREM II.8. A LEC space X can be covered by numerated open
sets contractible in X. Also, X is Hausdorf.

Proof. Let k, g be LEC-data for X and V = £7'[0, 1>.

Forze X, let V, = {ye X|(x, y) € V}. Definek,: X—1 by k. (y) =
k(x, y). Then the open set V, is numerated by k,. Define

C.V,xI—X

by C.(y,t) = g(z, y)t. This is a deformation in X of V, into «.

As in §4, number 4 of page 253 of [2], it follows that if X is
also compact, then it is metrizable.

For w=y, let S, = {¢e X|k.(5) < k,(&)} and S, = {¢ € X|£,(§) <k.(9)}.
The sets S, and S, are disjoint open sets in X containing z and v,
respectively.

THEOREM I1I.4. In a LEC space the path components of a numer-
ated open set are open.

Proof. Let k, ¢ be LEC-data for X and V, be as in the previous
proof.
For v: X — I, U = Support +» and x ¢ U, define

vV, —1

by vy = inf {yg(x, wt|t e I}. Then 0 < y(x) = ¥(x). If 0 < 4y, then
g, y)I< U. Thus, the path component of x in U contains the support
of -, which is open.

CorOLLARY II.5. If X is LEC, the decomposition space II1X of
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path components of X is discrete.

Proof. The function 1: X — I has support X. By the previous
theorem the path components of X are open.

For a compact space C, a closed subset A of C and a map ¢: A — X,
denote by (C, X, ®) the subspace of the space M(C, X) of maps of C
into X of those functions f: C — X such that f|4 = .

THEOREM II.6. If X is LEC, then so is (C, X, ®).

Proof. Let k, g be LEC-data for X. For f, f'e M(C, X), let
k(f, f') = sup {k(fe, f'c)|ce C} .

The function k& is a morphism since it is the composition of the mor-
phism
sup: M(C, I)— I

with the adjoint of the composition

X1, 0% Cx MC, X) x M(C, X)

IXTXL o« M(C, X) x C x M(C, X)

X X w X1,

C x M(C, X) x M(C, X)

where e¢: C x M(C, X) — X is the evaluation map.

For f, f'e M(C, X), k(f, f) = 0 is equivalent to fc = f'c for all
ceC; i.e., k(f,f) = 0 if and only if f = f".

For k(f, f) < 1, define g((f, /) e PM(C, X) by

g(f, F@®(e) = g(fe, fo)(@)

Letting U = k7'[0, 1>, we conclude that g: U — PM(C, X) is a mor-
phism from the diagram

Cx UxR — VxR —PXxR—X

l -
Cx M(C, X)x M(C, X)xR— Xx XxR.

We define k: (C, X, ) x (C, X, ®) — I to be the restriction of k
and ¢: 12"1[0, 1> — P(C, X, #) to be the restriction of g. We note that
for £, f’ e (C, X, @) such that k(f, ) < 1, §(f, f)(t)(@) = 9(Pa, Pa)(t) =
®a. Thus, the restriction of g to £7'[0, 1> factors as asserted in de-
fining §.

THEOREM II.7. If X 4s LEC and A is a halo retract of X, then
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A is LEC and the map A — X is a cofibration.

Proof. Let (k, g9) be LEC-data for X, »: X — I be a halo function
for A, and r: U— A be a retraction, where U = %7'[0, 1>.
Define +: X x X — 1T by

sup (7(g(s, 9)s), k(, v)} for k(z, ) < 1

(@, y) =
for k(z,y)=1.

Then 1 — 4 is a morphism on Support 1 — %) and 1 — <1 — k.
Thus, 1 — + and + are morphisms. If (2, y) < 1, the path g(z, v)
is defined and lies in U. Also, (2, y) = 0 if and only if & = ye A.

Let k= |A x A. Then k0 is the diagonal in A4 x A. Let
W = k[0, 1> and define g: W — PA by

g =(rg, k).

This new parametrization is a morphism by LemmaA 1.5 since the zeroes
of k are the same as those of k|A x A. Thus, (%, §) is LEC-data for

A.
To verify that A — X is a cofibration define y: X — 1 by

sup {nx, k(z, rx)} for 7nr <1
x(@) =
1 for nox=1.

Exactly as before, ¥ is a morphism. A = 37’0 and if yx < 1, then
nr < 1, rx is defined and k(x, ro) < 1. Let T = yx7'[0, 1> and define
h: T— PX to be the composition
4w 1y 2, px,

where V = k7'[0,1>. Then yx is haloing for 4, T'= yx7'[0,1> and
h: T— PX is a morphism such that 7. = 1,, Im(7.2) C 4, and h|4A =
14, where i,: A — PA injects each point to the path of zero length at
that point. Since for te T, x(¢) = 0 if and only if kht = 0, we can
reparametrize the paths it to have length y(¢). Then ¥, T, h satisfy
condition (v) of the cofibration Theorem I.7.

CoRrROLLARY 1I.8. If X 4s LEC and x is a point of X, then the
injection © — X is a coftbration.

Proof. By the previous theorem, it suffices to show 2 is a halo
retract of X. Since a point is a retract of any set containing it, it
suffices to show x has a halo in X.

Let k, g be LEC-data for X. The function X x ¢ — X x X de-
fined by (2', ) — (2’, x) is a morphism which composed with k& defines
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a halo for .

I1II. The adjunction theorem. J. H. C. Whitehead gave the
first proof of this type result for compact, metric ANRs in [7].
Several generalizations have since been made (see [3] and [4]).

ADJUNCTION THEOREM. If X and Y are LEC, A is a halo retract
in X and f: A— Y is a morphism, then any LEC-data for Y can be
extended to LEC-data for XU, Y.

We note this result states not only that X, Y is LEC but also
relates a LEC structure on it to one on Y.

Proof. The proof of this theorem follows from five constructions,
stated here. We let k, g be LEC-data for X and 7: X—1I be a
haloing funection for A in X.

Step 1. There exists a morphism k: X x X — I such that
(i) 7o =k(z,y) and 7y < k(z, ),
(ii) 44 =k70
(iliy for T = k™'[0, 1>, the function G: T x I*— X given by
G(z, y)(s, 1) = 9(9(x, y)s, rg(x, y)s)t
is defined and a morphism, where § is the composition 7jg, j being

the injection j: PX — M(I, X) X R*.

Step 2. There exists a morphism k: X x X — I such that
(i) k<k

(ii) k70 =4X

(iii) k=1 and ¢ = 0 implies ¥ = 1, where ¢ = inf (37, 77,).

~We note that (ii) implNies paths g can be linearly reparametrized
by k to give LEC-data g, k for X. Condition (i) implies g is defined
on S = k™[0, 1>.

Step 3. In S, let
S,=(t=kuUu(c=1-k) and
S=C=knNnET=1-Fk).
There exists a function f: S— [0, 1] such that
F18% =0,

fl™0 —44A)nS=1, and
f1S — 44 is a morphism .
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Step 4. There exist morphisms k&, k.: S— [0, 1] such that

(i) k1+kz=lzandk1=kzonso,

(ii) k,+ k. <k on S, and

(ili) k&, = 0 if and only if yz, = 0 or k£ = 0 and k, = 0 if and only
if pm, =0 or k = 0.

Step 5. There exist morphisms g, ¢,: S— PX and closed sets M
and N in S, such that

(1) lg1 = kl) lgz = kzy

(ii) ¢+ 9. =g on S,

(iii) 7.9, = 7 and 7.9, = 7,

(iv) if nzm, = 0, then 7,9, = 77, and if »z, = 0, then 1.9, = rx,, and

(v) S,nNS,cM,n.9, =19, on M,7n.9 €A and 7,9,€ A on N, and
770 < N.

Before proving these five assertions, let us prove that the Adjunc-
tion Theorem is implied by them.

Extensions of LEC-data k,, g, for Y to X|J; Y will be defined
on (X1 Y)x (X1 Y)soas to agree under the identifications imposed
by the pushout diagram

IXf
AXA YxY

fxi
ixXf
YxX
X1

Xx Y\\

XXX (XU, Y)X(XU,Y) .

FIGURE 1

Define &’ by the following:

on X x X,
E on k*1US,
K =k +k, on M
k, + ky(fvrgu fvogz) +%k on N,

on X x Y, kK = k(r,rr)+ k(frr, ),
on Y x X, k' = ky(nw, frr,) + kirrm, 7), and
on YXY, KF=EF.

On the set £'7'[0, 1>, define ¢’ by:
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on X X X,
g on S,
g9 =49: + g on M
9 + 9x(f1:95, 7g) + 9. on N,
on X %Y, ¢ =gm,rr)+ g9(frm, w) ,
on Y x X, 9 = gv(m, frzy) + g.(rm,, 7)) , and
on Y x X, 9 =gy .

Checking the conditions as stated in Steps 1 through 5 when relevant
shows the functions as defined are morphisms, agree as required on
A x A, and define LEC-data on X, Y.

We next establish the constructions asserted in Steps 1 through 5.

Step 1. Let %k, g be LEC-data for X, » a halo for 4 in X and
rU—A a Aretraction, U =750, 1>.
Define k: X x X—1I by

N sup {k(z, v), n9(@, y)s} for k(z, y) <1
k(z, y) = § !
1 for Fk(xz,y)=1.

The 1 —k<1—k and 1 — k is & morphism on the support of 1 — k.

Thus, & is a morphism.
Define k: X x X— 1 by

g sup {(k(z, v), k(g(@, ws, r9(z, ws)) for kl(z, y) < 1
ke, y) = 1 .
1 for k(x,y) =1.

As above, kis a morphism.
Finally, define k: X x X — I by

ko) = sup {k(z, u), Koo, v)s, ro(, ps)t,
9(9(x, v)s', ro(@, Y)s)t)}

for J; < 1 and E(x, u) =1 for lAc(:c, y) = 1. As before & is a morphism.
Observe that 7w < k(x, y) and 7y < k(x, y); also, k70 = 4A. The

conditions imposed by k being less than 1 are sufficient to establish
G has the asserted properties.

Step 2. Let k = sup {k, k/1 + = + k — k}. The denominator 1 +
T+k—Fk=+0since k=1 and ¢ =0 imply k£ > 0. Thus, k is a mor-
phism. By definition, & < k. Also, k = 0 if and only if k = 0; and
so, k70 = 4X. Clearly, for k =1 and =0,k = 1.
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Step 3. For S = k[0,1>, let

S,={r=ku(=1-k}nS and
S,={c=<kn@E=s1-k}nSs.

Define the function d: S— I by d|S, = 0 (note that 44 C §))
d=Fk -1 -k —7)k-(L—k) on S, — 4A.

The two definitions agree on (S, — 44) N (S, — 4A4). These two sets
are closed in S — 44. To check that d|S — 4A is a morphism it
suffices to check that d|S, — 44 is one.

Since k < 1, either k<1 or = >0. In S,k =1 implies ¢ = 0.
Thus, k < 1. If k= 0, then 7 = 0, and the point is in 4A. Hence,
in S, — 4A, k(1 — k) > 0; and so, d|S, — 4A is a morphism.

Since (770 — 4A)NSc S, — 4,d|(z70 — 44)N S = 1.

Step 4. Define k: S— I by

=1

B {inf (&, 1 — d)-k + d-(yz, + nr,)} on Support k&
o on k0.
Then k < k and k& is a morphism on Support . Thus kisa morphim
on S.
Let » = inf (1, »m, + 77,) and define ki: S— I by
o i'fc-m/@ for & >0
o for & =0.

That k| is a morphism follows from Lemma I.2 by the following
argument:

: X X X—— I 1is a morphism,

S

X—1 is a morphism, and
: XX XxI——1 by h=(ke(0, X 0))-05,

}7:

> S

the o’s being projections, is a morphism. If ¢ =0, then E=0 or
d = 1. In either case k = 0; and so, / is independent of tel if & =
0.

Let W X x X x X x I be

W = {(m, @), @, t|t-yx = P(w,, 22)} -
By Lemma 1.2 ¢: W— I defined by

k(@ #,) t-nz/p(@, ) for & >0

C((xl, xz), (xy t) = fOI‘ g/l\) = 0
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is a morphism. Define j: S— W by j(z, 2.) = ((x,, %,), %, 1). Then
(@, ©)-70,/P(@, &) for P, @) = 0

0 for o(x,2) =0

=k

oy @) — {

is a morphism on S.
Define v: X x X — 1 by

_ { 1/yr, + nr, for 1< ym, + nm,
1 for 7m, + pm, < 1.

Since v is a morphism, so is k, = k/-v. Thus,

i *%-777‘[1/7]72?1 + yr, for 0 < ym, + 9=,
"o for 0= pm, + 7,

and

i {E-nﬂ:z/r]m + nr, for 0 < yrm, + 9,
7o for 0= nn, + 9=,

are morphisms on S. Clearly, k,+k,= %k where 0 < NI, + N If
0 = 9T, + N7, then either E=0o0orz=0and d =1. In either case

= 0. Thus, &, + k, = kon S;andso, k, + &, = k < k for all (@, y) e
S. For (w, yeS,d=0and k=F%; thus, on S, k, + ko = k. k, =0
1mphes k=0or nr, = 0, which lmphes E=0or Ny = 0, which implies
k=0 or nm, = 0, which 1mp11es k,=0. Thus, k, = 0 if and only if
E=0or pr, = 0. Similarly, k, = 0 if and only if % = 0 or 77, = 0.

Let k, = (k, — (1/2)k)-d + (1/2)k and k, = (k, — (1/2)k)-d + (1/2)k.
Since k;, ¢ = 1, 2, is a morphism on Support 2k and k; < 21?, k; is a
morphism on S. Also, 0 < k; < 1. Furthermore,

b4 lo=(h+k,—k)d+kE<k.

On S, d =0 and S0, k, =k, = (1/2)k. Finally, %k, = 0 if and only if

Ed = (1/2)d — 1/2)k. But the latter is true if and only if %, = 0 and
E=0ork =0andd=1o0rd=0and £k =0. This is true if and
only if k, = 0. Thus, k, = 0 if and only if 77, = 0 or £ = 0 and k, =

0 if and only if mw, = 0 or k = 0.
Step 5. Let M = d7'[0, 2/rarctan2] N S, and

= {y'[2/rarctan2, 1] N S} U 44 .

Then S,NS,c M and S,N N = 4A. Define a and b mapping I in PI*
by
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(is, —ls tan 77:t/2) for 0 < 7t/2 < arctan2
a(t)s = {\2 ~ 2
(s cot wt/2, s) for arctan2 < nt/2 < 7/2,

and

(% + —%—s, (% — —21-s>tan 7rt/2> 0 < 7t/2 < arctan 2
1+ (s—1)cotnt/2,1 — s)arctan2 < nt/2 < 7/2.

b(t)s =

The following assertions are easily verified:
(1) for 0 = 7wt/2 < arctan 2, a(t)1 = b(¢)0,
(2) for arctan2=<zt/2<1, ma(t)l = 1 = 7,b(t)0, and
(3) a(t)(0) = (0, 0) and b(¢)(1) = (1, 0) for all ¢.
Define g,: S — PX by
(o, ) g(z, ') | with length k, for (z, 2')e S,
1 wy x = .
g G(z, 2’| acd(x, ¢') with length k, for (x, 2")e S, .

On S,NS,t=k=1—k,d=0and k = (1/2)k. aod is the interval
[(0, 0), (1/2, 0)]. The composition

G@wﬂwdzﬂmﬁw&@@w%w,oésgé
= (=, @)s Ogsgé
= §(w, @) |}

= mdg(, of) |0 Fe
= mjg(e, ') [ .
Thus, the definitions of g, on S, and S, agree on S, N S,. Clearly,
¢, S, is a morphism. To check that g¢,|S; is also, it suffices to check
wjglS;.. On S,k <1l. Define a morphism h: T' x M(I, I*) x I - X
by the following function space adjointness applications:
GTxI'—X,
G: I*— M(T, X) ,
M(I, G): M(I, I>) — M(I, M(T, X)) = M(T, M(I, X)) ,
M(I, Gy~ T x M(I, I’ — M(I, X), and finally
h=MIG~TxMII) xI— X.

Define o: T— M(I, I*) by

ad(x, ©') if k(z, o) >0

@ T =110, 0), 0, 1] it k) =0.

Then k, h, p satisfy the hypotheses of Lemma I.2. Thus,
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k(x, o', t) = W, &', p(z, o), 1)

is a morphism. But this is 7.jg,|S..

Similarly,
(@, ) 9(z, x’)[,"f{f;fﬁ, with length k,(x, ) on S,
945 T) = (w, /)| bd(w, o) with length ki, o) on S,

is a morphism.

Verification of (i) and (ii) of Step 5 is immediate. Condition (v)
follows from (1) and (2) above and condition (iii) follows from (3).
To check condition (iv), observe that 7z, = 0 implies d = 1 or k = 0.
In the latter case g, is the 0-path at © = &’ = r& = r2’. In the former,

T.Jg.s = (§(g(x, 2)1, rg(x, a)1)(L —s) 0<s=1.
and so,
Nele = MJ9.0 = 72’ = rm, .

CoROLLARY III.2. Ewery cell-complexr s LEC.

Proof. A cell-complex X is the colimit of a sequence of morphisms

fn

X =75 XV where X° is a discrete space and for each =, f, is
defined by the push-out diagram
I Sr g« 9%

e |

I Dt — X0

II D+ is LEC and as ][] 4. is a cofibration, [] S} is a halo retract in
II D**'. Thus, by the Adjunction Theorem LEC-data for X' extends
to LEC-data for X"V, X9, being discrete, is LEC. Inductively, a
sequence {g™, k'™} of LEC-data is formed for the {X ™} such that each
extends its predecessor. The functions g, & defined on the colimit X
are thus morphisms and are LEC-data for X.
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