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AN ADJUNCTION THEOREM FOR LOCALLY

EQUICONNECTED SPACES

ELDON DYER AND S. EILENBERG

The locally equiconnected spaces (LEC spaces) can be
characterized as the spaces X with the property that if
f^fiiZ-^X are mappings which are "sufficiently close to-
gether" and which agree on a subspace A of Z, then f0 is
homotopic to fx relative to A (/0 = /i rel A); i.e., there is a
morphism F:Zx I^X with F\ Z x 0 = f0, F\ Z X 1 = /Ί and
F(a, t) = foa for all aeA and £e /.

The notion of "close" is measured by a morphism φ: Xx
X-+ I with φ(%, x1) = 0 if and only if x = xf. We then require
that φ(foς,fiξ) < 1 for all ξeZ implies that f0 = /i rel A.

There is a universal test pair (u,D): let % = ^~1[0,1>
and Z> = φ-10. Let /0 and /ι be the restrictions to u of the
projections X x X-+ X onto the first and second coordinates.
Then /o and /i agree precisely on D. A homotopy /0 = /i rel D
exists if and only if D is a strong deformation retract of u
in X x X

We note two things. First, the existence of a homotopy
/o = /i rel -D implies the existence of the homotopies in the
general case described in the first paragraph. Second, the
existence of a map ψ and homotopy f0 = /i rel D is equivalent
to the diagonal map

J:X—>Xx X

being a cofibration.

We say more on this point below.
The class of LEC spaces has been the subject of considerable

investigation (see Dugundji [1] for background) and such spaces have
a number of convenient homotopy theoretic properties. To establish
contact with a more familiar class of spaces, we recall that every
metric absolute neighborhood retract (ANR) is LEC and that every
finite dimensional metric LEC space is an ANR. (See [1]).

One of the beautiful results on ANR's is the Whitehead Adjunc-
tion Theorem for compact ANR's [7]. This has been the subject of
several generalizations [3] and [4]. The object of this paper is to
present an adjunction theorem for LEC spaces analogous to White-
head's but with no restriction on the LEC spaces involved. A corol-
lary is that every cell-complex is locally equiconnected.

L Preliminaries* We do not wish to be too specific about the
category of spaces under consideration. Specific categories for which
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670 E. DYER AND S. EILENBERG

all of the ensuing arguments are valid are the category of compactly
generated Hausdorff spaces [6] (which includes metrizable spaces and
locally compact Hausdorff spaces) and the category of quasi-topological
spaces [5]. A third category in which they are valid is the category
of compactly generated weakly Hausdorff spaces; i.e., spaces in which
the topology is generated by continuous maps of compact Hausdorff
spaces; there appears to be no material in print on this category.

The terms continuous mapping and morphism will be used inter-
changeably. A morphism /: A —> X is an injection provided it is one-
to-one into and has the property that a sufficient condition for a
function fif: 7 - ^ i to be a continuous mapping is that the composition
fg be one. If / is an inclusion and an injection, then A is said to
have the subspace topology or the induced topology. Dually, a mor-
phism p:X—>B is a projection provided it is onto and has the pro-
perty that a sufficient condition for a function q: B —> Y to be a con-
tinuous mapping is that the composition qp be one. In this case B
is said to have the quotient or decomposition topology determined
by p.

A subset A of the space X has a halo in X if there is a morphism
q:X-^I such that A = q~ιQ. Such a morphism is called a haloing
function for A. Note that only Gδ closed subsets can have haloes.
If, in addition to having a halo in X, A is also a retract of X, then
A is said to be a halo retract of X.

A morphism k: X-^ I is a numeration of an open set U in X
provided U = X — Ar1!. An open set U is numerable if there exists
a numeration of it.

In each of the above categories, there are arbitrary function spaces
M(X, Y) in which the exponential law is valid and the evaluation map
is a morphism.

For a space X the path space PX is the subspace of M(R^, X) x
R+, where R+ is the half-line of nonnegative real numbers, of all
pairs (α, I) with a(t) — a(l) for all t 7> I. A path is a point (a, I) of
PX; the number I is said to be the length of the path (a, I). We
define two morphisms

η « > X

and

Ύ]τ\ PX >X

by rjo(a9 I) = aO and ητ(a, I) = al.

We next state several lemmas and propositions to be used later.
We omit proofs of the more routine of these.

LEMMA I .I. Let φ\ X—+1 be a morphism and ψ: X —> I be a func-
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tion such that
(i) ψ\u is a morphism, u = φ~ι < 0, 1], and
(ii) ψ ^ φ.

Then ψ is a morphism.

LEMMA 1.2. Let φ:X —>/, ψ: Y-+I, and h: X x / —> Z be mor-

phisms such that

h(x, t) is independent of t if φ(x) = 0 .

Let W be the subspace of X x Y x I

W = {x, y, t e X x Y x I\ tψy ^ φx]

and I: W—>Z be the function

[h(x, tψ{y)jφx) if φx Φ 0
(x, y , t ) = ,

J (h(x, 0) i/ φx = 0 .
I is a morphism.

Proof. Let 7: C —+ W be a morphism, where C is compact Haus-
dorff. The map 7 is given by coordinates

%: C > X, 72: C > Y and 73: C > I.

The definition of W requires that

Let a: C x I -+1 x I be defined by α(c, t) = {tφjjC, , 73c ^72c) and D =
α"]{z/ U 0 x I}. Since a is continuous, 2) is compact; and so, πγ\ D—>C
is a projection since it is onto. The composition

is

frπSp, t) = he = Z(7iC, 72C, 73C)

[hf^c, 7,c^^-) if ^7xc ^ 0
= j V ^7

λc, 0) if 97iC = 0

iC, t) if φΊ,c Φ 0

iC, 0) if φy.c = 0

= Λ(7iC, ί) ,

which is a morphism. Since π^.D-^C is a projection, this implies Ij
is a morphism. But since this is true for every morphism 7: C —> W,
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it follows that I is a morphism.

LEMMA 1.3. For C compact Hausdorff, the function

sup: M(C, R) • R

defined by sup / = sup {fc \ c e C) is a morphism.

PROPOSITION 1.4. The function

j:PY >M(I, Y) x R+

defined by j(a, I) = (α, I), where at = a(t l), is an injection.

Proof. It is clear that j is a morphism and is a set-theoretic
injection. We have only to show that if f: C—> PY is a function,
where C is compact Hausdorff, such that jf is a morphism, then / is
a morphism.

We assume jf is a morphism. This implies both πjf and π2jf
are morphisms.

If supτr 2 j/= 0, then I m / is contained in the subspace of PY of
paths of length 0. This subspace is homeomorphic to Yand is mapped
by πj homeomorphically onto the subspace of constant paths in
M(I, Y). Thus, since πjf is a morphism, so is /.

Otherwise, let

φ: C > I be ψc = πj/c/sup πjf .

Let D c C x / be {c, t\t ^ φc). The composition

D >C x I — Y

is a morphism, where /(c, t) = fc(tπ2jfc) is adjoint to πjf and the first
morphism is defined by (c, t) —* (c, t/φc).

Let E be the subspace of C x R+ of all pairs (c, s) with s ^ τr2#b
and map £7 to D by sending (c, s) to (c, s/supτr2j/). Finally, define
T.C x R+->E by

fc, M, if u ^ TΓJ/C

(c, ^2^/c , if π2jfc ^ u .

The composition

C x R+—>E >D > Y

is a morphism taking (c, ^) to (fc)(u). Its adjoint is πj: C—> M(R+, Y),
which is thus a morphism. Since π2f is the morphism πjf, it follows
that / is a morphism.



AN ADJUNCTION THEOREM FOR LOCALLY EQUICONNECTED SPACES 673

LEMMA 1.5. Let g:X—>PY and f:X—+R+ be morphisms such
that /^O c {π2g)~ιΰ. Then the function

g:X >PY

defined by gx(t fx) = gx(t π2gx), tel, with π2g = f, is a morphίsm.

Proof, g is well-defined since f~'O c (π2g)~λ0. πjg = πjg and
πjg — f are morphisms; thus, jg is a morphism. Since j is an injec-
tion, it follows that g is a morphism.

The following companion theorems are proved by variants of a
method of G. S. Young in [8]. We recall that a morphism f: A—+X
is a cofibration provided the diagram

A M X

A x

is a weak pushout; i.e., given F: A x /—+ Y and g: X—* Y with Fe0 —
gf, there exists a G: X x I —* Y (not necessary unique) such that GsQ =
g and Gf x I = F.

THEOREM 1.6. Every cofibration f: A—> X is an injection of A on
a closed subset of X which has a halo.

THEOREM 1.7. Let A be a closed subset of X and i: A-+ X be the
injection. Then the following properties are equivalent:

( i ) i is a cofibration.
(ii) AxIljXxOisa retract of X x I,
(iii) there exist a halo U of A and a morphism

h:X x I >X

such that

h{x, 0) = x, h(a, t) = α, h(u, 1) e A

for xe X, ae A, te I, and ue U,
(iv) there exist a halo V of A and a morphism

h:Vx I >X

such that

h(v, 0) = v, h{ay t) = α, h(v, ΐ)eA

for ve V, ae Ay and te I, and
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(v) there exist a haloing function φ for A in X and a mor-
phism

h: V > PX , where V = ^ [ O , 1> ,

such that

II* Properties of LEC spaces* We shall define a space X to be
locally equiconnected (abbreviated LEC) provided the diagonal map

A:X >X x X

is a cofibration. This is in agreement with earlier usage [1].

THEOREM ILL The space X is LEC if and only if there exist
morphisms

fclx X >I

g: V > PX , for V = Ar̂ O, 1 > ,

such that
( i) k~ι0 = D, the diagonal in X x X and
(ϋ) γjog = π j V, Ύ]τg — π2\V and Ig = k, where πγ and π2 are the

projections of X x X onto its first and second factors and for a path
a, la is the length of the path.

We shall refer to a pair of morphisms (k, g) having the properties
of this theorem as LEC-data for X.

Proof of Theorem. If J : I - > I x I is a cofibration, then by
condition (v) of Theorem 1.6 there exist morphisms

φ: X x X > I, with D = φ-'O , and

h: V > P(X x X) , where V = ^ [ O , 1> ,

such that hv is a path from v to D of length φv. Let k = 2φ and
define

g: V >PX

to be g ~ πLh — π2h. Since hvO = v, gv is a path in X from πγv to π2v.
Its length is 2φv = kv.

Suppose (k, g) are LEC-data for X. Let φ — k and define

h: V > P(X x X),V= φ~ι[0, 1> ,

to be (g, π2). Since gv is a path from πγv to π2v, hv is a path from
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v to (π2v, π2v) e D. Its length is kv — φv.

THEOREM Π.2. If Xu X2, . . . , Xn are LEC, then X = ΠLi Xi is
LEC.

Proof. Since J{: Xi —» X; x X€ is a cofibration for each i,

Π ^ : X >U(Xi x -Xi)

is a cofibration. This morphism composed with the twisting homeo-
morphism

T: Π (Xi x -X*) > Xx X
i

is the diagonal map for X. Thus, Δx is a cofibration and X is LEC.

THEOREM II.3. A LEC s^αce X can be covered by numerated open
sets contractible in X. Also, X is Hausdorff.

Proof. Let k, g be LEC-data for X and V= Ar̂ fO, 1 > .

For x e X, let Vx = {y e X| (a?, y) e F}. Define kx:X-+I by fcx(i/) =
&(#, ?/). Then the open set Vx is numerated by kx. Define

Cx: Vx x i >X

by Cx(y, i) — g(x, y)t. This is a deformation in X of Vx into »τ.
As in §4, number 4 of page 253 of [2], it follows that if X is

also compact, then it is metrizable.
For x Φ y, let Sx = {ζ e X| &s(f) < fc,(ί)} and S, = {£ e X| fcy(f) < ^(f)}.

The sets Sx and Sy are disjoint open sets in X containing x and y,
respectively.

THEOREM II.4. In a LEC space the path components of a numer-
ated open set are open.

Proof. Let k, g be LEC-data for X and Vx be as in the previous
proof.

For α/r: X—> I, ?7 = Support Ί/Γ and xe U, define

ψ: Vx >I

by ψy = inf {^(x, y)t\tel}. Then 0 < <f(a) = ψ(x). If 0 < ^7/, then
g(x, y)I c C7. Thus, the path component of x in U contains the support
of ψ, which is open.

COROLLARY II.5. // X is LEC, the decomposition space ΠX of
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path components of X is discrete.

Proof. The function 1: X—>/ has support X. By the previous
theorem the path components of X are open.

For a compact space C, a closed subset A of C and a map φ: A —* X,
denote by (C, X, φ) the subspace of the space M(C, X) of maps of C
into X of those functions /: C —> X such that / 1 A = φ.

THEOREM Π.6. If X is LEC, then so is (C, X, φ).

Proof. Let k, g be LEC-data for X. For / ,/ 'e M(C, X), let

The function k is a morphism since it is the composition of the mor-
phism

sup: M(C, I) > I

with the adjoint of the composition

C x M{C, X) x M(C, X) — ί i - > C x C x ikf(C, X) x M(C, X)

1 X T X ^ C x M(C, X) x C x M(C, X)

where e: C x ilί(C, X) —»• X is the evaluation map.
For /, / ' e M(C, X), k(f, /') = 0 is equivalent to fc = f'e for all

ceC; i.e.̂  &(/, /') = 0 if and only if / = / ' .
For *(/,/') < 1, define g((f, /') e PM(C, X) by

S(f, f')(t)(e) = 9(fc, fc){t) .

Letting U = k~ι[0, 1>, we conclude that g: U—>PM(C, X) is a mor-
phism from the diagram

C x U x R > V x R > PX x R > X

CxM(C, X)xM(C, X)xR >XxXxR .

^define k: (C, X, φ) x (C, X, φ) -* I to be the restriction of k
and g: k^lO, 1> —> P(C, X, φ) to be the restriction of (7. We note that
for /, / ' G (C, X, ?>) such that k(f, /') < 1, ̂ (/, /0(ί)(α) = ̂ (^α, ̂ α)(ί) =
φa. Thus, the restriction of g to ^"'[0, 1> factors as asserted in de-
fining g.

THEOREM Π.7 If X is LEC and A is a halo retract of X, then
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A is LEC and the map A—+ X is a cofibration.

Proof. Let (k, g) be LEC-data for X, η: X —•1 be a halo function
for A, and r: U—>A be a retraction, where U ~ ψλ[0, 1 > .

Define f: X x X - * I by

(sup {>?(#(α;, φ ) , k(x, y)} for fc(α, τ/)< 1
f(x, y) = s e '

11 for k(x, y) = 1 .

Then 1 — ψ is a morphism on Support (1 — k) and 1 — ̂  g 1 — k.
Thus, 1 — ψ and ψ are morphisms. If ψ(x, y) < 1, the path #(#, ?/)
is defined and lies in [7. Also, ψ(x, y) = 0 if and only if x = ye A.

Let fc = f | i x i . Then Ar'O is the diagonal in A x A. Let
TΓ = fc-'fO, 1> and define £: W-+PA by

^ = (r̂ r, fc) .

This new parametrization is a morphism by Lemma 1.5 since the zeroes
of k are the same as those of k\A x A. Thus, (ίc, y) is LEC-data for
A.

To verify that A—>X is a cofibration define χ: X—>1 by

fsup {TO, k{x, rx)} for ra < 1
χ W = | l for ^ = 1 .

Exactly as before, χ is a morphism. A = χ^O and if χx < 1, then
τ]x < 1, ra is defined and k(x, rx) < 1. Let T — χ^fO, 1> and define
A: T-^ PX to be the composition

where F=&~ 1[0, 1 > . Then χ is haloing for A, Γ = χ - 1[0, 1> and
h: T — > P X is a morphism such that ^ = 1Γ, Im^A) c A, and A| A =
ίA, where iA: A —> PA injects each point to the path of zero length at
that point. Since for t e T, χ(t) = 0 if and only if kkt = 0, we can
reparametrize the paths ht to have length χ(t). Then χ, T, Λ satisfy
condition (v) of the cofibration Theorem 1.7.

COROLLARY II.8. If X is LEC and x is a point of X, then the
injection x -^ X is a cofibration.

Proof. By the previous theorem, it suffices to show x is a halo
retract of X. Since a point is a retract of any set containing it, it
suffices to show x has a halo in X.

Let k, g be LEC-data for X. The function X x x -* X x X de-
fined by (V, #) —> (#', se) is a morphism which composed with k defines
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a halo for x.

III The adjunction theorem* J. H. C. Whitehead gave the
first proof of this type result for compact, metric ANRs in [7].
Several generalizations have since been made (see [3] and [4]).

ADJUNCTION THEOREM. If X and Y are LEC, A is a halo retract
in X and f: A —> Y is a morphism, then any LEC-data for Y can be
extended to LEC-data for X \Jf Y.

We note this result states not only that X\Jf Y is LEC but also
relates a LEC structure on it to one on Y.

Proof. The proof of this theorem follows from five constructions,
stated here. We let k, g be LEC-data for X and η:X—+I be a
haloing function for A in X.

Step 1. There exists a morphism k: X x X—+I such that
(i ) Ύ]x <Z k(χ9 y) and ηy ^ ϊc(x, y),
(ii) ΔA = k~\
(iii) for T=A:-1[O?1>, the function G: T x Γ -> X given by

G(x, y)(s9 t) = g{g{x, y)s, rg(x, y)s)t

is defined and a morphism, where g is the composition πjg, j being
the injection j: PX-+M(I, X) x R+.

Step 2. There exists a morphism k: X x X-+I such that
( i ) k^k
(ii) k~10 = 4X
(iii) k = 1 and r = 0 implies k = 1, where τ = inf (ηπu ηπ2).

We note that (ii) implies paths g can be linearly reparametrized
by k to give LEC-data g, k for X. Condition ( i ) implies g is defined
on S= fc-^O, 1>.

Step 3. In S, let

So = (τ ^ k) U (r ^ 1 - Λ) and

Sx = (τ ^ Λ) n (τ ^ 1 - fc) .

There exists a function f: S —> [0, 1] such that

/ | ( r - 1 0 - 2 f A ) Π i S ί = l , and

/1S — A A is a morphism .
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Step 4. There exist morphisms kly k2: S —• [0, 1] such that

( i ) kx + k2 = k and kx — k2 on So,

(ii) kx + k2 ̂  k on S, and

(iii) &! = 0 if and only if ηπί = 0 or fc = 0 and &2 = 0 if and only

if ηπ2 = 0 or fc = 0.

Sίβp 5. There exist morphisms gίy g2: S-^PX and closed sets M
and JV in St such that

( l ) Lgi == rCίy Lg2

 =z κ>2y

(ϋ) ΰι + $2 = ̂  on So,
(iii) ^ I = ̂ i and ̂ Γ^2 = ττ2,
(iv) if rjπγ = 0, then η0g2 = rπ2 and if ηπ2 = 0, then ητg1 = r ^ , and

(v) So (Ί Si c Jkf, 7]Tgt = ηQg2 on Jkf, r]Tg1 e A and )70g2 e A on JV, and

r-'O c JV.

Before proving these five assertions, let us prove that the Adjunc-
tion Theorem is implied by them.

Extensions of LEC-data kYy gγ for 7 to X \Jf Y will be defined
on (X iL Y) x (X Ji F) so as to agree under the identifications imposed
by the pushout diagram

ΛxA-
fxf

YxY

XxX •(XUfY)x(XΌfY) .

FIGURE 1

Define k' by the following:
on X x X,

'k

kf = ί + k2

on k~ιl U So

on M

A + kγ(fητgu fv0g2) + k2 on JV ,

on X x Y, k' = kγ(πγ, rπ,) + kγ(frπly π2) ,

on F x X, fc' = fcF(ττ1, /rττ2) + k2{rπ2, π2) , and

on Y x Γ, k' = kγ .

On the set fc'-^O, 1 > , define ^' by:
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on X x X,

9 on So

9* = Qι + 92 on M

Mi + 9r(fVτ9i, fVo92) + 92 on N ,

on X x Y, gf = ^fa , rπO + gY(frπly π2) ,

on Γ x X, 0' = ^(TΓi, frπ2) + #2(rττ2, τr2) , and

on Y x X, g' = gγ .

Checking the conditions as stated in Steps 1 through 5 when relevant
shows the functions as defined are morphisms, agree as required on
A x A, and define LEC-data on X\Jf Y.

We next establish the constructions asserted in Steps 1 through 5.

Step 1. Let k, 9 be LEC-data for X, η a halo for A in X and
r: U—>A a retraction, £7 = ^"'[0, 1 > .

Define ίc: X x X — I by

( s u p {&(α, 2/), 370(0?, y)s} for &(α, 7/) < 1

λ ^ , v) = seI

(.1 for &(#, 2/) = 1 .

The I — k ^ 1 — & and 1 — k is a morphism on the support of 1
Thus, k is a morphism.

Define k: X x X — / by

(sup {(A(Λ;, 2/), A:(^fe y)s, rg(x, y)s)} for Λ(.τ, y) < 1
A(ίc, 1/)

U for k(x, y) = 1 .

As above, & is a morphism.
Finally, define fe: X x X-*I by

&(a;, 7/) = sup {ίc(x, y), k(g(g(x, y)s, rg(x, y)s)t,
s,s' ,t,t' e / 4

g(g(x, y)s\ rg(x, y)s')tf)}

for k < I and fe(.τ, y) — 1 for &(α;, 2/) = 1. As before k is a morphism.
Observe that rjx ^ fc(.τ, 7/) and rjy ^ / φ , 2/); also, k'ι0 = A A. The

conditions imposed by k being less than 1 are sufficient to establish
G has the asserted properties.

Step 2. Let k = sup {k, k/1 + T + A: — k}. The denominator 1 +
τ + & — fc Φ 0 since /c = 1 and τ = 0 imply k > 0. Thus, fc is a mor-
phism. By definition, k ^ k. Also, £ = 0 if and only if k = 0; and
so, Ar̂ O = AX. Clearly, for k = 1 and τ = 0, £ = 1.
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Step 3 For S = k~ι[0, 1>, let

So = ί(τ ^ k) U (r ^ 1 - fc)} ΓΊ S and

s, = {(r ^ fc) n (r ^ l - k)} n s .

Define the function <Z: S-+J by d\SQ = 0 (note that A A c So)

d= (k- r)(l - jfc - r)/A>(l - fc) on $

The two definitions agree on (So — A A) Π {Sί — A A). These two sets
are closed in S — A A. To check that d\S— A A is a morphism it
suffices to check that d\Si — A A is one.

Since k < 1, either k < 1 or τ > 0. In Sl9 k = 1 implies τ — 0.
Thus, fc < 1. If fc = 0, then τ — 0, and the point is in AA. Hence,
in Sλ — A A, k-(l — k) > 0; and so, d\Sι — A A is a morphism.

Since (r^O - AA) f) Sa S, - A, d\(τ~ι0 - AA) f] S = 1.

Step 4. Define k:S^ I by

(inf {£, (1 — ώ) £ + d'(τjπ1 + ^π2)} on Support k

(0 on

Then k i^k and k is a morphism on Support k. Thus k is a morphim

on S.
Let φ = inf (1, ̂ π^ + ηπ2) and define h[: S—+I by

ίk-rjπjφ for φ > 0
J ~~ (0 for φ = 0 .

That &[ is a morphism follows from Lemma 1.2 by the following
argument:

φ: X x X > J is a morphism ,

η = 'f: X > 7 is a morphism, and

Λ: X x X x I •/ by h = (ko(p1 x ρ2))-ρ5 ,

the Pi9s being projections, is a morphism. If φ = 0, then fc = 0 or
d = 1. In either case ifc = 0; and so, h is independent of t e I if φ =
0.

Let T Γ c X x X x X x 7 be

TF = {(.τx, ίc2), «τ, t\t ψ x t ί Φ{%i, %2)} '

By Lemma 1.2 c: W-~^I defined by

k(xly x2)-t'7]x/φ(xl9 x2) for φ > 0

0 for © = 0
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is a morphism. Define j : S-+ W by j(xl9 x2) = ((xl9 x2), xl9 1). Then

[k(xl9 x2) Vχί/Φ(χί9 χi) f ° r Φ(χi> #2) ^ ^
c jix,, x2) = ,

(0 for φ(xl9x2) = 0

is a morphism on Si-
Define r. X x X - * I by

Γi + Vπ2 for 1 <; ηπι + ηπ27 = -j
(1 for rjπι + ηπ2 ^ 1

Since 7 is a morphism, so is kι = k[ y. Thus,

[k rjπjηπj, + ηπ2 for 0 < 7]π1 +

and

k =
1 10 for 0 = ηπι +

r {k-ηπjηπ, + 7̂̂ 2 for 0 < rjπι + τyπ

(0 for 0 = 77^ + ηπ

are morphisms on S. Clearly, ict + ϊc2 — lc where 0 < ηπγ + rjπ2. If
0 = rjπ^ + 77τr2, then either k — 0 or τ = 0 and d = 1. In either case
fc = 0. Thus, fcj. + fc2 = k on S; and so, kι + fc2 = k ^ fc for all (α?, 7/) e
S. For (x, y)e So, d = 0 and k = k; thus, on >S0 kι + ίc2 = ίc. k1 = 0
implies & = 0 or 57^ = 0, which implies fe = 0 or ηπ1 = 0, which implies
fe = 0 or T̂Γi = 0, which implies kι = 0. Thus, fcx = 0 if and only if
k = 0 or ^ = 0. Similarly, fc2 = 0 if and only if k = 0 or r?ττ2 = 0.

Let h - (fcx - (l/2)fc) d + (l/2)fc and A:2 = (fc2 - (1/2)^).d + (l/2)fc.
Since kif ί = 1, 2, is a morphism on Support 2fc and &i ̂  2k, k{ is a
morphism on S. Also, 0 ^ kt ^ 1. Furthermore,

fex + Jc2 = (kι + fc2 — fc) ώ + fc rg fc .

On So, d = 0 and so, k, = k2 = (l/2)fc. Finally, fex = 0 if and only if
M = ((l/2)d - l/2)fe. But the latter is true if and only if kt = 0 and
fc = 0 or ίc1 = 0 and d = 1 or d = 0 and fc = 0. This is true if and
only if j ^ = 0. Thus, kλ = 0 if and only if ηπ1 = 0 or fc = 0 and &2 =
0 if and only if ηπ2 = 0 or fc = 0.

Staφ 5. Let M = d-χ[0, 2/τr arc tan 2] n Sx and

N = {^"12/π arc tan 2, 1] n SJ U ΔA .

Then So Π Si c M and So Π N = A A. Define a and & mapping I in PP

by
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[(—s, —s tan πt/2) for 0 < πί/2 < arc tan 2
a(t)s = j \ 2 2 / - i -

v(s cot πt/2, s) for arc tan 2 ^ πί/2 ̂  π/2 ,

and

b(t)s = \2
+ — β, ( — - — s ) t a n πt/2) 0 ̂  ττί/2 ^ arc tan 2

(1 + 0 - 1) cot πί/2, 1 - s) arc t a n 2 ̂  τrί/2 ^ π/2 .

The following assertions are easily verified:

( 1 ) for 0 ̂  πt/2 ^ arc t a n 2, α(f)l = δ(ί)0,

( 2 ) for arc t a n 2 ^ πί/2 ̂ 1 , ττ2α(ί)l = 1 = π2δ(ί)0, and

( 3 ) α(ί)(0) = (0, 0) and δ(t)(l) = (1, 0) for all t.

Define gt: S -> P X by

#(£, α;') |fl(ίB>ίS/) wi th length &x for (α;, a?') e So

G(α;, α;')|ttod(x, α;') wi th length kx for (α;, %') e S1 .

On So Π Si, T = fe = 1 — fc, d = 0 and fcx = (l/2)fc. αocZ is the interval

[(0, 0), (1/2, 0)]. The composition

G(x, x') I aod = g(g(x, xf)s, rg(x, x')s)0 , 0 £ s ^ -L
Δ

= g{x, x')s 0 ̂  s ^ —
Δ

= g{χ,χ')\T

= πjg(x, af)\!iimK* ">

= πjg(x, x') IJi' '1 .

Thus, the definitions of gL on So and St agree on So Π Si. Clearly,
#! [ ,S0 is a morphism. To check that gt | Sx is also, it suffices to check
πjg\S1. On S1( fc < 1. Define a morphism h: T x M(I, P) x I->X
by the following function space adjointness applications:

G:T x Γ > X ,

G:P >M(T,X) ,

M(I, G): M(I, Γ) > M(I, M(T, X)) = M(T, M(I, X)) ,

M(I, G)~: T x M(I, P) > M(I, X) , and finally

h = M(I, G)~~: T x M(I, P) x I > X .

Define p: T-^M{I,P) by

\αd(x, x') if k(x, x') > 0
P(X'X'} ([0, 0), (0, 1)] if k(x',x) =

Then fe, h, p satisfy the hypotheses of Lemma 1.2. Thus,
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k(x, x\ t) = h(x, x', p(x, x'), t)

is a morphism. But this is πJg^S^
Similarly,

[g(x, x')\llU%>) with length k2{x, xf) on So
Π \Cβ O u t = = Λ

(G(x, xr) \ bd(x, x') with length k2{x, xr) on Sλ

is a morphism.
Verification of ( i ) and (ii) of Step 5 is immediate. Condition (v)

follows from (1) and (2) above and condition (iii) follows from (3).
To check condition (iv), observe that ηπι = 0 implies d = 1 or k = 0.
In the latter case g2 is the 0-path at x = xf — rx ~ rxr. In the former,

πjg2s = (g(g(x, x')l, rg(x, x')ϊ)(l - s) 0 ̂  s £ 1 .

and so,

j θ = rx' = rπ2 .

COROLLARY III.2. Every cell-complex is LEC.

Proof. A cell-complex X is the colimit of a sequence of morphisms

-^->X(%+1), where X° is a d
defined by the push-out diagram

u sα

n

fn

X{n) >X{n+ί\ where X° is a discrete space and for each n, fn is

u BVΛ > x { n + i ) .
II Dl+ι is LEC and as U ia is a cofibration, II Sa is a halo retract in
Π Dn

a

+\ Thus, by the Adjunction Theorem LEC-data for Xin) extends
to LEC-data for X{n+1). X{0\ being discrete, is LEC. Inductively, a
sequence {g{n\ k{n)} of LEC-data is formed for the {X{n)} such that each
extends its predecessor. The functions g, k defined on the colimit X
are thus morphisms and are LEC-data for X.
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