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A GENERALIZATION OF THE PRIME RADICAL
IN NONASSOCIATIVE RINGS

Hyo CuuL MYUNG

In [5] Tsai defined the Brown-McCoy prime radical for
Jordan rings in terms of the quadratic operation and proved
basic results for the radical. In this paper we give a definition
of the prime radical for arbitrary nonassociative rings in terms
of a x-operation defined on the family of ideals and of a
function f of the ring into the family of ideals in the ring.
The prime radical for Jordan or standard rings is obtained
by a particular choice of the x-operation and the function f.
We also extend the results for the Jordan case to weakly W-
admigssible rings which include the generalized standard rings
and therefore alternative and standard rings as well as Jordan
rings.

1. Let K be any nonassociative ring and let . (K) denote the
family of ideals of K.

DEFINITION 1. We define a =-operation as a mapping of 7 (K) X
# (K) into the family of additive subgroups of K such that

(1) for A,B,C, and D in _#(K) if ASC and B<S D, then
AxB = CxD,

(*2) (0)xA = Bx(0) = (0) for all A, B in .7 (K),

(*8) AxB = AxB for any homomorphic images A and B of A and
B in _#(K).

If K is a Jordan ring, let U, = 2R? — R, be the quadratic
operation and AU, be the additive subgroup of K generated by zU,,
xe€ A and ye B. Then the U-operation satisfies the conditions above.
If the characteristic is not 2, it is shown in [5] that AU, = AA® and
is an ideal of K for A in 7 (K).

For any ring K and A, Bin . (K), if we define AxB as the additive
subgroup AB* + B*A + (AB)B + (BA)B, then AxB also satisfies the
conditions in Definition 1. In case K is a standard ring, it is shown
in [6] that AxB is an ideal of K for A, B in .#(K). If Kis commu-
tative or anticommutative, then AxB = AB* + (AB)B. In particular,
if K is a Lie ring, AxB is an ideal of K. Since A? is not in general
an ideal of K for A in .7 (K), but there are considerably broad
classes of nonassociative rings in which A4® = AA® + A*A is an ideal
of K for every ideal A, this example will be particularly interesting.

We recall that a noncommutative Jordan ring K is one satisfying
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the flexible law (x, y, ) = 0 and the Jordan identity (z, ¥, %) = 0 for
all z, vy in K, where (%, v, 2) = (xy)z — x(yz). Most of the well known
nonassociative rings are included in the class of noncommutative
Jordan rings. Recently Thedy [4] defined a considerably broad class of
algebras that generalizes many of the well known algebras.

DEFINITION 2. A noncommutative Jordan ring K is called weakly
W-admissible if it satisfies

[(a’y b, C), C] - ([a’ C]’ ¢, b) =0,
and

(la, 8], d, ] + ([b, c], d, @) + (l¢, al, d, D]
= pl(a, b, ¢), d] + q[S(a, b, ), d] + 7[d, [b, [a, c]]]

for some integers p, q, r such that either m(p, q, ) =8 + 2p + 6¢ —
4r # 0, or n(p, r) = p + 4r = 0, where [a, b] = ab — ba and S(a, b, ¢) =
(a, b, ¢) + (b, ¢, a) + (c, a, b).

Thedy called a noncommutative Jordan algebra over a field W-ad-
missible if it satisfies the identity [a, (a, @, b)] = 0 and the two identities
above for p, ¢, r in the field such that either m(p, q, ) == 0 or n(p, ) =
0. He proved that if the characteristic is not 2, then any generalized
standard ring of Schafer [2] is W-admissible with p = — 2and ¢ = r =
0. Therefore, weakly W-admissible rings include generalized standard
rings and hence alternative and standard rings as well as Jordan rings.
In case the characteristic is not 2, it is also shown in [4, p. 192]
that in any weakly W-admissible ring K, A® is an ideal of K for A
in “(K).

LEMMA 1.1. Let K be any ring. Then the conditions (x2) and
(*8) imply

(i) A+ C)«(B+ C)< A«B + C, and

(il) AxB=ANB
for ideals A, B, C of K.

Proof. Consider the quotient ring K = K/C, then by (x3) (4 +
C)«(B + C) = AxB = A«B, and hence (i). Let K = K/A, then A+B =
AxB = (0)+B = (0) by (+2) and so A«B < A. Similarly A+*B < B and
AxB& AN B.

DEFINITION 3. Let X be any ring. Then f is defined as a function
of K into .7 (K) such that for every a in K

(f1) ae f(a),

(f2) if we f(a), then f(x) & f(a),
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(f3) f(a) = f(@), where @ is a homomorphic image of a.

The principal ideal (a) generated by a in K is an example of f(a).
Now let S be a subset of K and define f(a) to be the ideal (a, S)
generated by @ and S. Then f satisfies the conditions above. A similar
function to f has been defined in [1] for the associative case and in [3].

Henceforth we assume that f denotes a function of K into 7 (K)
satisfying (f1), (f2), and (f8). Then clearly (a) < f(a). For an ideal
A of K, we denote the ideal X,., f(a) by f(A). Then A = f(4) and
f(A) < f(B) if A< B, and also f((a)) = f(a). Butin general f(4)+ 4
as shown by the example f(az) = (a, S) for a subset S of K. Let
S '(K) denote the family of ideals f(A4) for Ain _# (K). Then 7 '(K) S
#(K) and in particular, if / is such that f(a) = (a) for all ¢ in K,
then f(4) = A and #'(K) = 7 (K).

2. In this section we give a definition of the prime radical for
any ring in terms of the x-operation and the function f.

LEMMA 2.1. Let K be any ring where the x-operation and the
Sunction f are defined. For an ideal P of K, the following are
equivalent:

(i) If f(A=f(B)ES P for A, B in _#(K), then either f(A) & P
or f(B) < P.

(ii) If we have f(A)Ne(P) = @ and f(B)Nc(P) = O, then
F(A)=f(B)Ne(P) = D.

(iil) If a and b are in c¢(P), then f(a)xf(b) Nec(P) + @.

Proof. We need only to show that (ii) and (iii) are equiva-
lent. Let ¢ and b be in ¢(P), then f(a)Nc(P)#* @ and f(b)N
¢(P) = . Hence (ii) implies (iii). Now let A and B be ideals of K
with f(A) Ne(P) = @ and f(B)Ne(P) = @. Let ae f(A) Ne(P) and
be f(B) N ¢(P). Assuming (iii), we get f(a)+«f(b) Ne¢(P)# @ and by
(x1) f(A)=f(B)N(P) = &, thus (ii) holds.

DEFINITION 4. (i) An ideal P of K is called f*-prime if it satisfies
any one of Lemma 2.1. A nonempty subset M of K is called an f*-
system if, for A, B in .7 (K), flAYN M= @ and f(BYN M % @& imply
FA)«f(BN M=+ &.

(ii) An ideal P of K is called f*-semiprime if, for any ideal A
of K, f(A)«f(A) & P implies f{A) & P. A nonempty subset M of K
is called an sf*-system if, for A in _“(K), f(4A) N M + @ implies
SAf(AYN M= .

An ideal P is f*-prime if and only if ¢(P) is an f*-system.
Similarly, an ideal P is f*-semiprime if and only if ¢(P) is an sf*-
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system. Let K be a Jordan or standard ring. If we define 4xB as
AU or as AB* + B°A + (AB)B + (BA)B and define f(a) as (a) for
every a in K, then the defininition of f*-prime and f*-semiprime
ideals coincide with those in [5] or in [6].

DEFINITION 5. For Ain _#(K), A* = {xe K| any f*-system con-
taining & meets A} is called the f*-radical of A. Similarly, A, =
{ye K| any sf*-system containing y meets A} is called the sf*-radical
of A.

THEOREM 2.2. Let A be an tdeal of K. Then
(i) A* is the intersection of all the f*-prime ideals P; containing

(ii) A, is the intersection of all f*-semiprime ideals containing A.
(iili) A, ts an f*-semiprime ideal of K.
(iv) A is f*-semiprime if and only if A = A,.

Proof. The proofs are essentially the same as in [5]. But to
emphasize use of the x-operation and the function f we prove only (i).
Let N; P; be the intersection of all the f*-prime ideals P; of K con-
taining A. If a ¢ P; for some %, then a € ¢(P;), being an f*-system, and
c(P)NA= . Hence a ¢ A*and A* = ); P;. Conversely, if a ¢ A*, then
there exists an f*-system M with ae M but AN M = @. By Zorn’s
lemma we find a maximal ideal P such that P2 A4 but PN M = @. Let
B, C be ideals of K such that f(B)Ne(P) = @ and f(C)Ne(P) %= Q.
By the maximality of P, (f(B)+ PPNM = @ and (f(C) + PNM =
@. Since M is an f*-system, @ =# (f(B) + P)x(f(C) + PPN M <=
(f(B)«f(C) + PPN M by Lemma 1.1 (i), thus f(B)*f(C)Nc(P) = &.
Hence P is f*-prime and a ¢ P.

LEMMA 2.3. Let a be an element of K and S be an sf*-system
containing a. Then there exists an f*-system M such that ac M and

Mc S.

Proof. Let a, = a, then a,€ f(a,) N S and so f(a)«f(a) NS +#= O.
Hence we obtain a set M= {a,a, ---,a,, +-+} such that q,, ¢
fla)NSand M= S. By Lemma 1.1 (ii) we note that a,., € f(a,)*f(a,) =
f(a) and so f(ars,) S f(ax). Let p=max (z, j), then a,, € f(a,)*f(a,) N
S S fa)«f(a;) N S. Hence f(a)«f(a;)N M= @ and M is an f*-
system.

Therefore, as in [5], we have

THEOREM 2.4. For any ideal A of K, A* = A,. A* is called the
f*-prime radical of A.
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DEFINITION 6. The f*-prime radical, R*(K), of K is the f*-
prime radical of the ideal (0). A ring K is said to be f*-semisimple
if R*(K) = (0).

LEMMA 2.5. Let K be a homomorphic image of K. If M is an
f*-system of K, then so is M in K.

Proof. Let A, B be ideals of K such that f(4)NM = @ and
f(B)N M # &, where A and B are ideals in K containing the kernel.
Recalling (f38) and A & f(A), these imply f(A) N M= @ and f(B)N
M+ @. Since M is an f*-gystem, by (x3) and (f3) we see that
FA)fBYNM= 2.

Therefore, by Lemma 2.3 we easily see that any homomorphic
image of an f*-prime ideal containing the kernel is also f*-prime.
Hence we obtain

THEOREM 2.6. Let K be a ring and R*(K) be the f*-prime radical
of K, then R*(K/R*(K)) = (0), that is, K/R*(K) is f*-semisimple.

DEFINITION 7. A ring K is called an f*-prime ring if (0) is an
f*-prime ideal in K.

Clearly, an f*-prime ring is f*-semisimple. Since any homomorphic
image of an f*-prime ideal is f*-prime, if P is an f*-prime ideal in
K then K/P is an f*-prime ring. Let K = K/P be an f*A prime ring
and let f(A)«f(B) S P, then f(A)+f(B)<(0) and so f(A)S Por f(B &
P, thus P is f*-prime in K. Hence P is an f*-prime ideal of K if
and only if K/P is an f*-prime ring. Therefore, as for Jordan rings,
we obtain

THEOREM 2.7. A ring K 1s isomorphic to a subdirect sum of f*-
prime rings if and only if K is f*-semisimple.

3. Throughout this section we assume that the x-operation satisfies
the following additional condition:

(x4) AxA = A® and AxA is an ideal of K for A in 7 (K).

We recall that if K is a weakly W-admissible or Lie ring then
AxB = AB* + B*A + (AB)B + (BA)B satisfies (x4).

THEOREM 3.1. Let A be an ideal of a ring K and re A.. Then
a power of r belongs to A. Furthermore if K 1s power-associative,

then the f*-radical R*(K) is a nil ideal in K.

Proof. Let M be the multiplicatively closed system generated
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by r in K. Then it follows from (x4) that M is an sf*-system
containing ». Hence M N A # @. If K is power-associative and re
R*(K), then r*e (0) for some k& and so R*(K) is nil.

Therefore, the f*-radical R*(K) is contained in the nil radical
N(K) (the maximal nil ideal in K).

Let _#'(K) denote the set of ideals f(A4) for Ain _#(K). Then
F(K) & F(K).

THEOREM 3.2. A ring K is f*-semisimple if and only if _#'(K)
contains no nonzero nilpotent ideal.

Proof. It follows from Theorem 2.2 (iv) that K is f*-semisimple
if and only if the ideal (0) is f*-semiprime. If f(4) is a nonzero
nilpotent ideal for A in .7 (K), there exist positive integers u = 3
and v = 3" such that f(4)* = (0) but f(4)’ # (0). But then since
FAy=f(A) S F(A)* = f(A)* = (0), (0) is not f*-semiprime. Conversely,
if (0) is not f*-semiprime, then there exists an ideal f(A4) = (0) such
that f(A4)+f(4) = f(A)® = (0), thus f(A) is nilpotent.

COROLLARY 8.3. The f*-radical R*(K) contains all the nilpotent
ideals in _7'(K).

Proof. Let f(A) be a nilpotent ideal in _#'(K) and K = K/R*(K),
then F(4) = f(A)e #'(K), and f(A) is nilpotent in K. Since K
is f*-semisimple, by Theorem 3.2 f(A) = (0), thus f(4) & R*(K).

THEOREM 3.4. If K is a ring and _#'(K) contains a maximal
nilpotent ideal S'(K), then R*(K) = S'(K).

Proof. By Corollary 3.3, S'(K) & R*(K). Let K = K/S'(K), then
“'(K) contains no nonzero nilpotent ideal and by Theorem 3.2 R*(K) =
(0). If r¢S'(K), then 7= 0 and so there exists an f*prime ideal
P in K with 7¢ P. From (+3) and (f8) it follows that the inverse
image P of P is an f*-prime ideal in K. But since 7¢ P, r¢ P and
so r¢ R*(K), thus R*(K) < S'(K).

Now suppose that f(a) = (a) for every element @ in K. Then
F(K) = _7'(K). Hence by Theorem 3.2 K is f*-semisimple if and
only if K has no nonzero nilpotent ideal, and R*(K) contains all
nilpotent ideals of K. In this case the ideal S'(K) is a maximal
nilpotent ideal S(K) in K and by Theorem 3.4 R*(K) = S(K).

Let K now be a finite dimensional W-admissible or Lie algebra
over a field. Let f(a) = (a) for all ¢ in K. If K is W-admissible, then
it is shown in [4] that the nil radical N(K) is nilpotent and so the
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unique maximal nilpotent ideal S(K). Hence by Theorem 3.4 R*(K) =
N(K) = S(K). If K is a Lie algebra, it is well known that K has a
maximal nilpotent ideal S(K) and hence R*(K) = S(K).
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