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A GENERALIZATION OF THE PRIME RADICAL
IN NONASSOCIATIVE RINGS

HYO CHUL MYUNG

In [5] Tsai defined the Brown-McCoy prime radical for
Jordan rings in terms of the quadratic operation and proved
basic results for the radical. In this paper we give a definition
of the prime radical for arbitrary nonassociative rings in terms
of a ^-operation defined on the family of ideals and of a
function / of the ring into the family of ideals in the ring.
The prime radical for Jordan or standard rings is obtained
by a particular choice of the ^-operation and the function /.
We also extend the results for the Jordan case to weakly W
admissible rings which include the generalized standard rings
and therefore alternative and standard rings as well as Jordan
rings.

1* Let K be any nonassociative ring and let ^(K) denote the
family of ideals of K.

DEFINITION l. We define a * -operation as a mapping of κJ^{K) x
^{K) into the family of additive subgroups of K such that

(*1) for A, B, C, and D in ^(K) if A S C and B £ D, then
A*B £ C* D,

(*2) (Q)*A = B*(0) = (0) for all A, B in
(*3) A*B = A*B for any homomorphic images A and B of A and

B in ^{K).
If K is a Jordan ring, let Ux = 2R2

X — RX2 be the quadratic
operation and AUB be the additive subgroup of K generated by xUv,
x e A and yeB. Then the ?7-operation satisfies the conditions above.
If the characteristic is not 2, it is shown in [5] that AUA = A A2 and
is an ideal of K for A in ^{K).

For any ring K and A, B in ̂ (K), if we define A*B as the additive
subgroup AB2 + B2A + (AB)B + {BA)B, then A*B also satisfies the
conditions in Definition 1. In case K is a standard ring, it is shown
in [6] that A*J3 is an ideal of K for A, B in *J^{K). If iΠs commu-
tative or anticommutative, then A*B — AB2 + (AB)B. In particular,
if K is a Lie ring, A*B is an ideal of K. Since A2 is not in general
an ideal of K for A in ^(K), but there are considerably broad
classes of nonassociative rings in which A3 =Ξ AA2 + A2A is an ideal
of K for every ideal A, this example will be particularly interesting.

We recall that a noncommutative Jordan ring K is one satisfying
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the flexible law (x, y, x) = 0 and the Jordan identity (x, y, x2) = 0 for
all x, y in K, where (x, y, z) = (xy)z — x(yz). Most of the well known
nonassociative rings are included in the class of noncommutative
Jordan rings. Recently Thedy [4] defined a considerably broad class of
algebras that generalizes many of the well known algebras.

DEFINITION 2. A noncommutative Jordan ring K is called weakly
TΓ-admissible if it satisfies

[(α, δ, c), c] - ([a, c], c, b) = 0 ,

and

([α, δ], d, c] + ([δ, c], d, α) + ([c, α], d, δ]

- p[(α, δ, c), d] + 9[S(α, δ, c), d] + r[d, [δ, [α, c]]]

for some integers p, q, r such that either m(p, q, r) = 3 + 2p + 6q —
4r Φ 0, or n(p, r) = p + 4r ^ 0, where [α, δ] = ab — ba and S(α, δ, c) =
(α, δ, c) + (δ, c, α) + (c, α, δ).

Thedy called a noncommutative Jordan algebra over a field ΐ^-ad-
missible if it satisfies the identity [a, (α, α, δ)] = 0 and the two identities
above for p, q, r in the field such that either m(p, q, r) Φ 0 or n(p, r) Φ
O He proved that if the characteristic is not 2, then any generalized
standard ring of Schafer [2] is TΓ-admissible with p = — 2 and g = r =
0. Therefore, weakly "PΓ-admissible rings include generalized standard
rings and hence alternative and standard rings as well as Jordan rings.
In case the characteristic is not 2, it is also shown in [4, p. 192]
that in any weakly PΓ-admissible ring K, A3 is an ideal of K for A
in

LEMMA 1.1. Let K be any ring. Then the conditions (*2) and
(*3) imply

(i) (A + C)*(J8 + C) £ A*£ + C,
(ii) A*β S i n £

for ideals A, B, C of K.

Proof. Consider the quotient ring K = K/C, then by (*3) (A +
C)*(B + C) = A^B = A*J5, and hence (i). Let if = K/A> then A^β =
A*B = (Q)*B = (0) by (*2) and so A*5 £ A. Similarly A*B £ 5 and
A*£ £ A Π B.

DEFINITION 3. Let K be any ring. Then / is defined as a function
of K into κJ^{K) such that for every a in K

(fl) αe/(α),
(f 2) if xef(a), then /(a?) £ /(α),
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(f 3) f(a) — f(a), where a is a homomorphic image of α.
The principal ideal (a) generated by a in K is an example of /(α).

Now let S be a subset of K and define f(a) to be the ideal (α, S)
generated by a and S. Then/ satisfies the conditions above. A similar
function to / has been defined in [1] for the associative case and in [3].

Henceforth we assume that / denotes a function of K into ^(K)
satisfying (f 1), (f 2), and (f 3). Then clearly (a) £ f(a). For an ideal
A of K, we denote the ideal ^aBA f(a) by f(A). Then A £ f(A) and
f(A) £ / ( £ ) if A SB, and also /((α)) = f(a). But in general f(A) Φ A
as shown by the example f(a) — (α, S) for a subset S of K. Let

denote the family of ideals f(A) for A in ^ ( i Q . Then J? \K) £
and in particular, if / is such that f(a) = (α) for all a in ϋf,

then f(A) = A and j

2* In this section we give a definition of the prime radical for
any ring in terms of the *-operation and the function /.

LEMMA 2.1. Let K be any ring where the ^-operation and the
function f are defined. For an ideal P of K, the following are
equivalent:

( i ) If f(A)*f(B) S P for A, B in ^(K), then either f(A) £ P
or f(B) £ P.

(ii) If we have f{A)Γ\c{P) Φ 0 and f(B)f]c(P) Φ 0 , then
f(A)*f(B)f}c(P)Φ 0 .

(iii) If a and b are in c(P), then f(a)*f(b) Π e(P) Φ 0 .

Proof. We need only to show that (ii) and (iii) are equiva-
lent. Let a and b be in c(P), then f(a) Π c(P) Φ 0 and /(&) Π
c(P) Φ 0 . Hence (ii) implies (iii). Now let A and B be ideals of Z"
with f{A) Π c(P) ^ 0 and /(£) n c(P) Φ 0. Let α e / ( i ) Π c(P) and
bef(B)Πc(P). Assuming (iii), we get f(a)*f(b) Π c(P) ^ 0 and by
(*1) f(A)*f(B) Π(P)Φ 0 , thus (ii) holds.

DEFINITION 4. (i) An ideal P of iΠs called /*-prime if it satisfies
any one of Lemma 2.1. A nonempty subset M of K is called an /*-
system if, for A, £ in ^ ( i f ) , f(A) Π -M ^ 0 and f(B) f] M Φ 0 imply
f(A)*f(B)ΠMΦ 0.

(ii) An ideal P of K is called /*-semiprime if, for any ideal A
of K, f(A)*f(A) £ P implies /(A) £ P. A nonempty subset M of Z"
is called an s/*-system if, for A in ,J^{K), f {A) [\M Φ 0 implies
f(A)*f(A)r)MΦ 0.

An ideal P is /"-prime if and only if c(P) is an /^-system.
Similarly, an ideal P is /*~semiprime if and only if c(P) is an sf*-
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system. Let if be a Jordan or standard ring. If we define A*B as
AUB or as AB2 + B2A + (AB)B + (BA)B and define f(a) as (a) for
every a in K, then the defininition of /*-prime and /*-semiprime
ideals coincide with those in [5] or in [6].

DEFINITION 5. For A in ^{K), A* = {x e K | any /^-system con-
taining x meets A) is called the /^-radical of A. Similarly, A* =
{ye K\ any s/*-system containing y meets A} is called the s/*-radical
of A.

THEOREM 2.2. Let A be an ideal of K. Then
( i ) A* is the intersection of all the f*-prime ideals Pi containing

A.
(ii) A* is the intersection of all f*-semiprime ideals containing A.
(iii) A* is an f*-semίprime ideal of K.
(iv) A is f*-semiprime if and only if A = A*.

Proof. The proofs are essentially the same as in [5]. But to
emphasize use of the *-operation and the function / we prove only (i).
Let Πί Pi be the intersection of all the /*-prime ideals P, of K con-
taining A. If a £ Pi for some i, then a e c{Pi), being an / *-system, and
c(Pi) Π A = 0 . Hence a £ A* and A* g f|i -P< Conversely, if a g A*, then
there exists an /^-system M with ae M but A Π Λf = 0 . By Zorn's
lemma we find a maximal ideal P such that P^> A but PΠ ikf = 0 . Let
5, C be ideals of K such that f(B) Π c(P) Φ 0 and /(C)Πc(P) ̂  0 .
By the maximality of P, (/(£) + P) f] M Φ 0 and (/(C) + P) Π M Φ
0 . Since M is an /*-system, 0 Φ (f(B) + P)*{f{C) + P) Π Λf S
(f(B)*f(C) + P) Π M by Lemma 1.1 (i), thus f(B)*f(C)Πc(F) Φ 0 .
Hence P is /*-prime and α ? P .

LEMMA 2O3. Lβ£ α &e αTt element of K and S be an sf ""-system

containing α. Then there exists an J**-system M such that aeM and

Proof. Let aλ = a, then α xe f{aλ) Π S and so f{a^*f(a^) Γ) S Φ 0.
Hence we obtain a set M — {al9 α2, , αw, •} such that αA + 1e
/ f e ) Π S and ikίg S. By Lemma 1.1 (ii) we note that ak+1 e f{ak)*f(ak) g
f(ak) and so /(αΛ + 1) £ /(αΛ). Let p = max (ΐ, i), then αj,+1 e f(ap)*f(ap) Π
S^f(ai)*f(ad)ΠS. Hence f(at)*fiaj) Γi M Φ 0 and Λf is an /*-
system.

Therefore, as in [5], we have

THEOREM 2.4. For any ideal A of K, A* = A*. A* is cαiied £fee
f*-prime radical of A .
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DEFINITION 6. The /*-prime radical, R*{K), of K is the /*-
prime radical of the ideal (0). A ring K is said to be /*-semisimple
if R*(K) = (0).

LEMMA 2.5. Let K be a homomorphic image of K. If M is an
f*-system of K, then so is M in K.

Proof. Let A, B be ideals of K such that f(A) Π M Φ 0 and
f(B) Π M Φ 0 , where A and B are ideals in K containing the kernel.
Recalling (f 3) and A £ f(A), these imply f(A) Π MΦ 0 and /(£) Π
ikί^: 0 . Since Λf is an /*-system, by (*3) and (f 3) we see that
f(A)*f(B)ΠMΦ 0.

Therefore, by Lemma 2.3 we easily see that any homomorphic
image of an /*-prime ideal containing the kernel is also /*-prime.
Hence we obtain

THEOREM 2.6. Let K be a ring and R*{K) be the f ""-prime radical
of K, then R*(K/R*(K)) = (0), that is, K/R*(K) is p-semisimple.

DEFINITION 7. A ring K is called an /*-prime ring if (0) is an
/*-prime ideal in K.

Clearly, an /*~prime ring is /*-semisimple. Since any homomorphic
image of an /*-prime ideal is /*-prime, if P is an /*-prime ideal in
K then K/P is an /*-prime ring. Let K = K/P be an f*A prime ring
and let f(A)*f(B) S P, then f(A)*f(B) S (0) and so f(A) £ P or f(B) £
P, thus P is /*-prime in K. Hence P is an /*-prime ideal of K if
and only if KIP is an /*-prime ring. Therefore, as for Jordan rings,
we obtain

THEOREM 2«7. A ring K is isomorphic to a subdirect sum of /*-
prime rings if and only if K is f*-semisimple.

3* Throughout this section we assume that the ^-operation satisfies
the following additional condition:

(*4) A*A = A3 and A*A is an ideal of K for A in ^(K).
We recall that if K is a weakly TF-admissible or Lie ring then

A*B = AB2 + B2A + (AB)B + (BA)B satisfies (*4).

THEOREM 3.1. Let A be an ideal of a ring K and re A*. Then
a power of r belongs to A. Furthermore if K is power-associative,
then the f*-radical R*(K) is a nil ideal in K.

Proof. Let M be the multiplicatively closed system generated
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by r in K. Then it follows from (*4) that M is an s/*-system
containing r. Hence M Π A Φ 0 . If K is power-associative and r e
R*(K), then rk e (0) for some k and so R*(K) is nil.

Therefore, the /^-radical R*{K) is contained in the nil radical
N{K) (the maximal nil ideal in K).

Let J?\K) denote the set of ideals f(A) for A in ^(K). Then

THEOREM 3-2. A ring K is f*-semisimple if and only if
contains no nonzero nilpotent ideal.

Proof. It follows from Theorem 2.2 (iv) that K is /*-semisimple
if and only if the ideal (0) is /*-semiprime. If f{A) is a nonzero
nilpotent ideal for A in ^(K), there exist positive integers u = 3*
and v = 3*-1 such that f{A)u = (0) but f(A)v Φ (0). But then since
f(A)v*f(A)υ s /(A)3V = f(A)u = (0), (0) is not /*-semiprime. Conversely,
if (0) is not /*-semiprime, then there exists an ideal f(A) Φ (0) such
that f(A)*f(A) = f{A)z = (0), thus f{A) is nilpotent.

COROLLARY 3.3. The f ""-radical R*(K) contains all the nilpotent
ideals in J

Proof. Let f(A) be a nilpotent ideal in ̂ \K) and K = K/R*(K),
then JΪAy= f (A) e^\K), and f(A) is nilpotent in K. Since K
is /*-semisimple, by Theorem 3.2 f(A) = (0), thus /(A) s Λ*(iΓ).

THEOREM 3.4. If K is a ring and ^'{K) contains a maximal
nilpotent ideal S'(K), then R*(K) = S'(K).

Proof. By Corollary 3.3, S'(K) S R*(K). Let K = K/S'(K), then
^'{K) contains no nonzero nilpotent ideal and by Theorem 3.2 R*(K) =
(0). If r&Sf{K), then r ^ 0 and so there exists an /*-prime ideal
P in K with r ? P . From (*3) and (f 3) it follows that the inverse
image P of P is an /*-prime ideal in K. But since r £P,r£P and
so r$R*(K), thus R*(K) <^ S'(K).

Now suppose that f(a) — (α) for every element a in if. Then
^(K) = ̂ XδΓ). Hence by Theorem 3.2 iΓ is /*-semisimple if and
only if K has no nonzero nilpotent ideal, and R*{K) contains all
nilpotent ideals of K. In this case the ideal S'{K) is a maximal
nilpotent ideal S(K) in K and by Theorem 3.4 B*(K) = S(K).

Let K now be a finite dimensional TF-admissible or Lie algebra
over a field. Let f(a) = (a) for all a in K. If if is TF-admissible, then
it is shown in [4] that the nil radical N{K) is nilpotent and so the
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unique maximal nilpotent ideal S(K). Hence by Theorem 3.4 R*(K) =
N(K) = S(K). If K is a Lie algebra, it is well known that K has a
maximal nilpotent ideal S{K) and hence R*(K) = S(K).
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