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LIE STRUCTURE OF PRIME RINGS
OF CHARACTERISTIC 2

CHARLES LANSKI AND SUSAN MONTGOMERY

In this paper the Lie structure of prime rings of charac-
teristic 2 is discussed. Results on Lie ideals are obtained.
These results are then applied to the group of units of the
ring, and also to Lie ideals of the symmetric elements when
the ring has an involution. This work extends recent results
of I. N. Herstein, C. Lanski and T. S. Erickson on prime
rings whose characteristic is net 2, and results of S.
Montgomery on simple rings of characteristic 2.

1. Prime rings. We first extend the results of Herstein [5].
Unless otherwise specified, all rings will be associative. If R is a
ring, R has a Lie structure given by the product [z, y] = zy — y=,
for x, ye R. A Lie ideal of R is any additive subgroup U of R with
[u,r]e U for all we U and re R. By a commutative Lie ideal we
mean a Lie ideal which generates a commutative subring of R.

Denote the center of R by Z. We recall that if R is prime, then
the nonzero elements of Z are not zero divisors in RE. In this case,
if Z# 0 and F is the quotient field of R, then R&,F is a prime
ring, every element of which can be written in the form » & a™* for
acZ,a+#0. Thus RE,F is naturally isomorphic to RZ™*, the locali-
zation of R at Z. We will consider R imbedded in BZ™ in the usual
way (see [2]).

We begin with some easy lemmas.

LEMMA 1. If R is semi prime and U s a Lie ideal of R with
u* =0 for all we U, then U = 0.

Proof. Let we U, xc Rthen 0 = (ux — zu)® = urur — ux*u + xuxy.
Right multiply by u« to obtain (ux)®* = 0. Thus »R is a nil right
ideal of index 3. Since R is semi prime, by Levitzki’s Theorem [6;
Lemma 1.1] » = 0.

LEMMA 2. Suppose 2R =0 and U is a commutative Lie ideal of
R. Then w*e Z for all uwe U.

Proof. Letwue U,xc R. Then ux + auc U so uxu + u’'x = xu® +
uxu. Hence u’e Z.

LEMMA 3. Let R be prime and I a nonzero ideal of R. If [z, I1=0,
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then xze Z.

Proof. If re R, then for ye I, rye I and so 0 = [z, ry] = [z, 7]y.
Thus [z, R]I = 0. Since R is prime [, R] =0, so z€ Z.

THEOREM 4. Let R be prime and U a commutative Lie ideal of
R. Then UcC Z unless char R =2,7Z + 0 and RZ™ is a simple ring
4-dimensional over its center.

Proof. If char R # 2, then Uc Z by the proof of Lemma 1.3
of [6]. Hence we can assume char R = 2. By Lemma 2 u*e Z for
all ueU. If Z=0 then by Lemma 1 U=0cZ. Thus we can
assume Z = 0. Let F be the center of RZ™. If U = UZ™, then U
is still a commutative Lie ideal of RZ™ and is not contained in F
unless Uc Z. Suppose I is a proper ideal of RZ™. Let A = [U, I].
A is a Lie ideal of RZ™" and is commutative since Ac U. Also Ac I
so can contain no units. But Lemma 2 implies that every element
of A squared is in F, hence must be zero. By Lemma 1, 4 = 0, and
so UcF by Lemma 3 unless I=0. If U¢ Z then I =0. Thus
RZ™ is simple. But it is well known in this case [6] that

dim,RZ™ < 4.

We indicate two standard examples to show that prime rings of
characteristic 2 can have noncentral commutative Lie ideals.

ExAMPLE 1. Let D be any commutative domain of characteristic
2, and D, the complete 2 X 2 matrix ring over D. Then

o {2ses

is a noncentral commutative Lie ideal of D,.

ExXAMPLE 2. Let F be any field of characteristic 2 with K a
normal extension of degree 2. Let a be the generator of the Galois
group of K over F. Let R = K[, a] be the twisted polynomial ring
over K where addition is as usual but multiplication is given by the
rule ok = k*x for ke K. R is a domain, not simple, and U = F|x]
is a commutative subring of R which properly contains Z = F[a%].
U is also a Lie ideal, for

[#, ka'] = [o, kla? = (@'k + ka')a? = (k' + k)i .

If 4 is even then & = k and % + k& = 0 where as if ¢ is odd %% = k*
and k' + k& = k* + k is the trace of k, so is in F.
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If one wishes to consider the case for semi-prime rings there is
immediate difficulty arising from taking various direct products of
prime rings. Of course every semi prime ring is a subdirect sum of
its prime images. If the given ring contains a non central commuta-
tive Lie ideal U, one can write the ring as a subdirect sum of two
images A and B where the image of U in A is central and where B
is a subdirect sum of prime rings of characteristic 2 each of which
is an order in a simple ring of dimension at most 4 over its center.
This decomposition does not seem very useful and we offer the following
example which seems to indicate that one cannot say very much in
the semi-prime case, even if the ring contains an idempotent and its
center is a domain, which eliminates the difficulties arising from direct
products.

ExamMpLE 3. Let S be the prime-ring of Example 2 and consider
R = S[yl{w, t}, the free ring with 1 generated by w and ¢ over a
polymonial ring over S. Let I be the ideal of R’ generated by zw,
yt, and ww and let B = R'/I. By examining degrees of elements of
R with respect to «, y, w, and ¢, one can show that »ér = 0 implies
r =0 for re R, and so, R is semi-prime. The center of R is Z =
F[o*, y] a domain. Let U be the set of polynomials over F in a«fy’
for 4,7, = 1. U is a commutative subring and can be shown to be a
Lie ideal as in Example 2.

This example can be made “larger” by beginning with S[Y|{ W}
where Y is a finite set, making sure that I contains y,w for each
we W and some y;€ Y, and letting U be all polynomials over F in
2 and Y where  and each y< Y appears in every monomial.

There is one special case in which we can obtain a generalization.

THEOREM 5. Let R be semi-prime and Z a field. If U is a
commutative Lie ideal of R then U C Z unless char Z = 2, R is simple
and dim,R = 4.

Proof. As in Theorem 4 we can dispense with the case that char
Z + 2. Also as in Theorem 4 we can obtain that U commutes with
every proper ideal of E. We may assume that R is not simple for
otherwise we are done. If I=+0 is a proper ideal of K then 0 =
[U, RI| =[U, R]lI, and so 0 = [U, RJRI. If P is a prime ideal of R
then either IC P or [U, Rjc P. If [U, R]c P for all prime ideals,
then since R is semi-prime [U, R] =0 which says that Uc Z. If
[U, Rl ¢ P, for some prime P,, then I < P, for every proper ideal I.
Thus P, is the unique maximal ideal of R. If P is any other prime
of R then [U, R]C P. But Np.pP =0, so again UcC Z.
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We proceed now to obtain results like those in [5] for prime rings.
As one may expect our results are a bit stronger since we are dealing
with prime rings. Our proofs are generally characteristic free and so
throughout this section we will assume only that R is prime and if
both char R = 2 and Z +« 0, then dim RZ™ over its center exceeds
four. Hence by Theorem 4 we may always assume that any com-
mutative Lie ideal of R must lie in Z.

LeMMA 6. If Uis a Lie ideal of R then either UC Z or C(U)C Z
where C(U) = {xc R|[x, U] = 0}.

Proof. If C(U) is commutative it is in Z by Theorem 4. If C(U)
is not commutative, since it is a subring and Lie ideal, it contains a
nonzero ideal I of R [6; Lemma 1.3]. Hence [U,I] =0 and UC Z
by Lemma 3.

LeEMMA 7. Let U, U, be Lie ideals of R with [U,, U,)C Z. Then
either U, Cc Z or U,C Z.

Proof. 1f [U,, U,] = 0 then we have U,C Zor U, Z by Lemma
6. Thus we can assume Z#0. Let V= UZ™" and V,= U,Z' in
RZ™*. Then V, and V, are still Lie ideals of RZ™* and [V, V,]C F,
the center of RZ™'. Letue V,,ve V,andse RZ™. Then [u, [v, vs]] e F,
and so, [u, v[v, sl] = v[u, [v, s]] + [u, v]llv, sle F. If [u,v] =0 for all
eV, then ve F or V,C F by Lemma 6. If V,C F, then U,C Z and
we are done. Suppose U,Z Z and v¢ F. Then there is we V, with
[u,v] =ac F and @ = 0. Thus [v,s]e F + Fv= W for all se RZ™.
Hence W is a commutative Lie ideal of RZ™, so W F' by Theorem
4. But then ve F. Thus we must have V,C F, so U,C Z.

LemMMA 8. If U is a Lie ideal of R and [t, U]l < Z, then either
teZ or UCZ.

Proof. Let T = {ze R|[z, UlC Z}. T is clearly an additive sub-
group of R. If ye R and xe T, then [[z, y], u] = [[=, u], y]+]z, [y, u]] €
Z for any we U. Thus T is a Lie ideal of R. By Lemma 7 either
TcZor UcZ.

LeMMA 9. If U 4s a Lie ideal of R,2c R,2* =0 and zUz = 0,
then either x = 0 or UC Z.

Proof. Let ue Uand re R. Then we have 0 = z[u, r]z = zurz —
xrux. Replace » by wxr for w,e U. Then wsuuwzry — ruxrux =
suu,xre = 0. Since R is prime, either # = 0 or 2uu,x = 0 for u, w,€ U.
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If ® # 0, then using x[u, r]x = 0 again and replacing » by uu.,xr for
wu, € U, yields auu,u,x = 0. Continuing we obtain «Ux = 0 where U
is the subring generated by U. If Ug¢ Z we must have U not com-
mutative by Theorem 4. Hence U contains a nonzero ideal I of R
[6; Lemma 1.3], thus «Iz = 0. Since R is prime we must have © = 0,
contradicting © == 0. Thus if ¢ % 0 we must have UC Z.

LEMMA 10. Let UZ Z be a Lie ideal of R and V an additive
subgroup of R with [U, VIC V. If ¥*'=0 forallve V, then V = 0.

Proof. Letre R, ue U, and ve V. Then [u, r]€ U, so[v, [u, r]]* =
0. That is (vur — vru — urv + ruv)*v = 0. Expanding yields vurvurv —
vurvruy — vruvure + vruvruv = 0. Replacing r by rv give vrvuvrouv =
0, and so, (vuwvr)® = 0. Since R is prime vuv = 0. By Lemma 9, v = 0.

LEMMA 11. U& Z be a Lie ideal of R, and V an additive sub-
group of R with [V, Ulc V. If[V,V]CZ, then VCZ.

Proof. Suppose first that [V, V] =0. If char R =2 then 0 =
[v, [v, u]] = [¢*, u] for ve V, ue U. Thus since U¢ Z, v*€ Z by Lemma
6. If Z=0then V =0 by Lemma 10. If char R+ 2 let K = [V, U]
and note that [K, K] =0. If veK,ue U and re R then ufu,r] =
[u, wr]e U, so

0= [’U, [’U, u’[u’ Ir]] = [’U, u['v, [’M, T”] + [7), [U, u][uy T]]
= [71, u][’l), [7/6, T]] + [/U’ u][v’ [u: 7']] *

Since char R + 2 we have [v, u][v, [u, r]] = 0.
Let » = vu. Then
0 = [v, ullv, [u, vu]] = [v, ullv, [u, v]u] = [v, w][u, v]lv, 4] .

Thus for ve K, we Ulv, u]* = 0, and also 0 = [v, [v, u]] = v"'u — 2vuv +
wr®. If ve K and v* = 0, then 0 = v*uv — 2v*u2® + vuv® which implies
Yur* = 0. Since U¢ Z, Lemma 9 says that +* = 0. But now, using
0 = [v, [v, u]], we have vuv = 0, so again by Lemma 9, v = 0. Since
[v, u]* = 0 for any ve K we conclude that [», ] = 0. By Lemma 6,
K=1V,UlcZ. Thus Vc Z by Lemma 8. Thus if [V, V] =0 we
are done if char R = 2, so regardless of char B we are done if Z = 0.
Therefore we may assume Z # 0.

Now assume that R is simple. Since U¢ Z we have UDI[R, R]
[6, Theorem 1.5]. Thus W = VN [R, R] is a Lie ideal of [R, R], so
is [R, R] or is in Z [6, Theorem 1.13]. But [W, W] c Z, so W + [R, R]
by repeated applications of Lemma 7. Hence W C Z, and so, [V, [R, R]]C
Z. By Lemma 7 we have VC Z.
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We may now assume that R is not simple. Let V,= VZ* and
U, = UZ*. U, is a Lie ideal of RZ not contained in F, the center
of RZ™,V, is an additive subgroup of RZ™, [V, U]Jc V, and
[V, Vi]cF. If RZ™ is simple we are done as above. Let I =0
be a proper ideal of RZ™'. Set J =[U,I], J is a Lie ideal of
RZ™* and is contained in U, NI. Let W=[V,J]cV.NJ. Now
[W, WlcFnJc FNI Since I is proper we must have [W, W]=
0. But [W, U]c W so as above, if char R # 2 then W F while if
char R = 2 then the square of every element of W is in F. But
again WcJc I, a proper ideal containing no units, so in either case
the square of very element in W is zero. By Lemma 10, W = 0.
Thus [V, J] = 0. Since J is a Lie ideal of RZ™, by Lemma 6 either
JCcFor V,cF. If V,cF then Vc Z. If JCF then [U,I]lCF.
Using Lemma 7 we conclude U, C F or IC F, both of which are
impossible. Thus we must have VcC Z.

THEOREM 12. Let W be a subring of R, U a Lie ideal of R and
[W, Ulc W. Then either UC Z, WC Z or WD M =+ 0 an ideal of R.

Proof. The first half of the proof is almost the same as that of
Theorem 3 of [5]. We repeat it here for convenience. Let V = [W, U].
If V=0 then UcZ or WC Z by Lemma 6. Assume V = 0. Let
te V,we W, and re R. Since VC W N U we have [¢t, tr] e U, and so
[w, [t, tr]]e W. Thus [w, t[¢, r]]e W. Now [w, t[t, r]] = tiw, [¢t, r]] +
[w, t][t, r]€ W. Since te W and [w, [¢, r]] € W, we obtain

(A) [w, t][t, r]e W.
Replacing » by yr with ye W yields
(B) [w, t1It, yr] = [w, tlylt, r] + [w, {[t, ylre W.

Since te Vc U, [¢, rle U, so [y, [t, r]le W. Thus y[t,r] =[¢t, rly + k
for some ke W. Hence [w, tly[t, r] = [w, tl[t, ]y + [w, t]k. By (A)
[w, t][t, r] € W, hence [w, t]y[t, r] € W. Thus (B) implies [w, ¢][¢, r]R C
W. Commutating repeatedly with U gives U[w, t][t, yJR C W, where
U is the subring generated by U. If U is commutative then Uc Z
by Theorem 4. If U¢ Z then U containes a nonzero ideal I of R by
Lemma 1.3 of [6]. But then M = I[w, t][¢, y]R is an ideal of R in
W. We are done if M == 0, so suppose M = 0. Since R is prime we
have

(C) [w, t][t, y] = 0 for te V and w,ye W .

In particular, if w = ye V, then [w,{]?=0. Let K=[V,V]. K is
a Lie ideal of U contained in V, and if v, v,, v,€ K with ¢! = 0 then
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by (C) we have [v, v,][v,, v;] = 0. Expanding gives v, v,v,0; — v,0,0,0, +
20,00, = 0. Right multiplication by v, gives

(D) V0,000, = 0.

Now [v, ule K for any we U, hence [v;, [u, v]] € K. Thus
V0,0, [vs, [1, v]]v, = 0. Expanding this expression yields v,v,v,(vsuv, —
VU — UV + vuv)y, = 0. Using (D) we obtain vv,v,uv,90, = 0.
Since v? = 0, by Lemma 9 we conclude that v,Kv, = 0 if U Z. Suppose
now that v,v,€K with ' =4=0. First we conclude that
(v,v)* € v,Kv,v, = 0. If we U then we also have 0 = v,[v,u]v,v, = v,v,uv,0,.
Lemma 9 again implies that vv, =0 if Ug Z. But if ¢, t,e V then
[t, t.] € K and has square zero by (C). Since K is additively generated
by such elements, by what we have just shown, every element in K
has square zero. By Lemma 10, K =0 if U¢ Z. But now we have
[V, V] = 0 which implies Vc Z if Ug¢ Z, by Lemma 11. Since V =
[W, Ulc Z, Lemma 8 says that either Wc Z or UcZ. Thus as-
suming W contains no ideals leads to the conclusion that either W< Z
or Uc Z, which establishes the theorem.

THEOREM 13. Let U be a Lie ideal of R and V an additive sub-
group of R with [V, UlcC V. Then either VC Z, UCZ, or VD
[M, R] == 0 for M an ideal of R.

Proof. Following the proof of Theorem 5 of [5], let A = [U, V],
T = {xe R|[x, R]C A}, and T, be the subring of T generated by [4, A].
Then, as in the proof in [5], [T, Ul< T,, so by Theorem 12 either
T.cZ UcZ, or T, contains M = 0 an ideal of R. If T,C Z, then
[4, A]lc Z so AcC Z by Lemma 11. But [U, V] Z implies either
UcZor VcZ by Lemma 8 If Mc T,c T, then [M,RICAcCV
and we are done.

I1. The group of units in a prime ring. We now turn to results
concerning normal subgroups and conjugates in prime rings Again R
will always be assumed to be prime, now with identity, and if char
R = 2 then dim RZ™ over its center must exceed four. The proofs
are similar to those in [7] and [8] but will be repeated, without going
into detail, for convenience. We call a subset W of B G-normal for
G c U, the group of units of R, if W is invariant under conjuation
by all elements of G. If G = U we just say that W is normal. The
notation L < S will mean that the subgroup S generated by all ele-
ments of square zero contains a noncentral Lie ideal L of R. See [7]
for a discussion of this condition and for examples when R has no
idempotents. Finally |A| denotes the cardinality of A.
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THEOREM 14. Let LC S, |Z| > 2, and W a normal Z-submodule
of B. Then WcC Z or WO[M, Rl #0 for M an ideal of R. If W
s @ subring, then Wc Z or WD M.

Proof. For > =0 and we W, 1l 4+ a)wl —a) = w + aw — wa —
awae W. Using the fact that W is a Z-submodule, |Z| > 2, and
(za)* = 0 for ze Z, we obtain [w, za] € W for z + 0 ¢ Z and independent
of we W and “a”. Thus [W,zL]cC W. Since zL is a noncentral Lie
ideal of R, we have W Z or W o [M, R] by Theorem 13. If W were
a subring and [M, R] < W, then Lemma 1.3 of [6] implies that W
contains an ideal unless [M, R] is commutative. But then Theorem
4 says [M, RlC Z, and so Mc Z by Lemma 8, which is impossible in
a prime ring.

I

THEOREM 15. Let LC S, |Z| > 4 and W a G-normal Z submodule
of R where G <] U. Then GC Z, WC Z, or WD[M, R] =0 for M an
ideal of R. If W is a subring, then G Z, W Z or WD M =+ 0.

Proof. Ifa*=0,9e@G, and we W, then h = (1 —a)g(1 +a)g~'e G,
so hwh'e W. Expanding gives w + fi(a) + -+ + fi(@) e W where
fi(za) = #fi(a) for ze Z. Using |Z| > 4 and the fact that Wis a Z
submodule (See Lemma 4.4 in [7]) we obtain ¢fi(a) = [w, c(a — gag™)] e W,
where ¢ = 0¢ Z is independent of w, g, and “a”. Let T be the Z
submodule generated by all ¢(a — gag™) for a* = 0 and ge G. Since
T is normal, Theorem 14 implies that T Z or TDO[K, R] + 0 for K
an ideal of R. Suppose first that Tc Z. Then ac(a — gag™)a =
—cagag~a = 0, so agag™a = 0. This implies that (¢c(a — gag™)® = 0.
But a central element in a prime cannot be nilpotent unless it is zero.
Hence a¢ = gag™. The result is that [G, L] =0. Since L& Z we
have G Z by Lemma 6.

Now consider the possibility that [K, BR]c T. Then[W, [K, R]]C W,
so Theorem 13 implies that WcC Z, [K, Rl Zor WD [M, R] = 0. But
[K, Rl C Z is impossible since it would say K< Z, by Lemma 7, and
so [K, R] =0. If W is a subring we proceed as Theorem 14.

LEMMA 16. Let L S and |Z| > 2. If N<] Uand N is abelian,
then NC Z.

Proof. Let W =ZN. Then W is a normal Z module so by
Theorem 14 either W Z or WD[M, Rl = 0. If W Z then clearly
NcZzZ. If Wo[M, R], then since [M, R] is a commutative Lie ideal,
[M, Rl < Z by Theorem 4. But then M c Z, Lemma 7, which is im-
possible in a prime ring.
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THEOREM 17. Let L S and |Z| > 4. If N <] U and s sclvable
then NC Z.

Proof. Let the derived series for N be 1 <{N® <J--- <|N. If
k =1 then N is abelian so NC Z by Lemma 16. In any event N®*
is normal and abelian so N c Z. Suppose k > 1. Let z,ye N*™,
Then yxy™ = zx for ze Z. Thus Z[x], the ring generated by x over
Z is N%Y-normal, so by Theorem 15 either Z[xz] C Z, which says that
xeZ, or Z[x] DM # 0 an ideal of R. But prime rings cannot have
commutative ideals (note that L ¢ Z says R is not commutative) so
xeZ. Thus N*V c Z, a contradiction. We must conclude that £ =1
and so NC Z.

As in [7] and [8] the last three results can be extended to normal
subgroups of normal subgroups by assuming |Z| > 8. The proofs use
the same techniques presented here and so will not be given. For
details see Theorem 23 in [8].

Given € R — Z and G <| U what does the set of G-conjugates of
« look like? In [8] it was shown that if LS and char R+ 2,3
then the set must be infinite unless R is finite. Here we eliminate
the characteristic assumptions on R but still assume that R is prime
with 1 and if char R = 2 then dim RZ™' over its center exceeds
four.

LemMmA 18. Let LC S, |Z| > 2 and xe R — Z. Then % has in-
finitely many conjugates unless R is finite.

Proof. Let K ={ye Ulyx = xy}. If x has only a finite number
of conjugates then K is a subgroup of finite index in U, K has only
finitely many conjugates, and each conjugate is finite index. If G is
the intersection of the conjugates of K, then G <] U, G is of finite
index, and [#, G] = 0. Since GZ is a normal Z submodule of R,
Theorem 14 implies that GZC Z or GZD[M, R] + 0. If GZ>[M, R]
then [x, [M, R]] =0, so xe€ Z or [M, Rlc Z by Lemma 6. But z¢ Z
and [M, R] C Z implies M C Z by Lemma 7, so [M, R] = 0, a contradic-
tion. Thus we must have GZC Z, and so G Z. That is, ZN U is
of finite index in U.

Suppose a* = 0. Then 1 + za is a unit for any z¢€ Z, and 1 + z,a
and 1 + z,a are in the same coset of Z N U exactly when 1 + (z2,—z,)a € Z.
But this implies (z, — z,)a € Z. Since Z contains no divisors of zero
and a* = 0, we must have z, = z,. Since ZN U is of finite index in
U, Z must be finite, so Z* = Z — 0 is a multiplicative group. Hence
ZN U= Z* and so, U must be finite. Since 1 + ¢ a unit for any
“a” of square zero, there can only be a finite number of elements of
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square zero. Thus S, the subgroup they generate must be finite.
Since L < S, L must be finite. As L Z,[L, R] #+ 0. By Lemma 13
of [8] R[L, R]R is a nonzero ideal of R which is finitely generated
as a module over the integers. But char R is finite, so R[L, R]R is
finite. Since R is prime and contains a finite ideal, R itself must be
finite.

THEOREM 19. Let LCS,|Z| >4,2e R — Z, and G <|{U. Then
x has infinitely many G conjugates unless G < Z or R is finite.

Proof. As in Lemma 18, if z has only finite many G conjugates,
then the intersection, say N, of the G conjugates of the centralizer
of # in G has the properties that N <] G, N is of finite index in G,
and {x, N] =0. Now NZ is a G-normal Z submodule of R and a
subring, so by Theorem 15 either G Z, NZc Z, ot NZ>M=+0. If
G C Z we are done. If Mc NZ, then [, M] =0 so x€ Z by Lemma
3. Thus we can assume Nc Z. If Z is finite then G is finite, since
N is of finite index in G. But then, if ge G, ¢ has only a finite
number of conjugates in R, so either ge Z or R is finite by Lemma
18. In either case we are done. We may therefore assume that Z
is infinite.

Let g, -+, g, be a complete set of coset representatives of N in
G. Since G is normal, if a* = 0 and ¢ e Z, then since (ca)® = 0 we have
for any ge G that (1 + ca)g(l — ca) = g;s for some se N. Since Z is
infinite there must be an infinite subset P, of Z so that if ke P, then
1 + ka)g(l — ka) = g;s;, where j is fixed and s, € N. Given z¢€ Z there
is an infinite subset P, of Z so that ke P, implies (1 + k(za))g(1 — k(za)) =
g:;t, where g and “a” are the same as above, ¢ is fixed and ¢,e N.
Thus given some ge G,ae R witha* =0 and ¢, +--, ¢,,€ Z we can find
an infinite subset P, of Z with every ke P, satisfying

(1 + k(ea)g(l — k(c:a)) = g

where j depends only on % and not on k.
If k&, k,e P, then

h =1 + k(ca)g(l — kc.a))L + k(c:a))g7'(1 — k(ca)) e N
for each © =1, ---, m. Thus [#, ] = 0. Expanding gives

[#, 1 + (B, — k)(cia — geiag™) — ki(k, — k;)ciagag™
+ ky(k, — ky)ciga'ga + k.k.(k, — k.)clagag~'a] = 0 .
If we use a sufficient number of ¢; then by combining the

relations obtained, as in Lemma 4.4 of [6], we can conclude that
[, (k, — k)e(@ — gag™] = 0 where ¢ = 0e Z. Thus [x,a — gag™] =0
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for any ge G and a ¢ R with a® = 0. Let T be the Z module generated
by all @ — gag™. Since T is a normal set either TC Zor TD[M, R]#0
by Theorem 14. If T >[M, R], then [z, [M, R]] = 0 and we are led
to a contradiction as we have seen in Lemma 18. If T Z then just
as in the proof of Theorem 15 we get G Z. Having exhausted all
possibilities, the Theorem is established.

An immediate consequence of Theorem 19 is

COROLLARY 20. Let LC S, |Z|>4and N <|G < U. Suppose that
N& Z and that R is not finite. Then

(i) N s infinite

(i) If S is any finite G-normal subset of R then SC Z.

(iii) If f(=) € Z[x] has a moncentral root in a G-normal subsel
S, then f(z) has infinitely many roots in S.

III. Rings with involution. In this section we examine the
Lie structure of prime rings with involution of characteristic 2, ap-
plying the results of §I. These results generalize theorems in [10]
which desecribe the Lie structure of the symmetric elements of a simple
ring with involution of characteristic 2. Analogous results for the
skew-symmetric elements in characteristic not 2 have been obtained
by T. S. Erickson [3]. There appears to be little hope of extending
the results further, even to semi-prime rings, because of Example 3.

Let R denote a prime ring of characteristic 2, with an involution®,
and center Z. Let S = {xe R|2* = x} denote the symmetric elements
of R; Sis a Lie subring of R under the product [z, y] = vy + yx. The
involution is said to be of the first kind if Zc S, and of the second
kind if Zg S.

We consider first the case when the involution is of the first kind;
so, assume from now through Theorem 37 that Z<S. Let V=
{x + x*|xe R}, a Lie subring of S. As in [10], to study the Lie
structure of S we will actually work with V. If I is a*-ideal of R
(that is, an ideal closed under*), define V, = {& + 2*|xec I}. Now
V, =V NI, and in our results V,; will assume the position of KNI
(where K denotes the skew-symmetric elements) in the theorems of
Erickson.

If R is simple, it was shown in [10] that V, S and [V, V] were
essentially simple as Lie rings, unless dim,R < 16 (in which case the
conclusions are false). In the prime ecase, our theorems will hold
unless R is an order in a simple ring @ (that is, @ is a right or left
quotient ring of R) which is of dimensicn = 36 over its center C.
Though dim,Q < 16 should be the appropriate condition, the methods
of [10] do not apply to the smaller dimensions.
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Before proceeding, we point out that any nonzero ideal of E con-
tains a *-ideal. For, let I be any nonzero ideal of BR. Then I* =
{i*|ie I} is also an ideal of R, and INI* is a *-ideal of R contained
in I. INJI*=(0), since R is a prime ring (for more on *-ideals, see
[9]). Finally, if A is any subset of R, let A’ denote the subring of
R generated by A. We first prove:

THEOREM 21. V'’ contains a nonzero *-ideal of R, unless R is an
order in a stmple ring Q, with center C, such that dim,Q < 4.

Proof. By Lemma 1 of [10], V' is a Lie ideal of R. Thus by
Theorem 12, either V'’ contains a nonzero ideal of R or V'c Z. If
V'’ contains an ideal of R, then V'’ contains a nonzero *-ideal of R
by the above remarks. We may therefore assume that V' < Z. Then
[V, V] = (0) and so V satisfies a polynomial identity of degree 2. By
a theorem of Amitsur [1], this implies that R satisfies a polynomial
identity of degree < 4. But now by a theorem of Posner [4, p. 184],
since R is a prime ring satisfying a polynomial identity, R is an order
in a simple ring @ which is finite dimensional over its center C. In
addition, @ satisfies an identity of degree d < 4, and so by a well-
known theorem of Kaplansky [4, p. 157], dim,Q < [d/2] < 4.

We show next that if I is an nonzero *-ideal of R, then V,; is
actually nontrivial.

LEMMA 22. Let I be a nonzero *-ideal of R. Then
(1) V,I[V, V], and [V, V,] are all nonzero, and
(2) V; contains a monzero *-ideal of R
unless R is an order in a simple ring Q, with center C, such that

dim,Q < 4.

Proof. To show (1), it will be enough to show [V, V;] = (0).
So, assume that [V, V] = (0). Since I is an ideal in the prime ring
R, I itself is a prime ring in which V, satisfies a polynomial identity
of degree 2. By the same argument as in Theorem 21, this implies
that I is an order in a simple ring @ of dimension < 4 over its center.
But then R would also be an order in the same ring Q.

To show that V; contains a nonzero *-ideal of R, it will suffice
to show that V, contains a nonzero ideal of K. Now if the prime
ring I were an order in a simple @, dim,Q = 4, then R would be also.
So by Theorem 21 applied to I, we may assume that V; contains a
nonzero ideal L of I. Since I is prime, ILI == 0; But ILI is a nonzero

ideal of R in V7.
The next lemma gives a criterion for when a Lie ideal contains V.
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LemMMmA 23. Let A be an additive subgroup of V such that A’
contains a nonzero ideal I of R, and let U be an additive subgroup
of R with [U, Al U. Suppose there ewists ¢ =+ 0 in S such that
cx + x*ce U, all xeI. Then UZ2V,, for some nonzerc *-ideal J of R.

Proof. Let xeI and ac A. Now
[ex + x*c, a]l = acx + (acx)* + cva + (xa)*c .

Since [cx + x*c,ale U and c(za) + (va)*ce U, we must have acx +
(acx)* e U. By induction, exactly as in Theorem 2 of [10], it is
possible to show that bex + (bex)* e U, all be A", and thus bea +
(bew)* e U, all be A’. Then yex + (yex)*e U, for all z, ye I. Let J =
Icel; J + (0) since R is prime, and V,c U. J is a *-ideal of R since
c* = ¢.

COROLLARY 24. If U and A are as in Lemma 23, then U’ con-
tains a monzero *-ideal of R, unless R is an order im a simple ring
Q, with center C, such that dim,Q < 4.

Proof. By Lemma 23, UD V,, where J is a nonzero *-ideal of R.
Thus U’ > V], so apply Lemma 22 to V.

The next theorem is the only point at which dim,Q < 36 (rather
than dim,Q < 16) seems necessary. However, the theorem is crucial
in what follows.

THEOREM 25. [V, V] contains a nonzero *-ideal of R, unless R
is an order in a simple ring Q, with center C, such that dim,Q < 36.

Proof. Let W=1[V, V]. Now Wis a Lie ideal of V, soifa,be W
and xze R, we have

(@*b + ba®)x + z*(a’b + ba®)e W’

by Lemma 2 of [10]. If for some a, be W, a*b + ba® == 0, we may apply
Corollary 24 with U= W, A =V, and (¢ = ¢’b + ba®) to see that W’
contains a nonzero *-ideal of R.

We may assume that a’b + ba* =0, all a,be W. But then V
satisfies a polynomial identity of degree 6, so by the same argument
as in the proof of Theorem 21, R is an order in a simple ring @, with
dim,Q = 36.

COROLLARY 26. If ac R centralizes [V, V], then ac Z, unless R
18 an order in a stmple ring @, dim,Q < 36.

Proof. If a centralizes [V, V], then by Theorem 25, a centralizes
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a nonzero ideal of R. Since R is prime, this implies a e Z.
We have now finished the preliminaries and can begin the actual
description of Lie ideals of V.

Lemma 27. If U 4s a Lie ideal of V such that w* = 0 for all
we U, then U = (0).

Proof. Say uec Uand ve V. Then uv + vue U, and so (uv + vu)’ =
0 = uvuv + wv*u + vuvu since u* = 0. Multiplying on the right by u,
we see wvuvu = 0. Linearizing on » and multiplying by v again,
we get wvuwuvy = 0, for all v, we V. Thus uvuVuvu = 0, all ve V.
But in a prime ring, whenever aVa = 0 with a* = 0 and a ¢ V, it must
happen that ¢ = 0 (by Lemma 4 of [10]. Thus wvu =0, all veV,
and so u = 0 by repeating the argument. Thus U = (0).

LevMA 28. If U is a Lie tdeal of V such that w*e Z, all we U,
thenw UC Z unless R 1s an order in a simple ring @, dim,Q < 16.

Proof. First observe that by linearizing the relation w’e Z, we
obtain [U, U]c Z. Now if R is simple, then by Theorem 5 of [10],
either UC Z or UZ21[V, V], unless dim,R < 16. If U2 [V, V], then
vV, VL[V, Vi€ [U, Ulc Z. But by Theorem 7 of [10],[V, V] =
[V, V1,1V, Vil, and thus [V, V] Z. Then certainly [[V, V], V] =
0; this means that V satisfies a polynomial identity of degree 3. By
applying the theorems of Amitsur and Kaplansky as in Theorem 21,
we see dim,R < 9.

We may therefore assume that R is not simple. Let I be a non-
zero ideal of R. As before, we may assume that [ is actually a *-ideal
of R.

First we claim that IN V== 0. ¥or, if INV = (0), choose ¢ I.
Then z*el, and x + z*e I N V = {0). But then x = «*; that is, IS S.
Let re R. Since I is an ideal of R, Ir= S, so (ir)* = r*i = 4r, all
1el,re R. In particular, s = st, all seS. By Theorem 21, this
implies that I commutes with a nonzero ideal of R, and so I < Z since
R is prime. But now any element of R commutes with I, a nonzero
ideal, and so must be in Z. Thus R < Z; that is, R is commutative,
a contradiction. Thus I N V = (0).

For the remainder of the proof, we assume that the center of R
is a field (as has been done previously, we consider RZ™). We claim
that [U,INV] =0. For [U, INV]= UnNI, which is a Lie ideal of
V. Now if ae UN I, and a® %« 0, a would be invertible since a*e Z.
This contradicts I being a proper ideal of R. Thusa* =0, allac UN I.
By Lemma 27, UNI = (0), and so [U, IN V] = (0).

Let ¢ # 0 be any element of IN V. Then cx + z*ceIN V, for
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any € R. Using Corollary 23 with INV and A = V, we see that
(IN V) contains a nonzero ideal of R. But then since [U,IN V] =0,
U must commute with a nonzero ideal of R. Thus UC Z since R is
prime.

LEMMA 29. If U s a Lie tdeal of V, then either u® centralizes
U, all we U, or UD|[V,, V], for some nonzero *-ideal J of R.

Proof. Define T(U) = {we V||, V] U}; T(U) is a Lie ideal of
V. By Lemma 8 of [10], if a,be U and z € R, then

(@b + bad)w + *(a* + ba?) e T(U) .

Assume that a’b + ba* = ¢+ 0, for somea, be U. Thencx + z*ce T(U),
for all xe R, so by Lemma 23, T(U) D> V,, for some nonzero *-ideal
J of R. Thus [V,, V]& U.

We may thus assume that a® + ba® = 0, for all a,be U. This is
simply the statement that a* centralizes U, for all ae U.

LEMMA 30. If U 1s an additive subset of S such that [U, A]C U,
where [A, A] contains a nonzero ideal of R, then [U, Ul C Z implies
we Z, all uwe U.

Proof. Let we U and ac A. Now
wa + auw® = [u, [u, a]le[U, UlcC Z.

Thus [v'a + a’, a] = 0 = w’a* + a*u’. Linearizing on a, we have
[v? [a, b]] = 0 for all a,be A, and thus %’ centralizes [A4, A]. By
hypothesis, this implies that u* centralizes a nonzero ideal of R, and
so u'e Z.

We are now able to prove the complete structure theorem for Lie
ideals of V.

THEOREM 31. Any Lie ideal of V s either contained im Z, or
contains [V,, V] for some nonzero *~ideal J of R, unless R is an order
i a stmple ring Q of dimension < 36 over its center.

Proof. Let U be any Lie ideal of V, and say U2[V,, V] for
all ideals J of R. Then by Lemma 29, [«* U] =0 for all we U.
Linearizing, [[U, U], U] = (0) and so [U, U] is a commutative Lie ideal
of V. Let we[U, U]. Then wv + vwe[U, U], all ve V, and [w, wv +
vw] = 0= wv + vw’. In other words, w* centralizes V. By Theorem
21 this means that w® centralizes a nonzero ideal of R, and so w*e Z.
By Lemma 28, [U, U] C Z. But now since [V, V] contains a nonzero
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ideal of R by Theorem 25, we may apply Lemma 30 to see that u*e Z
for all we U. By a second application of Lemma 28, we see that

UcZ.

COROLLARY 32. [[V, VI, [V, VII' contains a nonzero *-ideal of R,
unless R 1s an order in a simple ring @, dim,Q < 36.

Proof. Let W =|[[V, V],[V, V]l; W is a Lie ideal of V, so by
Theorem 31 either Wc Z or W=2[V,, V] for some nonzero *-ideal J
of R. If W22[V,, V], consider [V,, V,], which is nonzero by Lemma
22. By Theorem 25 applied to the prime ring J, it follows that
[V,, V,]I' contains a nonzero *-ideal L of J. But then exactly as in
Lemma 22, JLJ is a nonzero *-ideal of R contained in W', and we
are done.

Therefore assume that W = [[V, V], [V, V]]c Z. By, Lemma 30,
since [V, V] is a Lie ideal of V and [V, V] contains a nonzero ideal
of R by Theorem 25, we obtain w*e Z, all we[V, V]. By Lemma
28, this implies [V, V] Z. Repeating the argument, we find VC Z,
so by Theorem 21 Z contains a nonzero ideal of R, and so R is com-
mutative, a contradiction, unless R is an order in a simple ring @
with dim,Q < 4.

As a corollary to Theorem 31, we are also able to give a com-
plete description of Lie ideals of S.

THEOREM 33. Any Lie ideal of S 1is either contained in Z or
contains [V,, V] for some nonzero *-ideal J of R, unless R is an order
i a simple ring Q of dimension < 36 over its center.

Proof. Let U be a Lie ideal of S, and let W =[U, S]. Then
W is a Lie ideal of V. By Theorem 31, either W=2[V,, V] for some
*-ideal J or Wc Z. If W>|[V,, V], then certainly U2[U, S]|=2
[V,, VI. 8o, assume W = |[U,S]cZ. S8ince VS |[U,I[V, Vilc
[[U, V], V] = (0), and thus U centralizes [V, V]. By Theorem 25,
Uc Z.

Having described the Lie structure of V and S, we now turn to
Lie ideals of [V, V]. We will assume for the remainder of the proofs
that R is mot an order in a simple ring @, such that dim,Q < 36.
As a first step in the proof, we prove a crucial lemma—the analog of
Lemma 28.

LEMMA 34. If U is a Lie ideal of [V, V] such that we Z, all
we U, then UC Z.

Proof. As in Lemma 28, we have [U, Ulc Z. If R is simple,
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we argue exactly as in Lemma 28 (using Theorem 11 of [10]) to show
that [V, V]C Z, and so dim,R < 9, unless UC Z. We may therefore
assume that R contains a nonzero*-ideal I.

We claim that IN [V, V] = (0). For, say that IN[V, V] = (0).
By exactly the same argument as in Lemma 28, we obtain I N V = (0).
But [INV, V][V, V]NnI= (), and so INV centralizes V. By
Theorem 21, I N V centralizes a nonzero ideal of R, and so INVcC Z
since R is prime. Since we may assume without loss of generality
that the center of R is a field, I N V would contain an invertible
element of R, which contradicts I being a proper ideal of R. Thus
IN[V, V] (0).

Again, by exactly the same proof as in Lemma 28, we see that
[U, IN[V, V]] = (0), and so to show that UcC Z, it will be enough
to show that (I N[V, V]) contains a nonzero ideal of R.

Now [IN[V, V], V<INV, V], since I is an ideal of R and
[[V, V], V][V, V]. Thus IN[V, V]is a Lie ideal of V. By Theorem
31, IN|[V, V]12][V,, V] for some nonzero *-ideal J of R, or I N[V, V]C
Z. If IN[V, V]CZ, then since we may assume Z is a field and
IN[V, V] =+ 0, we have contradicted I being a proper ideal. Thus
we may assume that IN[V, V]2[V,, V] for some J. But then by
the same argument as in Corollary 32, [V, V,|' contains a nonzero
ideal of R, and so also does (I N[V, V]), and the lemma is proved.

COROLLARY 35. If U 1is a Lie ideal of [V, V], then [U, UlC Z
implies that UC Z.

Proof. Follow exactly the proof of Lemma 30, using [[V, V], [V, V1]
instead of [V, V] (by Corollary 32, we know that [[V, V], [V, V]I
contains a nonzero ideal of R) to see that u*e Z, all we U. Now apply
Lemma 34.

To complete our description of the Lie ideals of [V, V], we define
a new set T(U) as in [10,p.400]: If U is a Lie ideal of [V, V],
define T(U) by

T(U) = {we Vl]|v, V]C U}.

The following properties of T = T(U) are easy to verify:
(1) T=2][U, U]
(2) IT,[V,VlleT
(3) T, TLV]IeT
(4) If ac T, then [@’, V] = [a, [a, V]]C T.
We establish another property of T-

LemMMA 36. If ae T and a*¢ Z, then T2]a, V,] for some nonzero
*-ideal J of R.
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Proof. W = {veVi[a,v]c T}. We will show that W > V,, for
some J, by using Lemma 23. First observe that W2[V, V] by pro-
perty (2) above. Thus W is a Lie ideal of V, and by Theorem 21,
V’ contains a nonzero ideal of B. Since a®¢ Z, there exists se V so
a’s -+ sa® = ¢ # 0, since otherwise a* would centralize a nonzero ideal
of R, and so would be in Z, a contradiction. Now

cx + x*¢ = (a’s + sad)x + 2*(a’s + sa?)
= [@? sx + x*s] + [s, ®a® + a*x*] + sa*(x + z*) + (x + x¥)a’s .

The first two terms are in [V, V], and by Lemma 10 of [10] we have
[a, sa®(x + x*) + (x + *)a’s]e T. Thus [a, cx + z*c]€ T for all xze R,
and so c¢x + x*c¢e W. Thus by Lemma 23, W > V,, some J.

THEOREM 37. If U is a Lie ideal of |V, V], then either UC Z
or U22[V;, V] for some nonzero *-ideal J of R

Proof. First assume that for some a, b, ¢ T, that a’6®* + b%a® = 0.
Now [a, V;]= T for some I by Lemma 36, and [0*, V]<[b, [0, V]IS T
by properties (2) and (4) of T listed above. Thus by Lemma 10 of
[10], a[6*V]e & T, and so a’b*v + vb%a* = [a, ab’v + vb%a] + a[V?, vlaec T
for all ve V,. Let ¢ = a’® + b%a% and say e I. Now

cx + x*c = (@** + ba)x + x*(a’b® + ba?)
= a®*(x + x*) + (x + x*)b%a® + [, b*c* + 2b%]
+ [V, &’z + x*a’le T

since x + 2*e V,. Thus c¢x + z*ce T, all xe I, and so TD V, for
some ideal J, by Lemma 23. Since [V, T] < U, this means [V, V] < U.

We may thus assume that if U2[V,, V] for all ideals J of R,
then a?® + b%a* = 0, for all a, be T. Linearizing on a and b, we see
that [[T, T1, [T, T]1] = (0). But then [T, T] is a commutative Lie
ideal of [V, V1, and so [T, T] < Z by Corollary 35. Since T22[U, U],
we have [[U, U], U, U]l Z. Applying Corollary 35 to [U, U] and
then to U, we obtain Uc Z, the desired result.

We conclude with a theorem which describes the Lie ideals of S
when the involution is of the second kind. This extends a theorem
of Herstein on simple rings [6, p. 27].

THEOREM 38. Let R be a prime ring of characteristic 2 with an
involution of the second kind. If U is a Lie ideal of S, then either
UcZor U2[JNS, S], where J is an ideal of R, unless R is an
order in a stmple ring Q, with center C, such that dim,Q < 4.

Proof. Since * is of the second kind, choose e Z with a* + a.
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Then a* + a0, since R has characteristic 2. Let re R. Then
(a + a®)r = (ar* + a*r) + a(r + r*)e S + «S; that is, (o + a")R<
S + «S. Similarly (a« + a®)Z& Z, + aZ,, where Z, = ZN S.

Let W = Ula + a*)Z. Since (¢ + a*)R= S + aS, W is a Lie ideal
of B. Thus by Theorem 13, either W< Z or W=2]I, R] for some
ideal I of R. If W& Z, then Ulw + a¥Z< Z, and so US Z. Thus
we may assume W=2[I, R].

We claim that U2[[1, I], [1, I]] N S." We show first that [U, W] n
SS|U, UZNS]. Let ue U and w = v{a + a*)ze W, where ve U,
zeZ. Now (a + a*)z =z, + az,, where z,z,¢ Z, and so

[w, w] = [u, v(@ + a*)(z + az;)]
= [u, vl(a + a*)z, + afu, v](¢ + a*)z,e S + aS .

Thus if Ju, wle[U, W] N S, we must have 2, = 0, and so
[v, w] = [w, v{a + a¥)z, = [u, v(a + a®)z] e [U, UZN S] .
Now

U210, S121U, UzZn S121U0, win S
2[W, Win S2IIL I [LITINS .

Now [[I, I]], [I, I]] is a Lie ideal of R, and so either contains
[/, R] for some ideal J of R, or is contained in Z by Theorem 13. If
the first possibility occurs, then U22][J, R]NS2[J NS, S] and we
are done. We may therefore assume that [[I, I], [I, I]]c Z. Then
[I[Z, I1, [Z, I1], I1 = (0); that is, I satisfies a polynomial identity of
degree 5. Since I is an ideal in a prime ring, [ itself is a prime ring,
so we may apply the theorem of Posner used in Theorem 21 to see that
I is an order in a simple ring @, finite-dimensional over its center C.
In addition, @ also satisfies an identity of degree 5, and thus by
Kaplansky’s theorem, dim,Q < [5/2]* = 4. Since R is also an order in
the same @, the theorem is proved.
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