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LIE STRUCTURE OF PRIME RINGS
OF CHARACTERISTIC 2

CHARLES LANSKI AND SUSAN MONTGOMERY

In this paper the Lie structure of prime rings of charac-
teristic 2 is discussed. Results on Lie ideals are obtained.
These results are then applied to the group of units of the
ring, and also to Lie ideals of the symmetric elements when
the ring has an involution. This work extends recent results
of I. N. Herstein, C. Lanski and T. S. Erickson on prime
rings whose characteristic is not 2, and results of S.
Montgomery on simple rings of characteristic 2.

1* Prime rings* We first extend the results of Herstein [5].
Unless otherwise specified, all rings will be associative. If R is a
ring, R has a Lie structure given by the product [x, y] = xy — yx,
for x,yeR. A Lie ideal of R is any additive subgroup U of R with
[u, r]e U for all u e U and reR. By a commutative Lie ideal we
mean a Lie ideal which generates a commutative subring of R.

Denote the center of R by Z. We recall that if R is prime, then
the nonzero elements of Z are not zero divisors in R. In this case,
if Z Φ 0 and F is the quotient field of R, then R ®ZF is a prime
ring, every element of which can be written in the form r (x) α"1 for
ae Z, a Φ 0. Thus R®ZF is naturally isomorphic to RZ~~\ the locali-
zation of R at Z. We will consider R imbedded in RZ~ι in the usual
way (see [2]).

We begin with some easy lemmas.

LEMMA 1. If R is semi prime and U is a Lie ideal of R with
u2 = 0 for all ue U, then U = 0.

Proof. Let ue U, xe Rthen 0 = (ux — xu)2 = uxux — ux2u + xuxu.
Eight multiply by ux to obtain (uxf = 0. Thus uR is a nil right
ideal of index 3. Since R is semi prime, by Levitzki's Theorem [6;
Lemma 1.1] u = 0.

LEMMA 2. Suppose 2R — 0 and U is a commutative Lie ideal of
R. Then u2eZ for all ue U.

Proof. Let ue U, xe R. Then ux + xue Uso uxu + u2x = xu2 +
uxu. Hence u2 e Z.

LEMMA 3. Let R be prime and I a nonzero ideal of R. If [x, I] = 0,
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then xe Z.

Proof. If reR, then for y e /, ry e I and so 0 = [x, ry] = [x, r]y.
Thus [x, R]I — 0. Since R is prime [x, R] = 0, so xe Z.

THEOREM 4. Let R be prime and U a commutative Lie ideal of
R. Then Ua Z unless char R — 2, Z Φ 0 and RZ~γ is a simple ring
^-dimensional over its center.

Proof. If char R Φ 2, then UczZ by the proof of Lemma 1.3
of [6] Hence we can assume char R = 2. By Lemma 2 u2eZ for
all u 6 E7. If Z = 0 then by Lemma 1 £7 = 0 c Z. Thus we can
assume Z Φ 0. Let F be the center of RZ~\ If £7 = Γ72Γ-1, then JΪ7"
is still a commutative Lie ideal of RZ~γ and is not contained in F
unless UczZ. Suppose / is a proper ideal of RZ~\ Let A = [£?, I ] .
A is a Lie ideal of iϋ^"1 and is commutative since Ad U. Also Acz I
so can contain no units. But Lemma 2 implies that every element
of A squared is in F, hence must be zero. By Lemma 1, A ~ 0, and
so UczF by Lemma 3 unless 1=0. If £7£ Z then I = 0. Thus
RZ~ι is simple. But it is well known in this case [6] that

"1 ^ 4.

We indicate two standard examples to show that prime rings of
characteristic 2 can have noncentral commutative Lie ideals.

EXAMPLE 1. Let D be any commutative domain of characteristic
2, and D2 the complete 2 x 2 matrix ring over D. Then

is a noncentral commutative Lie ideal of D2.

EXAMPLE 2. Let F be any field of characteristic 2 with K a
normal extension of degree 2. Let a be the generator of the Galois
group of K over F. Let R = K[x, a] be the twisted polynomial ring
over K where addition is as usual but multiplication is given by the
rule xk = kax for ke K. R is a domain, not simple, and U = Ffcc]
is a commutative subring of R which properly contains Z = F[x2].
U is also a Lie ideal, for

[x\ kxj] = [x% k]xj = ( Λ + kxι)xj = (kai + &)αf+i .

If i is even then ka% = & and Af* + & = 0 where as if i is odd ka% = Af
and Af' + fc = Af + k is the trace of k, so is in F.
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If one wishes to consider the case for semi-prime rings there is
immediate difficulty arising from taking various direct products of
prime rings. Of course every semi prime ring is a subdirect sum of
its prime images. If the given ring contains a non central commuta-
tive Lie ideal U, one can write the ring as a subdirect sum of two
images A and B where the image of U in A is central and where B
is a subdirect sum of prime rings of characteristic 2 each of which
is an order in a simple ring of dimension at most 4 over its center.
This decomposition does not seem very useful and we offer the following
example which seems to indicate that one cannot say very much in
the semi-prime case, even if the ring contains an idempotent and its
center is a domain, which eliminates the difficulties arising from direct
products.

EXAMPLE 3. Let S be the prime-ring of Example 2 and consider
Rr = S[y]{w, t), the free ring with 1 generated by w and t over a
polymonial ring over S. Let I be the ideal of Rr generated by xw,
yt, and w2-w and let R — R'/I. By examining degrees of elements of
R with respect to x, y, w, and t, one can show that rtr = 0 implies
r = 0 for reR, and so, R is semi-prime. The center of R is Z =
F[x2

y y] a domain. Let U be the set of polynomials over F in x*y*
for i, j , ^ 1. U is a commutative subring and can be shown to be a
Lie ideal as in Example 2.

This example can be made "larger" by beginning with S[F]{IF}
where Y is a finite set, making sure that I contains ytw for each
we W and some yte Y, and letting U be all polynomials over F in
x and Y where x and each y e Y appears in every monomial.

There is one special case in which we can obtain a generalization.

THEOREM 5. Let R be semi-prime and Z a field. If U is a
commutative Lie ideal of R then Ua Z unless char Z = 27 R is simple
and dimzR — 4.

Proof. As in Theorem 4 we can dispense with the case that char
Z Φ 2. Also as in Theorem 4 we can obtain that U commutes with
every proper ideal of R. We may assume that R is not simple for
otherwise we are done. If IΦ 0 is a proper ideal of R then 0 =
[U, BI] = [U, B]I, and so 0 = [U, B]BI. If P is a prime ideal of R
then either / c P or [Z7, B] c P. If [U, R]czP for all prime ideals,
then since R is semi-prime [U, R] = 0 which says that UaZ. If
[ U, R] ςZ Po for some prime Po, then IaP0 for every proper ideal I.
Thus Po is the unique maximal ideal of R. If P is any other prime
of R then [U, R] c P. But ΠP^P0P = 0, so again UaZ.



120 CHARLES LANSKI AND SUSAN MONTGOMERY

We proceed now to obtain results like those in [5] for prime rings.
As one may expect our results are a bit stronger since we are dealing
with prime rings. Our proofs are generally characteristic free and so
throughout this section we will assume only that R is prime and if
both char R — 2 and Z Φ 0, then dim RZ~ι over its center exceeds
four. Hence by Theorem 4 we may always assume that any com-
mutative Lie ideal of R must lie in Z.

LEMMA 6. If Uis a Lie ideal ofR then either UaZ or C{U)aZ
where C(U) = {xeR\[x,U] = 0}.

Proof. If C(U) is commutative it is in Z by Theorem 4. If C(U)
is not commutative, since it is a subring and Lie ideal, it contains a
nonzero ideal I of R [6; Lemma 1.3]. Hence [17,1] = 0 and UaZ
by Lemma 3.

LEMMA 7. Let U19 U2 be Lie ideals of R with [ Uί9 U2] a Z. Then
either UtaZ or U2a Z.

Proof. If [ E7i, U2] = 0 then we have U,aZ or U2 a Z by Lemma
6 Thus we can assume Z Φ 0. Let V, = U.Z-1 and V2 = U2Z~ι in
RZ~\ Then Vx and V2 are still Lie ideals of RZ~ι and [Vί9 V2]aF,
the center of RZ~\ Let ueVlyveV2 and s e RZ~\ Then [u, [v, vs]] e JP7,
and so, [u, v[v, s]] = ̂ [w, [i;, s]] + [u, v][v, s] e F. If [u, v] — 0 for all
we Fi then ve F or ΐ ^ c F by Lemma 6 If VΊc F, then TJ^aZ and
we are done. Suppose TJ^φZ and ̂ gi^7. Then there is ue VΊ with
[u,v] = aeF and α ̂  0. Thus [v,s]eF+Fv= W for all s6RZ~\
Hence W is a commutative Lie ideal of RZ~\ so W c ί 7 by Theorem
4. But then ve F. Thus we must have V2 c JP, SO U2 C Z.

LEMMA 8. If U is a Lie ideal of R and [t, U] c Z, then either
teZ or UaZ.

Proof. Let T = {x e R\ [x, U] a Z). T is clearly an additive sub-
group of R. lίyeR and xe Γ, then [[#, y],u] = [[x, u], y] + [x, [y, u]] e
Z for any ue U. Thus Γ is a Lie ideal of R. By Lemma 7 either

Z or UaZ.

LEMMA 9. If U is a Lie ideal of R, xe R, x2 = 0 and xUx = 0,
eΐίfeer # = 0 or UaZ.

Proof. Let % 6 17 and reR. Then we have 0 = x[u, r]x =
Replace r by uxxr for wx G C7. Then xuuλxrx — ίc î

xuuxxrx = 0. Since i? is prime, either a? = 0 or xnuγx — 0 for u, uγ e Z7.
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If x Φ 0, then using x[u, r]x = 0 again and replacing r by u^xr for
uγu2e U, yields xuuλu2x = 0. Continuing we obtain xϋx = 0 where Z7
is the subring generated by U. If Uςt Z we must have U not com-
mutative by Theorem 4. Hence U contains a nonzero ideal I oί R
[6; Lemma 1.3], thus xlx = 0. Since i? is prime we must have x = 0,
contradicting $ ̂  0. Thus if a? ̂  0 we must have Ua Z.

LEMMA 10. Let Uς£ Z be a Lie ideal of R and V an additive
subgroup of R with [U, V]c V. Ifv2=0 for all veV, then V = 0.

Proof. Let re R, ue U, and ve V. Then [u, r] e U, so [v, [u, r]]2 =
0. That is (vur — vru — urv + ruvfv — 0. Expanding yields vurvurv —
vurvruv — vruvurv + vruvruv = 0. Replacing r by rv give vrvuvrvuv =
0, and so, (vuvr)z = O Since R is prime vuv = 0. By Lemma 9, v = 0.

LEMMA 11. Uς£ Z be a Lie ideal of R, and V an additive sub-
group of R with [V, U] c V. If [V, V] c Z, then F c Z.

Proof. Suppose first that [V, V] = 0. If char R =- 2 then 0 =
b, b> ^]] = iy> ̂ ] for v 6 F, ̂  e U. Thus since ?7ςz! iΓ, v2 e Z by Lemma
6. If Z = 0 then F = 0 by Lemma 10. If char R Φ 2 let K - [F, *7]
and note that [K, K] = 0. lί ve K,ue U and r e J? then u[%, r] =
[%, %r] G ί7, so

0 = [v, [v, u[u9 r]] = [v, u[v, [u, r]]] + [v, [v, u][u, r]]

= l», u][v, [u, r]] + [v, u][v, [u} r]] .

Since char R Φ 2 we have [̂ , ̂ ][^, [̂ , r]] — 0.

Let r = vu. Then

0 = [v, u][v, [u, vu]] = [v, ̂ ][v, [̂ , v]^] = [v, u][u, v][v, u] .

Thus for ve K, ue U[v, uf — 0, and also 0 = [v, [v, u]] = t̂ w — 2vuv +
^t;2. If v e K and -z;3 = 0, then 0 = vzuv — 2v2uv2 + vuvz which implies
qfuv2 — 0. Since U(£ Z> Lemma 9 says that v2 = 0. But now, using
0 = [v, [v, u]], we have vuv = 0, so again by Lemma 9, v = 0. Since
[Vy uf = 0 for any ve K we conclude that [v, ̂ 6] = 0. By Lemma 6,
K - [F, DΊ c Z. Thus Vcz Z by Lemma 8. Thus if [F, F] = 0 we
are done if char R Φ 2, so regardless of char R we are done if Z = 0.
Therefore we may assume Z Φ 0.

Now assume that ϋ? is simple. Since U(£ Z we have Z7z) [i2, R]
[6, Theorem 1.5]. Thus W = FίΊ [R, R] is a Lie ideal of [#, 22], so
is [#, R] or is in Z [6, Theorem 1.13]. But [TF, W] c Z, so 1^ Φ [R, R]
by repeated applications of Lemma 7. Hence WaZ, and so, [F, [i2, JB] ] C
Z. By Lemma 7 we have VaZ.
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We may now assume that R is not simple. Let V1 = VZ~ι and
Uι = Ϊ7Z""1. C7Ί is a Lie ideal of i2Z-1 not contained in F, the center
of RZ~\ Vι is an additive subgroup of RZ~\ [Vl9 UΊ] c V19 and
[Vu Vt]czF. If i?^"1 is simple we are done as above. Let IΦO
be a proper ideal of RZ~\ Set J = [Uu I], J is a Lie ideal of
iJZ""1 and is contained in C/i Π I. Let TF = [Vl9 J] c Fx Π / . Now
[TF, I f J c F n / c F ί l J . Since I is proper we must have [W, W] =
0. But [W, U,] c TF so as above, if char R Φ 2 then WczF while if
char i£ = 2 then the square of every element of W is in F. But
again WaJal, a proper ideal containing no units, so in either case
the square of very element in W is zero. By Lemma 10, W = 0.
Thus [Vl9 J] — 0. Since J is a Lie ideal of RZ~~\ by Lemma 6 either
J c F o r T i c F . If F c F t h e n F c Z . ΊίJczF then [ U J J c F .
Using Lemma 7 we conclude E7i c JP or IaF, both of which are
impossible. Thus we must have VaZ.

THEOREM 12. Lei W he a subrίng of R, U a Lie ideal of R and
[W9 U]a W. Then either Ucz Z, Wa Zor WzDMΦOan ideal of R.

Proof. The first half of the proof is almost the same as that of
Theorem 3 of [5]. We repeat it here for convenience. Let V — [W9 U\
If V = 0 then UaZ or WczZ by Lemma 6. Assume Vφ 0. Let
teV,weW, and r e R. Since F c W Π U we have [t, tr] e U, and so
[w9 [t, tr]] e W. Thus [w, t[t, r]] e W. Now [w, t[t, r]] = t[w, [t, r]] +
[w, t][t, r] e W. Since t e W and [w, [t, r]] e W, we obtain

(A) [w,t][t,r]eW.

R e p l a c i n g r b y y r w i t h y e W y i e l d s

( B ) [w, t][t, yr] - [w, t]y[t9 r] + [w, t][t, y]reW.

Since t e Va U, [t, r] e U, so [y, [t, r]] e W. Thus y[t, r] = [t, r]y + k
for some ke W. Hence [w, t]y[t, r] = [w, t][t, r]y + [w9 t]k. By (A)
[w, t][t, r] e W, hence [w, t]y[t, r] e W. Thus (B) implies [w, t][t, r]Ra
W. Commutating repeatedly with U gives U[w, t][t,y]Rcz W, where
U is the subring generated by U. If U is commutative then Ucz Z
by Theorem 4. If Z7ζ£ Z then U containes a nonzero ideal I of R by
Lemma 1.3 of [6]. But then M = I[w, t][t, y]R is an ideal of R in
W. We are done if M Φ 0, so suppose M — 0. Since R is prime we
have

(C) [w, t][t9 y] = 0 for ί e F and w,yeW.

In particular, if w = ?/G F, then [w, ί]2 = 0. Let ϋΓ = [F, F]. ίΓ is
a Lie ideal of Z7 contained in F, and if vl9 v2, v3e K with v\ = 0 then
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by (C) we have [vu v2][vlf v3] — 0. Expanding gives v^v^ — v1v2v3v1 +
v2vιvzvι = 0. Right multiplication by v1 gives

( D ) v{ΰ2v1vzvι = 0 .

Now [v3, u]e K for any u e U, hence [v3, [u, v^] e K. Thus
VιVzv\vM [u, v^]vt — 0. Expanding this expression yields v1v2v1(v3uvί —
v3vγu — uv{v3 + v1uvz)v1 = 0. Using (D) we obtain v1v2vίuv1v3vί — 0.

Since v\ = 0, by Lemma 9 we conclude that v1Kv1 = 0 if VφZ. Suppose
now that vly v2e K with v\ — v\ = 0. First we conclude that
(v^)2e vγKvxv2 = 0 If ue Uthen we also have 0 = ^ f ^ ^ ] ^ ^ = vxv2uvxv2.
Lemma 9 again implies that v{ΰ2 = 0 if U<£ Z. But if tlf t2e V then
[tl9 t2] e K and has square zero by (C). Since K is additively generated
by such elements, by what we have just shown, every element in K
has square zero. By Lemma 10, K — 0 if U<£ Z. But now we have
[V, V] = 0 which implies VaZ if Uς£ Z, by Lemma 11. Since V =
[W, U]cZ, Lemma 8 says that either WaZ or UaZ. Thus as-
suming Wcontains no ideals leads to the conclusion that either WaZ
or Ud Z, which establishes the theorem.

THEOREM 13. Let U be a Lie ideal of R and V an additive sub-
group of R with [V, U]czV. Then either VaZ,UaZ, or 7 D
[M, R]Φθ for M an ideal of R.

Proof. Following the proof of Theorem 5 of [5], let A = [U, F],
T = {x e RI [x, R] c A}, and To be the subring of T generated by [A, A].
Then, as in the proof in [5], [TQ, U] c TQ, so by Theorem 12 either
T0<zZ, UczZ, or To contains MΦ 0 an ideal of R. If ToaZ, then
[A, A]a Z so Ad Z by Lemma 11. But [U, V] c Z implies either
Ua Z or VczZ by Lemma 8. If Ma To a T, then [M,R]aAaV
and we are done.

II* The group of units in a prime ring* We now turn to results
concerning normal subgroups and conjugates in prime rings Again R
will always be assumed to be prime, now with identity, and if char
R = 2 then dim RZ~ι over its center must exceed four. The proofs
are similar to those in [7] and [8] but will be repeated, without going
into detail, for convenience. We call a subset W of R G-normal for
G a U, the group of units of R, if W is invariant under conjuation
by all elements of G. If G = U we just say that W is normal. The
notation La S will mean that the subgroup S generated by all ele-
ments of square zero contains a noncentral Lie ideal L of R. See [7]
for a discussion of this condition and for examples when R has no
idempotents. Finally \A\ denotes the cardinality of A.
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THEOREM 14 Let LaS, \Z\ > 2, and W a normal Z-submodule
of R. Then Wa Z or WZD [M, R] Φ 0 for M an ideal of R. If W
is a subring, then WaZ or Wz>M.

Proof. For α2 = 0 and w e W, (1 + a)w(l — a) — w + aw — wa —
awae W. Using the fact that If is a ϋΓ-submodule, \Z\ > 2, and
(zaf — 0 for z e Z, we obtain [w, za] e W for z Φ 0 e Z and independent
of w e W and "α". Thus [W, zL] a W. Since zL is a noncentral Lie
ideal of R, we have WczZ ox WΊD [M, R] by Theorem 13. If W were
a subring and [M, R] c T7, then Lemma 1.3 of [6] implies that W
contains an ideal unless [M, R] is commutative. But then Theorem
4 says [M, R] c Z, and so Ma Z by Lemma 8, which is impossible in
a prμne ring.

i
THEOREM 15. Let La S, \Z\ > 4 cmcί TΓα G-normal Zsubmodule

ofR where G <\ U. Then GaZ, Wa Z, or TFID [M, R] Φ 0 for M an
ideal of R. If W is a subring, then GaZ, WaZ or WZDMΦ 0.

Proof. lΐa2 = 0,ge G, and weW, then A = (1 - a)g(l + a)g~ι e G,
so hwh"1 e W. Expanding gives w + /x(α) + + /4(α) e TΓ where
fi(za) = zlfi{a) for zeZ. Using |Z | > 4 and the fact that W is a Z
submodule (See Lemma 4.4 in [7]) we obtain cfx{a) — [w, c(a — gag~x)\ e W,
where c Φ Oe Z is independent of w, g, and "α". Let T be the Z
submodule generated by all c(a — gag~~ι) for a2 = 0 and ^ e G . Since
ϊ7 is normal, Theorem 14 implies that TaZ or Tz> [if, R] Φ 0 for K
an ideal of JB Suppose first that TaZ. Then ac(a — gag~ι)a —
—cagag^a = 0, so agag~ιa = 0. This implies that (c(α — gag"1))* = 0.
But a central element in a prime cannot be nilpotent unless it is zero.
Hence a = ^α^""1. The result is that [G, L] = 0. Since L ςt Z we
have GaZ by Lemma 6.

Now consider the possibility that [K, R] a T. Then [ W, [K, R]] a W,
so Theorem 13 implies that Wa Z, [K, R] a Z or Wz) [M, R] Φ 0. But
[K, R] a Z is impossible since it would say KaZ, by Lemma 7, and
so [K, R] = 0. If TΓ is a subring we proceed as Theorem 14.

LEMMA 16. Let LaS and \Z\ > 2. If N<\ Uand Nis abelian,
then NaZ.

Proof. Let W — ZN. Then If is a normal Z module so by
Theorem 14 either Wa Z or W => [M, i2] Φ 0. If WaZ then clearly
NaZ. If Tf 3 [M, jβ], then since [M, JR] is a commutative Lie ideal,
[If, J?] c Z by Theorem 4. But then Ma Z, Lemma 7, which is im-
possible in a prime ring.
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THEOREM 17. Let LaS and \Z\ > 4. If N <\U and is solvable
then Na Z.

Proof. Let the derived series for N be 1 <\ N{k) <\ <\ N. If
k = 1 then N is abelian so Na Z by Lemma 16. In any event N(k)

is normal and abelian so N{k) a Z. Suppose k > 1. Let a?, g/e N{k~ι\
Then 2/̂ τ/"1 = £# for z e Z . Thus Z[x], the ring generated by x over
Z is Nιk~ι)-normal, so by Theorem 15 either Z[x] a ^, which says that
xeZ, or Z[x] z>Mφ 0 an ideal of i2. But prime rings cannot have
commutative ideals (note that Lςt Z says R is not commutative) so
x € Z. Thus Λr(/b~1) c Z, a contradiction. We must conclude that fc = 1
and so Na Z.

As in [7] and [8] the last three results can be extended to normal
subgroups of normal subgroups by assuming \Z\ > 8. The proofs use
the same techniques presented here and so will not be given. For
details see Theorem 23 in [8].

Given x e R — Z and G <\U what does the set of G-conjugates of
x look like? In [8] it was shown that if L c S and char R Φ 2, 3
then the set must be infinite unless R is finite. Here we eliminate
the characteristic assumptions on R but still assume that R is prime
with 1 and if char R — 2 then dim RZ~ι over its center exceeds
four.

LEMMA 18. Let LaS, \Z\ > 2 and xeR — Z. Then x has in-
finitely many conjugates unless R is finite.

Proof. Let K = {ye U\yx = xy}. If x has only a finite number
of conjugates then K is a subgroup of finite index in U, K has only
finitely many conjugates, and each conjugate is finite index. If G is
the intersection of the conjugates of K, then G <J Z7, G is of finite
index, and [x, G] = 0. Since GZ is a normal Z submodule of R,
Theorem 14 implies that GZ a Z or GZZD [M, R] Φ 0. If GZZD [M, R]
then [x, [M, R]] = 0, so• xe Z or [M, R] c Z by Lemma 6. But x^Z
and [M, R]a Z implies Ma Z by Lemma 7, so [M, R] = 0, a contradic-
tion. Thus we must have GZaZ, and so GaZ. That is, Z Γ\ U is
of finite index in U.

Suppose a2 = 0. Then 1 + za is a unit for any ze Z, and 1 + zLa
and 1 + £2α are in the same coset oί Z f] U exactly when 1 + (zι — z2)a e Z.
But this implies (zλ — z2)a e Z. Since Z contains no divisors of zero
and a2 = 0, we must have z1 = z2. Since Z Π U is of finite index in
Uy Z must be finite, so Z * = Z - 0 is a multiplicative group. Hence
Zf] U = Z*, and so, U must be finite. Since 1 + a a unit for any
" α " of square zero, there can only be a finite number of elements of
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square zero. Thus S, the subgroup they generate must be finite.
Since LczS, L must be finite. As Lςt Z, [L, R] Φ 0. By Lemma 13
of [8] R[L, R]R is a nonzero ideal of R which is finitely generated
as a module over the integers. But char R is finite, so R[L, R]R is
finite. Since R is prime and contains a finite ideal, R itself must be
finite.

THEOREM 19. Let LaS,\Z\ > 4, xeR - Z, and G <\ U. Then
x has infinitely many G conjugates unless Ga Z or R is finite.

Proof. As in Lemma 18, if x has only finite many G conjugates,
then the intersection, say N, of the G conjugates of the centralizer
of x in G has the properties that N <] G, N is of finite index in G,
and \x, N] = 0. Now NZ is a G-normal Z submodule of R and a
subring, so by Theorem 15 either GdZyNZdZ, or NZZ)MΦO. If
Ga Z we are done. If Mc JV2Γ, then [&, M] = 0 so #e Z by Lemma
3. Thus we can assume NczZ. If Z is finite then G is finite, since
N is of finite index in G. But then, if g e G, # has only a finite
number of conjugates in Rf so either # G Z or i? is finite by Lemma
18. In either case we are done. We may therefore assume that Z
is infinite.

Let g19 , gk be a complete set of coset representatives of N in
G. Since G is normal, if α2 = 0 and CGZ, then since (ca)2 = 0 we have
for any geG that (1 + ca)g(l — ca) = ^s for some se iV. Since Z is
infinite there must be an infinite subset Px of Z so that if k e P1 then
(1 + ka)g(l — ka) = fl^β* wherei is fixed and ske N. Given ^ e Z there
is an infinite subset P2of iΓso that ke P2 implies (1 + k(za))g(l — k(za)) =
gitk where g and "α" are the same as above, i is fixed and tk e N.
Thus given some ge G, aeR with α2 = 0 and cί9 , cme Z we can find
an infinite subset Pm of Z with every ke Pm satisfying

(1 + k(Ci))g( - k(c%u)) =

where j depends only on i and not on k.
If kl9 k2 e Pm then

h = (l + kfaάftgil - Wc&))(l + hic^g-^l - fefaα)) e JSΓ

for eαcλ i = 1, , m. Thus [α;, A] = 0. Expanding gives

[x, 1 + (&! - fc2)(Cia - gc&g-1) - fc^ - k2)c\agag~ι

fci - k2)c\ga~ιga + ^ ( ά i - k2)c\agag~~ιa] = 0 .

If we use a sufficient number of c< then by combining the
relations obtained, as in Lemma 4.4 of [6], we can conclude that
[x, (k, - k2)c(a - gag'1)] = 0 where CΦ OeZ. Thus [x, α - gag~ι] = 0
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for any ge G and ae R with a2 = 0. Let T be the Zmodule generated
by all a — gag~ι. Since T is a normal set either Γ c Z or Γ D [M, i?] ^ 0
by Theorem 14. If Tz)[M, R], then [*τ, [M, R]] = 0 and we are led
to a contradiction as we have seen in Lemma 18. If Γ c Z then just
as in the proof of Theorem 15 we get G c Z. Having exhausted all
possibilities, the Theorem is established.

An immediate consequence of Theorem 19 is

COROLLARY 20. Let L c S, \ Z\ > 4 and N <j G <| U. Suppose that
Nςt Z and that R is not finite. Then

( i ) N is infinite
(ii) If S is any finite G-normal subset of R then Sa Z.
(iii) If f(x) e Z[x] has a noncentral root in a G-normal subset

S, then f(x) has infinitely many roots in S.

IIL Rings with involution* In this section we examine the
Lie structure of prime rings with involution of characteristic 2, ap-
plying the results of §1. These results generalize theorems in [10]
which describe the Lie structure of the symmetric elements of a simple
ring with involution of characteristic 2. Analogous results for the
skew-symmetric elements in characteristic not 2 have been obtained
by T. S. Erickson [3]. There appears to be little hope of extending
the results further, even to semi-prime rings, because of Example 3.

Let R denote a prime ring of characteristic 2, with an involution*,
and center Z. Let S = {%£ R\x* — x} denote the symmetric elements
of R; S is a Lie subring of R under the product [x, y] = xy + yx. The
involution is said to be of the first kind if Z c S, and of the second
kind if ZqL S.

We consider first the case when the involution is of the first kind;
so, assume from now through Theorem 37 that ZaS* Let V =
{x -f x*\xeR}, a Lie subring of S As in [10], to study the Lie
structure of S we will actually work with V. If I is a*-ideal of R
(that is, an ideal closed under*), define VΊ — {x + x*\xe I}. Now
7 / S F Π l , and in our results Vτ will assume the position of KΠ I
(where K denotes the skew-symmetric elements) in the theorems of
Erickson.

If R is simple, it was shown in [10] that V, S and [V, V] were
essentially simple as Lie rings, unless dimzR ^ 16 (in which case the
conclusions are false). In the prime case, our theorems will hold
unless R is an order in a simple ring Q (that is, Q is a right or left
quotient ring of R) which is of dimension ^ 36 over its center C
Though dimcQ ^ 16 should be the appropriate condition, the methods
of [10] do not apply to the smaller dimensions.
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Before proceeding, we point out that any nonzero ideal of R con-
tains a *-ideal. For, let I be any nonzero ideal of R. Then I* =
{i*\iel} is also an ideal of R, and JΓ)i~* is a *-ideal of R contained
in /. I n / ^ (0), since R is a prime ring (for more on *-ideals, see
[9]). Finally, if A is any subset of R, let A! denote the subring of
R generated by A. We first prove:

THEOREM 21. V contains a nonzero *-ideal of R, unless R is an
order in a simple ring Q, with center C, such that dimcQ <̂  4.

Proof. By Lemma 1 of [10], V is a Lie ideal of R. Thus by
Theorem 12, either V contains a nonzero ideal of R or V c Z. If
V contains an ideal of R> then V contains a nonzero *-ideal of R
by the above remarks. We may therefore assume that V a Z. Then
[V, V] = (0) and so V satisfies a polynomial identity of degree 2. By
a theorem of Amitsur [1], this implies that R satisfies a polynomial
identity of degree ^ 4. But now by a theorem of Posner [4, p. 184],
since R is a prime ring satisfying a polynomial identity, R is an order
in a simple ring Q which is finite dimensional over its center C. In
addition, Q satisfies an identity of degree d rg 4, and so by a well-
known theorem of Kaplansky [4, p. 157], dimcQ ^ [̂ /2]2 ^ 4.

We show next that if I is an nonzero *-ideal of R, then VΊ is
actually nontrivial.

LEMMA 22. Let I be a nonzero *-ideal of R. Then
(1) Vl7 [Vl9 V], and [VIf VΊ] are all nonzero, and
( 2) Vί contains a nonzero *-ideal of R

unless R is an order in a simple ring Q, with center C, such that
άimcQ ^ 4.

Proof. To show (1), it will be enough to show [Vl9 V^ Φ (0).
So, assume that [VIy VΊ] = (0). Since I is an ideal in the prime ring
R, I itself is a prime ring in which F, satisfies a polynomial identity
of degree 2. By the same argument as in Theorem 21, this implies
that I is an order in a simple ring Q of dimension S 4 over its center.
But then R would also be an order in the same ring Q.

To show that Vί contains a nonzero Mdeal of R, it will suffice
to show that V[ contains a nonzero ideal of R. Now if the prime
ring I were an order in a simple Q, dimcQ ^ 4, then R would be also.
So by Theorem 21 applied to /, we may assume that Vί contains a
nonzero ideal L of J. Since I is prime, I LI Φ 0; But I LI is a nonzero
ideal of R in Vί.

The next lemma gives a criterion for when a Lie ideal contains F 7.
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LEMMA 23. Let A be an additive subgroup of V such that A'
contains a nonzero ideal I of R, and let U be an additive subgroup
of R with [ U, A] c U. Suppose there exists c Φ 0 in S such that
ex + x*c e U, all x e I. Then £/Ξg VJ9 for some nonzero ""-ideal J of R.

Proof. Let xel and ae A. Now

[ex + x*c, a] = acx + {acx)* + cxa + (xa)*c .

Since [ex + x*c, a]e U and c(xa) + (m)*ce U, we must have acx +
(acx)* e U. By induction, exactly as in Theorem 2 of [10], it is
possible to show that bcx + (bcx)* e U, all beAn, and thus bca +
(bcxy e U, all b e A!. Then ycx + (ycx)* e [7, for all x,yel. Let J =
Id; J Φ (0) since R is prime, and Vj c Z7. / is a *-ideal of i? since
c* = c.

COROLLARY 24. If U and A are as in Lemma 23, then Uf con-
tains a nonzero *-ideal of R, unless R is an order in a simple ring
Q, with center C, such that dimcQ <* 4.

Proof. By Lemma 23, UZD VJ, where J i s a nonzero *-ideal of R.
Thus U' z> Vj, SO apply Lemma 22 to Vj.

The next theorem is the only point at which dimcQ f£ 36 (rather
than dim.Q g 16) seems necessary. However, the theorem is crucial
in what follows.

THEOREM 25. [V, V]f contains a nonzero ""-ideal of R, unless R
is an order in a simple ring Q, with center C, such that dim^Q ίg 36.

Proof. Let W = [V, V]. Now W is a Lie ideal of V, so if α, b e W
and xe R, we have

(a2b + ba2)x + x*(a2b + ba2) e W

by Lemma 2 of [10]. If for some α, b e W, a2b + ba2 Φ 0, we may apply
Corollary 24 with U = W, A = V, and (c = a2b + ba2) to see that W
contains a nonzero *-ideal of R.

We may assume that a2b + ba2 = 0, all a, be W. But then V
satisfies a polynomial identity of degree 6, so by the same argument
as in the proof of Theorem 21, R is an order in a simple ring Q, with
dimcQ <; 36.

COROLLARY 26. If aeR centralizes [V, V], then aeZ, unless R
is an order in a simple ring Q, dimcQ ίg 36.

Proof. If a centralizes [F, V], then by Theorem 25, a centralizes
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a nonzero ideal of R. Since R is prime, this implies ae Z.
We have now finished the preliminaries and can begin the actual

description of Lie ideals of F.

LEMMA 27. If U is a Lie ideal of V such that u2 = 0 for all
ueU, then U = (0).

Proof. Say ue Uand veV. Then uv + vue Z7, and so (uv + w)2 =
0 = uvuv + %Λ + vuvu since u2 = 0 Multiplying on the right by u,
we see uvuvu = 0. Linearizing on v and multiplying by vu again,
we get uvmvuvu = 0, for all v, ive F. Thus uvuVuvu = 0, all ve V.
But in a prime ring, whenever aVa = 0 with α2 = 0 and ae F, it must
happen that a = 0 (by Lemma 4 of [10]. Thus uvu = 0, all ve V,
and so % = 0 by repeating the argument. Thus Ό — (0).

LEMMA 28. If U is a Lie ideal of V such that u2 e Z, all ue U,
then Ud Z unless R is an order in a simple ring Q, dimcQ ^ 16.

Proof, First observe that by linearizing the relation u2 e Z, we
obtain [U, U]<zZ. Now if R is simple, then by Theorem 5 of [10],
either Ua Z or 17 3 [V, F], unless dim2i2 ^ 16. If 17 2 [V, V], then
[[V, V], [V, V]] £ [U, U]aZ. But by Theorem 7 of [10], [V, V] =
[[V, V], [V, V]], and thus [V, V]aZ. Then certainly [[F, V], V] =
0; this means that V satisfies a polynomial identity of degree 3. By
applying the theorems of Amitsur and Kaplansky as in Theorem 21,
we see dimzR ^ 9.

We may therefore assume that R is not simple. Let I be a non-
zero ideal of R. As before, we may assume that I is actually a *-ideal
of R.

First we claim that I Γ\ V Φ 0. For, if I Π V = (0), choose xel.
Then or e I, and x + x* e IΓΊ F = (0). But then α; = x*; that is, J g S .
Let reRo Since I is an ideal of R, Ir^S, so (ir)* = r*ί = ir, all
ieI,reR. In particular, is =• si, all S G S . By Theorem 21, this
implies that I commutes with a nonzero ideal of R, and so ί g Z since
R is prime. But now any element of R commutes with /, a nonzero
ideal, and so must be in Z. Thus R £ Z; that is, R is commutative,
a contradiction. Thus I n F=^ (0).

For the remainder of the proof, we assume that the center of R
is a field (as has been done previously, we consider RZ~ι). We claim
that [U, If) V] = 0. For [U, IΓ\ V]S UΠ I, which is a Lie ideal of
F. Now if ae UΠ I, and α2 ̂  0, a would be invertible since a2e Z.
This contradicts I being a proper ideal of R. Thus α2 = 0, all a e U Π I.
By Lemma 27, Uf) I = (0), and so [U, If] V] = (0).

Let c Φ 0 be any element of I n F. Then α + Λ G / Π F, for
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any x e R. Using Corollary 23 with IΠ V and A = V, we see that
(I Π VY contains a nonzero ideal of R. But then since [ U, I Π F] = 0 ,
U must commute with a nonzero ideal of R. Thus Ua Z since iϋ is
prime.

LEMMA 29. If U is a Lie ideal of V, then either u2 centralizes
U, all ue U, or Uz)[Vj, V], for some nonzero *-ideal J of R.

Proof. Define T(U) = {xe V\[x, V]a U}; T(U) is a Lie ideal of
V. By Lemma 8 of [10], if α, be U and xeR, then

(a2h + ba2)x + x*(a2b + ba2) e T(U) .

Assume that a2b + ba2 = c Φ 0, for some a, be U. Then ex + x*c e T{U),
for all xeR, so by Lemma 23, T(U)ZDVJ, for some nonzero *-ideal
J of i2. Thus [TO, V]£ U.

We may thus assume that a2b + δα2 = 0, for all a, be U. This is
simply the statement that a2 centralizes U, for all ae U.

LEMMA 30. If U is an additive subset of S svxh that [ U, A] c U,
where [A, A\ contains a nonzero ideal of R, then [U, U]a Z implies
u2e Z, all ue U.

Proof. Let ue U and aeA. Now

u2a + au2 = [u, [u, a]] e [ U, Z7] c Z .

Thus [u2a + au2, a] = 0 = u2a2 + aho2. Linearizing on α, we have
[u2, [α, b]] — 0 for all a, be A, and thus u2 centralizes [A, A]. By
hypothesis, this implies that u2 centralizes a nonzero ideal of R, and
so u2 e Z.

We are now able to prove the complete structure theorem for Lie
ideals of V.

THEOREM 31. Any Lie ideal of V is either contained in Z, or
contains [ VJf V] for some nonzero *-ideal J of R, unless R is an order
in a simple ring Q of dimension ^ 36 over its center.

Proof. Let U be any Lie ideal of V, and say U£[VJy V] for
all ideals J of R. Then by Lemma 29, [u2, U] = 0 for all ue U.
Linearizing, [[U, U], U] — (0) and so [U, U] is a commutative Lie ideal
of V. Let we [U, U]. Then wv + vwe [U, U], all ve V, and [w, wv +
vw] = 0 = w2v + vw2. In other words, w2 centralizes V. By Theorem
21 this means that w2 centralizes a nonzero ideal of R, and so w2 e Z.
By Lemma 28, [U, U]aZ. But now since [F, V\ contains a nonzero
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ideal of R by Theorem 25, we may apply Lemma 30 to see that u2 e Z
for all ue U. By a second application of Lemma 28, we see that

UaZ.

COROLLARY 32. [[F, F], [V, V\\ contains a nonzero ""-ideal of R,
unless R is an order in a simple ring Q, dimcQ ^ 36.

Proof. Let W = [[F, F], [F, F]]; W is a Lie ideal of F, so by
Theorem 31 either WaZ or WS[VJ9 V] for some nonzero *-ideal J
of ϋ?. If WS[VJy F], consider [Fj, Fj], which is nonzero by Lemma
22. By Theorem 25 applied to the prime ring /, it follows that
[Vj, Vj]f contains a nonzero *-ideal L of J. But then exactly as in
Lemma 22, JLJ is a nonzero *-ideal of R contained in W\ and we
are done.

Therefore assume that W = [[V, F], [F, V]] c ^ . By, Lemma 30,
since [V, V] is a Lie ideal of F and [F, F] ' contains a nonzero ideal
of R by Theorem 25, we obtain w2eZ, all we[7, 7] . By Lemma
28, this implies [F, V]czZ. Repeating the argument, we find VaZ,
so by Theorem 21 Z contains a nonzero ideal of R, and so i? is com-
mutative, a contradiction, unless R is an order in a simple ring ζ>
with dimcζ) ^ 4.

As a corollary to Theorem 31, we are also able to give a com-
plete description of Lie ideals of S.

THEOREM 33. Any Lie ideal of S is either contained in Z or
contains [ VJy V] for some nonzero *-ideal J of R, unless R is an order
in a simple ring Q of dimension ^ 36 over its center.

Proof. Let U be a Lie ideal of S, and let W = [U, S]. Then
W is a Lie ideal of F. By Theorem 31, either W^[Vj, V] for some
*-ideal J or WaZ. If Wz>[VJyV], then certainly U^[U, S] 2
[Vj, V]. So, assume W = [17, S] c Z. Since F c S, [C7, [F, F]] S
[[tf, TΊ, VΊ = (0), and thus U centralizes [F, V]. By Theorem 25,
UaZ.

Having described the Lie structure of F and S, we now turn to
Lie ideals of [F, F]. We will assume for the remainder of the proofs
that R is not an order in a simple ring Q, such that dimcζ) <Ξ 36.
As a first step in the proof, we prove a crucial lemma—the analog of
Lemma 28.

LEMMA 34. // U is a Lie ideal of [F, F] such that u2eZ, all
ue U, then Ua Z.

Proof. As in Lemma 28, we have [U, U]cz Z. If R is simple,
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we argue exactly as in Lemma 28 (using Theorem 11 of [10]) to show
that [F, V] c Z, and so άimzR <; 9, unless Ua Z. We may therefore
assume that R contains a nonzero*-ideal I.

We claim that I n [F, V] Φ (0). For, say that ln[V,V] = (0).
By exactly the same argument as in Lemma 28, we obtain If] V Φ (0).
But [In V, V] S [F, V] Π I = (0), and so ί n F centralizes F. By
Theorem 21, If] V centralizes a nonzero ideal of R, and so If] VaZ
since R is prime. Since we may assume without loss of generality
that the center of R is a field, I f] V would contain an invertible
element of R, which contradicts I being a proper ideal of R. Thus

in ιv, V]Φ(0).
Again, by exactly the same proof as in Lemma 28, we see that

[U,lΓi[V,V]] = (0), and so to show that UaZ, it will be enough
to show that ( In [V, V])' contains a nonzero ideal of R.

Now [IΠ[V, V], F ] g l n [V, V], since I is an ideal of R and
[[F, F], V]^[V, V]. Thus I n [F, F] is a Lie ideal of V. By Theorem
31, I n [F, F] 2 [F,,, F] for some nonzero *-ideal J of R, or I n [F, F] c
J£. If I n [ F, F] c ϋΓ, then since we may assume Z is a field and
I n [F, F] =£ 0, we have contradicted I being a proper ideal. Thus
we may assume that I f)[V, V]^2[VJy V] for some J. But then by
the same argument as in Corollary 32, [Vj, Vj\ contains a nonzero
ideal of R, and so also does (In [F, F])', and the lemma is proved.

COROLLARY 35. If U is a Lie ideal of [F, F], then [U, U]aZ
implies that Ua Z.

Proof. Follow exactly the proof of Lemma 30, using [[ F, F], [ F, F]]
instead of [F, F] (by Corollary 32, we know that [[V, F], [F, V]]'
contains a nonzero ideal of R) to see that u2 e Z, all ue U. Now apply
Lemma 34.

To complete our description of the Lie ideals of [F, F], we define
a new set T{U) as in [10, p. 400]: If U is a Lie ideal of [F, F],
define Γ(Z7) by

= {ve F | b , F] c U} .

The following properties of T — T(U) are easy to verify:
(1) T^[U, U]
(2)
(3)
(4) I f α e Γ , then [α2, F] - [α, [α, F]] c Γ.

We establish another property of T:

LEMMA 36. If ae T and a2 ί Z, then Γ 3 [α, Vj] for some nonzero
*-ideal J of R.
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Proof. W = {ve V\[a, v] c T). We will show that WZD VJ9 for
some J, by using Lemma 23. First observe that TFϋJF, V] by pro-
perty (2) above. Thus W is a Lie ideal of V, and by Theorem 21,
V contains a nonzero ideal of R. Since α2 g Z, there exists s e F s α
a2s + sa2 = c Φ 0, since otherwise α2 would centralize a nonzero ideal
of R, and so would be in Z, a contradiction. Now

ex + #*c = (a2s + sα2)# + x*(a2s + sα2)

= [α2, sx + x*s] + [s, xa2 + cAc*] + sα2(α? + a?*) + (a? + #*)α2s .

The first two terms are in [V, V], and by Lemma 10 of [10] we have
[a, sa2(x + x*) + (x + #*)α2s] e T. Thus [α, ex + £*c] e Γ for all x e R,
and so ex + Λ G W. Thus by Lemma 23, Wz) VJ9 some /.

THEOREM 37. If U is a Lie ideal of [V, V], then either UaZ
or U"3[Vj, V] for some nonzero *-ideal J of R

Proof. First assume that for some α, 6, e T, that α2δ2 + δ2α2 Φ 0.
Now [α, Vj] S Γ for some / by Lemma 36, and [δ2, V] £ [b, [b, V]] S ?"
by properties (2) and (4) of T listed above. Thus by Lemma 10 of
[10], a[b2V]a^ T, and so aΨv + vb2a2 - [α, α62v + vb2a] + α[62, φ e T
for all v G Vi Let c = α2δ2 + δ2α2, and say x e I. Now

ex + x*c = (aΨ + δ2α2)α; + £*(α2δ2 + δ2α2)

= α2δ2(*τ + x*) + (x + tf*)δ2α2 + [α2, δ2.τ* + a δ2]

+ [δ2, a2x + x*a2] e T

since x + a?* e Vz. Thus cα; + x*c e T, all » e l , and so Ti)Vj for
some ideal /, by Lemma 23. Since [V, T] g ί7, this means [Vj, V] £ ί7

We may thus assume that if U^[Vj, V] for all ideals J of Ry

then α2δ2 + δ2α2 = 0, for all a, be To Linearizing on a and δ, we see
that [[T, T], [Γ, Γ]] = (0). But then [T, T] is a commutative Lie
ideal of [V, V], and so [Γ, T] c Z by Corollary 35. Since T 3 [[7, U],
we have [[U, J7], [U, U]]<zZ. Applying Corollary 35 to [U, U] and
then to U, we obtain UaZ, the desired result.

We conclude with a theorem which describes the Lie ideals of S
when the involution is of the second kind. This extends a theorem
of Herstein on simple rings [6, p. 27].

THEOREM 38. Let R be a prime ring of characteristic 2 with an
involution of the second kind. If U is a Lie ideal of S, then either
UdZ or U"Ξ2[Jf) S, S\, where J is an ideal of R, unless R is an
order in a simple ring Q, with center C, such that dimcQ ^ 4.

Proof. Since * is of the second kind, choose aeZ with a* Φ a.
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Then a* + a Φ 0, since R has characteristic 2β Let r e R. Then
{a + α*)r = (or* + α*r) + α(r + r*) e S + αS; that is, (α + α*)i2 s
S + αS. Similarly (α + α*)ZgZ s + αZs, where Zs = ZftS.

Let TΓ = U(a + a*)Z. Since (α + a*)R £ S + aS, W is a Lie ideal
of iί. Thus by Theorem 13, either WQZ or W^[I,R] for some
ideal I of R. If TFQZ, then U(a + a*)Z^Z, and so U^Z. Thus
we may assume WS[I, R]

We claim that {72 [[I, I ] , [I, I]] Π S.1 We show first that [U, W] Π
SQ[U, UZf] S]. Let ue U and w = v(a + α*)^e TF, where ve U,
ze Z. Now (a + α*)^; = zx + α:̂ 2, where ^ι? z2 e Zs and so

[u, w] = [u, v(a + a*){zι + α^2)]

= [u, v](a + α*)^ + a[u, v](a + α:*)2;2GS + α S .

Thus if [u, w] e [ U, W] Π S, we must have z2 = 0, and so

[u, w] = [u, v](a + a*)z, = [u, v(α + α*)«J e[U, UZΓ) S] .

Now

s]^[u, w]ns

Now [[/,/]],[/,/]] is a Lie ideal of R, and so either contains
[J, R] for some ideal J of i2, or is contained in if by Theorem 13. If
the first possibility occurs, then ϋ"S [J, R] Γ) S 3 [/Π S, S] and we
are done. We may therefore assume that [[I, I], [/, I]] c Z. Then
[[[I, I], [I, I]], I] = (0); that is, I satisfies a polynomial identity of
degree 5. Since I is an ideal in a prime ring, / itself is a prime ring,
so we may apply the theorem of Posner used in Theorem 21 to see that
I is an order in a simple ring Q, finite-dimensional over its center C.
In addition, Q also satisfies an identity of degree 5, and thus by
Kaplansky's theorem, dimcζ) rgi [5/2]2 = 4. Since R is also an order in
the same Q, the theorem is proved.

REFERENCES

1. S. A. Amitsur, Rings with involution, Israel Math. 6 (1968), 99-106.
2. N. Bourbaki, Algebre Commutative, chapter 2: Localisation, Actualites Sci. Indust.,
no. 1290, Hermann, Paris, 1961.
3. T. S. Erickson, The Lie Structure in Prime Rings with Involution, to appear.
4. I. N. Herstein, Non-Commutative Rings, Carus Monograph no. 15, The Math. Asso.
of America, 1968.
5. f On the Lie structure of an associative ring, J. of Algebra 14 (1970).
561-571.
6. , Topics in Ring Theory, University of Chicago Press, Chicago, 1969.
7. C. Lanski, The group of units of a simple ring I, J. of Algebra 15 (1970), 554-569.

1 The idea for this part of the proof comes from Theorem 1 of Erickson [3].



136 CHARLES LANSKI AND SUSAN MONTGOMERY

8. , Subgroups and conjugates in Semi-Prime Rings, Math. Annalen to appear.
9. W. S. Martindale III, Rings with involution and polynomial identities, J. of Algebra,
1 1 (1968), 186-194.
10. S. Montgomery, Lie structure of simple rings of characteristic 2, J. of Algebra,
15 (1970), 387-407.

Received June 1, 1971.

UNIVERSITY OF SOUTHERN CALIFORNIA




