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ON THE REDUCTION OF RANK OF LINEAR
DIFFERENTIAL SYSTEMS

DONALD A. LUTZ

The rank of a linear differential system in the neighbor-
hood of a pole of the system is defined to be one less than
the order of the pole of the coefficient matrix of the system.
H. L. Turrittin has shown that arbitrary rank can be reduced
to rank one at the expense of increasing the dimension of the
system in proportion to the amount of reduction. Can this
procedure lead to extraneous solutions of the rank-reduced
system which differ in behavior from solutions of the given
system? This question is answered by a transformation of
the rank-reduced system to a block-diagonal form, exhibiting
the precise relation between solutions of the two systems. In
particular, if the original system has a regular singularity at
the pole in question, then so does the rank-reduced system.

An application of this gives some new necessary conditions for
the regular singularity of a linear differential system (§3)

Poincare [7] devised a method which reduced the rank of an nth.
order (scalar) differential equation. His method is based upon dif-
ferentiation of the given equation. In §4 the differentiation of a
system of equations is discussed. It is shown by an example that
this procedure does not necessarily propagate the regular singular
property from the original system.

The reduction of rank procedure was originally applied by
Poincare, Horn, and others in the study of Laplace integral repre-
sentations for solutions. The reduced rank allowed a simplification
of the expression for the kernel in the Laplace transform. It has
also been used in questions of factorial series representation of solu-
tions. (See Turrittin [8]; pp. 272-274 and Wasow [9]; pp. 340-344
for references to applications.)

2* Block>diagonalization of the rank>reduced systeiru Define
(following Turrittin) the rank r of the ^-dimensional vector system
of linear differential equations

(2.1) *V(s) = A(z)y(z)

at 0 as r = q — 1. Here, A(z) = XΓ AX is an n x n matrix of func-
tions which are analytic in some neighborhood of 0, y is an ^-dimen-
sional column vector, A(0) Φ 0, and q is a positive integer. Turrittin's
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result ([8]; p. 271) states that if q ^ 3, then associated with (2.1) is
the system of rank one

(2.2) fΫ(t) =

where Szf(t) is an w-dimensional matrix of functions which are analy-
tic in a ^-neighborhood of 0. System (2.2) is called the (Turrittin)
rank-reduced system associated with (2.1). The scope of the relation
between (2.1) and (2.2) is our main consideration.

For the reader's convenience, the following computation is included
which leads to the construction of *Ssf(t). This is a small variation
in Turrittin's argument ([8J; pp. 271-272).

The main idea involves a change of the independent variable in
(2.1). We let t = zr and y(tιlr) = v(t). Then v satisfies the system

(2.3) v = λ-t
r

r)v = — t~2A(tlίr)v .
r

The expansion of the coefficient of this system in powers of tl!r has
leading term r~Ή~2A(0). In order to construct a system which has
a coefficient which is meromorphic in t at 0 and has rank one, we
introduce the w-dimensional vector

Y(t) =

v(t)
rllrv(t)

Differentiating Y(t) and using (2.3),

Ϋ(t) = -L
r

(r2A(tίlr) - r 1 / ) ^ - 1 "

(t~2A(tllr) - 2r1I)vr2'r

_(r*A(tllr) - (r - l)tr1l)vt-(r-»lr_
I denotes the n x n identity matrix throughout this paper.

If J^(ί) = (Aij(t)), (1 ̂ ίyj^ r) denotes the partition of J^(ί) into
^-dimensional blocks, then Y satisfies (2.2) if and only if the following
system of matrix equations is satisfied by the Ai3 ;

(2.4)

1/r) - (i- l ) Γ ( ί - 1 ) / r + 1 I ]

i " 1 ) / r , for 1 ^ i ^ r
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The following choice for the Aij(t) accomplishes this:

(2.5) Ai3{t) = I f Σ Ark+i-, tk-(i- l ) M ί ] > l ^ i j ^ r .

(δij denotes the Kronecker delta and the convention is made that Au —
0 for v < 0.) It can be verified directly by substitution that the
matrices defined by (2.5) satisfy (2.4). The essential features to take
note of are the identities

(2.6) Σ 4,F-«-»" = Σ Σ A,**-,**-"-1"- ,

for each i, 1 <̂  i <̂  r, which amount to rearrangements of the power
series on the left hand side. From (2.5) it is clear that j&(t) is
analytic in some ^-neighborhood of 0. This completes the construction.

The rest of this section is devoted to the block-diagonalization of
(2.2).

First note the following relations between the block entries of

( i ) Aij(t) = A i + i ί i + 1 ( t ) f o r e a c h i , j s u c h t h a t l ^ i < j ^ r — 1
and 1 ̂  j < i ^ r — 1. (i) follows directly from inspection of (2.5).

(ii) Au{t) = (l/r)[Σ*=oArtt* - (i - ΐ)tl] for 1 ̂  i ^ r, which like-
wise follows immediately.

( i i i ) Aij(t) — t A r _ k f j _ i _ k ( t ) f o r e a c h k , O ^ k ^ j — i— 1, w h e r e
i < j . To prove (iii), use (2.5) to get

-| co J.—1 oo

Ar-jij-i-kv) — — ZJL Arl+r__j+it — 2LJ A(i+L)+i t
γ ι=o γ ι=o

since A^s — 0.
Therefore according to (2.5) and (i), (ii) and (iii) if

1 °° k

\Δ i ) tS&v\t) — — y i A.rk+yt y (J ^ V ^ T — - L ,
γ Jc — Q

then

- (tr)~Ί
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Let ^r(ί) = diag {J, Γ1/rJ, Γ2/rI,
Then E7(ί) satisfies

(2.8)

lrI} and Γ(ί) =

where

^Φ) )

, and

(2.9)

The matrix <s%f(t) is called a block-circulant matrix. It is well-
known (see, for example, [6]; p. 66) that circulant matrices can be
diagonalized by a similarity transform using an orthogonal matrix.
A block-circulant can be block-diagonalized in essentially the same
manner (see [1]).

Let

0

1 0

0 I

0 I

• 0

Then

(2.10)

0 I Oj

can be expressed in terms of & as

r—i

0

The symbol X is used to designate the left Kronecker product with
respect to the block decomposition of , ^ \ (See [5]; pp. 81-82.)

Let ε = exp (2πi/r) and Fi3 = sijl for 0 <; i, i ^ r — 1. Form the
matrix

= ( i ^ ) , 0 £ i, j ^ r - 1

and let ^[ denote the first n columns of ^ ^[ denote the next n
columns of ^ etc. Then ^ ^ = ε~(i~1)

t^7 f° r each j , 1 ^ j ^ r,
and hence by induction

(2.11) ^ \ j ^ - ε-i{j-1]jη for each i, 0 ^ i ^ r - l ,

and each j , 1 ^ i ^ r.
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Now consider the product

/
_— I

\

r—l ^ \ r—l

i=o

using the property (A -XB) (C -XD) = (AC) -X(BD) of the Kronecker
product (see Theorem 43.4; [5] p. 82). Therefore using (2.11)

Defining

(2.12) &s = Σ S^ζΓi{j~γ) , 1 ^ j ^ r ,
ΐ=0

then

j ^ i ^ ~ = (£$ Fi •) \ < i j IΞΞL r

But since each block i ^ is a scalar multiple of J, then

diag {.̂ ,

Furthermore, ^~ is nonsingular because the columns of J?~ are
pairwise orthogonal. The inner product of any two distinct columns
from the same ^ is clearly zero, as is the inner product of the jth
column of ^ 7 with the άth column of ^7, j Φ k. It only remains to
check the inner product of the ith column of ^ 7 with the ith column
of ^ ^ , i Φ k. This is computed to be

r—l

2_j s * = (1 — sr % )/(l — ε ι ) — 0
1=0

Therefore ^ ^ J / ^ = diag{.^, ••., ,^r) = ^ ( t ) and if
, then TF(ί) satisfies

(2.13) TΓ(ί) - ^ ( ί ) W(t) .

This proves

THEOREM 1. The linear transformation

(2.14)

transforms the rank-reduced system (2.2) into the block-diagonal system
(2.13).

As an immediate consequence, this gives an alternate construction
for j^{t) as
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The fact that Jϊf(t), so defined, has a convergent power series expan-
sion in powers of t is a consequence of our previous calculations,
notably (2.6).

A fundamental solution matrix for (2.13) can be easily obtained
as the direct sum of fundamental solutions for the subsystems

(2.14) wj(t) = ^(tjwjit) ( l ^ i ^ r ) .

It is natural to restrict t to lie in some sector which the coefficient
&j(t) is single-valued.

This can also be accomplished by changing the variable in (2.14)
from t to zr and letting wό{zr) = uό{z). Then (2.14) becomes

u)(z) = rf

Σ
* = o

Σ

and performing the rearrangement (2.6) of the power series

(2.15) #uϊ(z)

(since ε is an r t h root of unity).
Now change the variable again from z to ε o " υ ζ and let Uj{eu~~l)Q =

v(ζ). Then (2.15) becomes

(2.16) ?7rv(Q = Λ(Qv(ζ) .
dζ

If Φ(z) denotes a fundamental solution matrix for (2.1), then Φ(ζ) is
a fundamental solution matrix for (2.16) and so Φ(e~u~1)tίlr) is a funda-
mental solution matrix for (2.14). This gives

THEOREM 2. A fundamental solution matrix for (2.2) is

(2.17) ^(ί) - &{t) ^ diag (Φ(ί1/r), Φ(s-ψ}r), , Φ ^ - 1 ^ } ,

where Φ(z) denotes a fundamental solution matrix for the system (2.1).

This representation collectively relates the behavior of a full set
of wr-linearly independent solution vectors of (2.2) to a fundamental
solution for (2.1). Turrittin's characterization of the connection be-
tween the solutions of the two systems presented as Theorem 48.1 in
Wasow ([9]; p. 341). In our notation, it states that if a solution
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v e c t o r Y of (2.2) is p a r t i t i o n e d i n t o n v e c t o r s F ( 0 ) , F ( 1 ) , •••, Y{n~m,

t h e n

(2.18) y = ΣVr ( i )(z r)

is a solution vector of (2.1) and all solution vectors of (2.1) can be
represented in this way. From (2.18) it can be shown that the regular
singularity (see next section for the definition) of (2.2) implies the
regular singularity of (2.1). However, it is not apparent that the
converse is true since the summation of the components of Y could
mask properties of the entries. However, using (2.17), it is shown
in the next section that the regular property of (2.2) is inherited
from (2.1).

3* Application to regular singular systems* The system (2.1)
is said to have a regular singularity at 0 (or equivalently that 0 is
a regular singular point) if there exists a fundamental solution matrix
Φ(z) for (2.1) having the property

(3.1) II 0(2) IP = 0(1 z\κ)

for some real number K as | z | —> 0, | arg z \ < oo. Of course, if one
fundamental solution has this property, then all do and this becomes
a property of A (z) which imposes severe restrictions on the coefficients
in the expansion of A(z). For example, it is well-known that the
leading coefficient Ao must be nilpotent. Lutz ([4]; p. 314) has proven
that it is also necessary that

(3.2) trace (A^A,) = 0

for each k = 0, 1, 2, , n — 1 provided q ^ 3. Lately, Harris ([3];
p. 2) has shown that in case q = 2, the conditions (3.2) are necessary
for the values of k = 1, 2, , n — 1.

In order to apply Harris' result to the system (2.2), it is helpful
to first prove

THEOREM 3. The linear differential system (2.1) has 0 as a regular
singularity if and only if the rank-reduced system (2.2) has 0 as a
regular singularity.

Proof. To show that (2.1) and (2.2) are regular singular together
at 0, use the representation (2.17). If Φ(z) satisfies property (3.1),
then || Φ{ιrψr) || = O(\ t \κ) as t-+0, | arg t \ < oo for all j = 0, 1, , r - 1

t The super-scripts do not indicate successive derivatives.
tt Any matrix norm may be used here.
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(where K is used generically to denote some real number). Since
\\&r(ΐ)jr\\ = O(\t\κ) as ί->0, |argί | < oo, then ψ(t) likewise has this
property. To prove the converse, just solve for Φ(t1/r) as the first
diagonal block of ^r~~1^-1(£)n/r(£) and use the same argument.

Next, we investigate the product S^kJ^[ which appears in Harris'
necessary conditions for the regular singularity of (2.2).

LEMMA. Let T[X0, Xu , Xr_J denote the lower regular block-
triangular matrix having entries Xo on its diagonal blocks, X1 on its
first sub-diagonal blocks, etc. Then

1 Cf(fe) Cf(Λ) |

where

Σ AhAh A

and k ^ 1. (The summation above is taken over all nonnegative values
of the indices with the indicated sum.)

Proof. (3.3) is proven by induction on k. Note that

S;υ = Σ Ah - Ai , 0 ̂  j ^ r - 1 .

From (2.5) AiV(0) = (l/r)A,_y, hence J^J - (l/r)T[A0, Au •••, Ar_J and
(3.3) is verified for k = 1. Assuming (3.3) is true for fc, multiply on
the left by .i^ζ to obtain

where X, — ΣLo A^Sl^. Then by the induction hypothesis

yd Δ . . . /I —

and the induction is completed.
As a consequence of (3,3), note that if Ao is nilpotent of order h

(i.e., A\ = 0, but AJ"1 =£ 0, 2^ /̂  ̂  ri), then J^J is nilpotent of order
at most rh. This follows from the fact that if k >̂ rλ, then in each
of the index sets {iuί2, * ,4)> there must be at least h consecutive
0's since

Σ iy ̂  r - 1 .

It then follows from Theorem 3 and Harris' result that
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(3.4) t r a c e (J^o

kJ^) = 0 , l ^ k ^ r h - l ^ r n - l ,

are necessary conditions for the regular singularity of (2.1). Again,
from (2.5)

- ί ( Λ - i + w ~ (i - Wai) , l ^ i j ^ q - l .
r

The j>th diagonal block of the product J^J f c J^ is calculated to be

But since the trace is a linear function and trace (AS) = 0, then the
conditions (3.4) can be expressed in a straight-forward manner as

THEOREM 4. Necessary conditions for the regular singularity of
(2.1) at 0 are:

(3.5) trace ( g g f Σ - 0

tor 1 ^ fc ^ rn — JL.

Further simplifications in the form of (3.5) can be made by using
the identity: trace (AS) = trace (BA). For example, it can be shown
that the condition corresponding to k = 1 can be rewritten in a simpler
way as:

trace! Σ AiAQ-.ι-λ — 0 when q is even ,

and

tracef Σ AiA^-i + (l/2)A^_1)/2) = 0

when q is odd.

The conditions given in Theorem 4 are generally not sufficient
for regular singularity. One reason for this is that conditions (3.5)
involve restrictions only on Ao, Al9 , Ag_L and it is known that the
necessary and sufficient conditions may depend non-trivially on the
first n(q — 1) coefficients in the expansion for A(z).

4. Differentiation of a linear differential system* Poincare ([7];
pp. 328-335) was concerned with (scalar) nth order linear differential
equations of the form

(4.1) Pny
ln) + Pn~{y{n~ι) + + P&' + Poy = 0
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in a neighborhood of x = oo, where the P< denote polynomials in x.
His definition of rank appears different from the one used by Turrittin.
They can be made comparable by writing (4.1) as a first order system
in the following manner. Let y1 = y, y2 = xy[, etc. and make the
change of variable z = x~ι to change the singular point to the origin.
The linear differential system obtained in this manner will have the
same rank as the nth. order scalar differential equation.

To make his reduction of (4.1) to rank one, Poincare differentiates
a function formed from a solution of (4.1) and obtains a system of
differential equations of order up to and including np, where p denotes
the rank of (4.1) in Poincare's sense. An important feature of this
construction is that the rank in invariant with respect to differentia-
tion of the equation. After some algebraic manipulations (which have
been called "impracticable" by Birkhoff) and a change of variable, he
is able to reduce the rank of a linear differential equation of order
np to rank one.

Rank zero (in Poineare's sense) is equivalent to the following
necessary and sufficient conditions for regular singularity to due Fuchs
([3]; p. 122):

A differential equation of the form u{n) + Σ?=i cίj(z)u{n~j) = 0 has
a regular singularity at 0 if and only if a^{z) = z~jPj(z)9 where Pj(z)
is analytic at 0, for each j(l fg j ^ n) and not all the a3 (z) are analytic
at 0.

Then Poincare's argument on the in variance of the rank of the
differentiated equations shows that the regular singular property is
preserved by differentiation of the equation.

It is not true, however, that differentiation of a system of the
form (2.1) necessarily preserves the regular singular property. Let
A(x) = z~qA(z) and differentiate

(4.2) Y' = A(z) Y

once to obtain

Y" = A\z)Y + A\z)Y,

which is written in first-order system form as

n solution vectors of (4.3) are regular singular at 0 simultaneously
with (4.2), since if Φ(z) is a fundamental solution matrix for (4.2), then

(φλ is a set of n linearly independent solution vectors of (4.3). The

other n linearly independent solutions of a fundamental set for (4.3),
the so-called extraneous solutions, may have irregular singular behavior
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at 0.
To see when this may happen, let

Then W satisfies the differential equation

and clearly if yf = Ay has a regular singularity at 0, then (4.3) has
a regular singularity at 0 if and only if

(4.4) wf = ~A(z)w

has a regular singularity at 0.
The following example shows that (4.4) may have 0 as an irregular

singular point even though 0 is a regular singular point of (4.2). Consider

(4.5, r

To show that (4.5) has a regular singularity at 0, transform it so
that it is equivalent to a second order scalar equation.

If y' = (an aί2)y and α12 =£ 0, then the transformation v = (\ ® )y
\α21 α22/ / 5 1\

yields the system v' = ί — Λ H w ^ e r e — 6 = «u + 2̂2 + αϊi1^ a n ^
0 = αnα22 — α12α21 + c^α^α^ — a'n. Hence u — v1 satisfies the second
order equation

(4.6) u" + bu' + cu = 0 .

Applying this procedure to (4.5), obtain an equation of the form (4.6)
with b = O^"1) and c = O(̂ ~2) as 2 —> 0. Therefore the Fuchs' condi-
tions are satisfied and so (4.5) has a regular singularity at 0.

However, if the procedure is applied to (4.4) with A(z) given by
(4.5), then an equation of form (4.6) is obtained with b = O(z~ι) and
c = Az~3 + O(z~2) as 3—*0. The Fuchs' conditions are not satisfied,
hence (4.4) is not regular singular at 0. This is called irregular singu-
lar behavior at 0 and is characterized by exponential-type growth of
solutions in sectors as z —> 0. The four-dimensional system (4.3) with
A(z) given by (4.5) has a solution space consisting of a two-dimen-
sional subspace of solutions which are regular singular at 0 and a
two-dimensional subspace which are irregular singular at 0.

The author acknowledges with thanks the helpful suggestions of
the referee in making the last section clearer.
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