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INTERPOLATION BY ANALYTIC FUNCTIONS

ARNE STRAY

It is shown that interpolation problems for R(X), A(X)
and H°°(X°) are local problems whenever X is a compact plane
set.

Introduction and notation* Let X be compact plane set, X°
its interior and dX = X\X° its boundary.

H°°(X°) denotes all bounded complex-valued analytic functions on
X°. A(X) is all continuous functions on X which are analytic in X°.
R{X) denotes the uniform closure on X of the rational functions with
poles outside X.

A subset E of X is an interpolation set for A(X) if A(X)\E (the
restrictions to E of the functions in A(X)) equals the space C(E) of
all continuous complex-valued functions on E.

E is called a peak set for A(X) if there exists / e A(X) such
that / = 1 on E and | f(x) | < 1 if x e X\E.

A peak interpolation set for A(X) is a set E which has both
these properties. Peak and interpolation sets for R{X) are defined in
the same way.

A sequence S = {zn} of distinct points is called an interpolating
sequence for Hoa(Xϋ) if for any bounded sequence {wn} of complex
numbers there exists / e iJ°°(X°) such that f(zn) — wn for each n.
(For more about interpolating sequences see Ch. 10 in [3].)

If F is a subset of the complex plane we give it (as a toplogical
space) the topology induced from C Cb{F) is the Banach space of all
bounded continuous complex-valued functions on F. We also consider
H°°(X0), R(X) and A(X) as Banachspaces with the usual sup norm.

Let us mention two other Banach-spaces of analytic functions which
has not been much studied yet, but which may be useful in charac-
terizing interpolation sets for R(X) and A(X) among other things.

HR(X) denotes all functions on X° which are pointwise limits on
X° of bounded sequences in R{X). For each f e HR(X) we define

| | / | | f f Λ = inf {supJ |/J[ :{/JcJ?(X),A >f pointwise on X0} .

With this norm HR(X) clearly is a Banach space. In the same
way we define HA(X) corresponding to A(X) and it is also a Banach
space with the norm || \\HA. Very recently A. M. Davie has shown
that the norm || \\HA is the same as sup norm on X° and the same
is proved for || ||^Λ if almost every point of dX (w.r.t. area) is a
peak point for R(X). We shall not need these interesting results
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here. (See [1] for his results.) Some results about HR{X) can be found
in [2].

If / is a complex-valued function defined on a set F and SczF
is a subset we define | | / | | 5 as sup{\f(z)\:zeS\ .

A typical problem we shall study in this paper is the following:
Let S be a sequence in X°. What local conditions on S are suf-

cient to conclude that S is an interpolating sequence for ίP^X0)?
An obvious necessary condition is that S ΓΊ Δz is an interpolating

sequence for H°°(X°) whenever Δz is an open disc centered at z for
which Δz Π S Φ 0 .

Suppose that the following weaker condition is satisfied:
(*): For every zeS (the closure of S) there exists δz > 0 such

that S Π 4 is an interpolating sequence for H°°(ΔZ Π X°) where Δz —
{w: \w - z\ < δz}.
We shall then by definition say that S admits local iJ°°-interpolation
w.r.t. X°.

Our main result is the following:

THEOREM 1. Let X be a compact set with nonempty interior X°.
A sequence S in X° is an interpolating sequence for H°°(X°) if and
only if S admits local H°°-interpolation w.r.t. X°.

Some time after Theorem 1 was proved we learnt about a result
of J. Rainwater which has some connection with Theorem 1. If in
the definition of local iJ°°-interpolation the condition (*) had been
replaced by the other necessary condition for interpolation mentioned
above Theorem 1 would be a somewhat weaker result.

We want to point out this weaker result is easy to deduce from
J. Rainwaters paper. (See [4].) We also want to point out that a
theorem of E. L. Stout on interpolating sequences in multiply connected
domains in an easy consequence of Theorem 1. (See [5].)

Interpolating sequences can clearly also be defined for HR(X) and
HA{X). It should also be clear what is meant by saying that a
sequence S c Γ admits local iϊβ-interpolation (or ϋA-interpolation)
w.r.t. X.

It will follow from our proof that Theorem 1 also holds for HR(X)
and HA{X). We shall give some reasons for this at the end of the
proof.

LEMMA 1. Let X be as in Theorem 1 and z0 e dX. Let 0 < rγ <
r2 and define 0x = {w: \w — zo\ < r j and 02 = {w: \w — zo\ > r2}. Sup-
pose there exists z1 e C\X such that r2 > | zλ — z01 > rι

Let Si be an interpolating sequence for H°°(Xΰ Π OJ for i = 1,2.
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Suppose Si c 0; for i = 1, 2.
S = Si U S2 is an interpolating sequence for H°°(X°).

Proof. Put A = 30, for i = 1, 2
Then dist OS, Λ) > 0.
Assume h e H°°(X° Π 00- Extend it to C by defining h(z) = 0 if

z g X° Π 0x.
Let δ > 0 be given. Then cover C by open discs An = Δ(zn, δ) (of

radius δ and centered at zn) and choose continuously differentiate
functions gn supported on Δn as in the scheme for approximation
described on page 210 in [2].

Let Tgn be the integraloperator on L°°(dxdy) defined by

I
7Γ

π J) z — w d

We mention that Tg%{f) is analytic outside the support of gn and
wherever / is and that T9n{f) is continuous wherever / is.

Also / — Tgn{f) is analytic in the interior of the set where gn

attains the value 1. (See on p. 28-29 in [2] for more details.)
Put hn = Tgn(h). We are only interested in those n for which

4 ί l Λ n l ^ 0 . Assume this happens if and only if 1 ^ n ^ N.
Then h — Σ f K = h — T{Σχgn)(h) is analytic near ΓX(\X since

Σ f 9ι equals 1 near Γι Π X.
Now there exist functions {Hn}ζ^ analytic outside a compact

subset of Dn = {w: \w — zn\ < 2δ}\0L such that hn — Hn has a triple
zero in the Taylor expansion at infinity and in our situation we can
obtain \\Hn\\ ^ c j | A|| where cL is an absolute constant. (See Theorem
7.4 on p. 213 in [2] and the proof of it.)

Now one has to observe two important facts.
(a) If B is a subset of C and dist {B, Λ ί l I ) > 0 and ε > 0 one

can choose δ depending only on ε and dist (B, Γ1 Π X) so small that
the sum fδ — h — ΣΓ (K — Hn) satisfies

(1) H Λ - / a l U ^ e | | Λ | | .

(b) The functions Hn can be chosen such that its singularities
lies on a fixed compact subset of Dn independent of h.

In fact one can find two functions FnΛ and Fn>2 analytic outside
a compact subset of Dn such that ||jPn>1|| + | | F n f 2 | | ^ 20 and Hn =
Xn>1(h)FnΛ + Xnti(h)Fnti. (See lemma 6.3 on page 209 in [2].)

Here Xn,k(h) is a complex number and we have

(2) \K.k(h)\^c2\\h\\ f o r k = 1 , 2 ,
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where c2 in our situation is an absolute constant. If FnΛ is constructed
as in the mentioned lemma in [2]. We also mention that the maps
h ~~* *λ>n,k(ti) a r e linear.

(Some details indicating how this can be done, can be found in
the proof of Lemma 3.1 in [4].)

Given ε > 0 we first choose δ so small that

(3) p _ / a | | 5 <

whenever h is as above. The choose rational functions rn>k with poles
only at z, such that

( 4 ) Σ (\\Fntl - rnil | |OlUO, + \\Fn,2 - rΛf2 | |0lU0a) < ±- .

Now define A,: #~(X° Π 0,) — H"(X°) by

A,(h) = [h-Σ.(K- Mijr,,, + KΛh)rnM\X° •
1

From (1), (2), (3) and (4) we deduce that
( i ) || AjL(ft)|| ^ c41| fe|| where c4 depends only on the rational func-

tions rntk.

( i i ) WA^h) - h \ \ s ̂  e\\h\\/i +

In addition we also mention that A1 is linear but this fact will not
be needed.

In exactly the same way we define a map A2: H°°(X° Π 02) —•> H^iX0).
Suppose now f e Cb(S). By the open mapping theorem applied to

the restriction i ί^O; Π X°) —> C6(S<) for i = 1, 2, there exists a con-
strat M independent of / and functions ht e H~(0i Π X°) such that

IIΛiH ^ MH/II and Λ£ = / on S, for i = 1,2 .

Put hi = 0 outside 0* Π X° and define g = Aγ{h,) + Λ(fe2).
T h e n g e H ~ ( X ° ) , \\g\\ ^ 2 c 4 M | | / | | a n d \\f - g \ \ s = \\A,{h) - K +

A2(h2) - h2\\s ^ sM 11/11 ^ 1/2||/|| if we choose ε ^ l/2ikΓ.
Put gL = g and assume ^1? , gn constructed such that

\\ n II <1 O—k-V2 o TUT 11 f \ I f n r 1 < ; L <"

and

<rll/H

By the approximation technique above one easily find gn^ e H°°(X°)
such that ||flfΛ+1|| ^ 2~n~%M \ \ f \ \ and
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n + ί
•f V /

~ 2n+1

By induction the series XΓ Qn e H°°(X°) interpolates / on S.

LEMMA 2. Let S be a sequence in X° with no clusterpoints in
X°. Assume there exist n points zl9 , zn and numbers rk > sk > tk

for 1 ^ k tί n such that the open discs {A(zky tk)}t=i cover S.

Assume also that (C\X) Π {w: rk > \w — zk\ > sk} and (C\X) ΓΊ {w:
1 sk > I w — zk I > tk} are nonempty for each k. If for each k, Λ(zk, rk) Π S
is an interpolating sequence for H°°(X°) then also S is.

Proof. We can assume n ^ 2 and by induction the lemma to be
true if n is replaced by n — 1.

Put S, = Sf)Λ(zn,tn).
By hypothesis S2 = S (Ί (UΓ~ι ^fe, Sfc)) i s a n interpolating sequence

for iϊ~(X0) and given / e C(S) we can find K e H°°(X0) such that hγ =
f on S2.

The choose h2eH(X°) equal to f — hλ on J(«n, r Λ ).
By Lemma 1 we can find h3 in H°°(X°) such that /&3 = 1 on S1

and fe3 = 0 on S2\A(zn, sn).

Then ^ + h2hz = / on S.

Proof of Theorem 1. We have to show that the local condition
implies that S is an interpolating sequence.

S has no clusterpoints in X° and for each z e (dX) Π S we can find
rz > 0 and such that Δ{z, rz) Π S is an interpolating sequence for
H°°(XZ°) where XI = {w: \w - z\ < 2rz} Π X°. By Lemma 1 S Π ̂ («, n)
is an interpolating sequence for H°°(X°).

Since z e dX we can choose sz > tz > 0 such that (C\X) Π {w: rz >
|w — z\ > sz} and (C\X) Π {̂ : s z > | ^ — z\ > ίz} are nonempty.

Since S Π (3X) is compact we can obtain the hypothesis of Lemma
2 for a set S ' c S such that S\S' is finite.

But if S' is an interpolating sequence for H°°(X0) then clearly
also S is.

REMARK. TO prove Theorem 1 in case H = HR{X) one must
modify the arguments slightly in the proof of Lemma 1. We use the
notation from that lemma.

Given / e C(S) one finds h{ e HRφi Π X) equal to / on S« such
that ||Λi||i/22 ^ ikf 11/11 where M is a constant independent of S found
by using the open mapping theorem.

Then we find a sequence {#t}~=1 c C(S2) analytic in a neighbourhood
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of Xnόi (depending on n) such that sup% \\gi\\S 2M\\f\\ and such
that g\ —> hi pointwise on the interior of I ί Ί 0 { . (S2 denotes the
extend complex plane with the usual topology.) We can also assume
g\ converges in the w*-topology of L°°(dxdy) to a function hi equal to
hi on 0, Π X° such that H^IU ^ 2Af||/||.

We can assume hi — 0 outside 0̂ .
Then it is easy to see that Σ<=i Ai(hi) will approximate / well on

S and that A^gi) \ X belongs to R{X) for all n and that Ai{g\) -*
Ai(hi) pointwise on X°. Also || A ^ ) ! ^ ^ k M \\f\\. (kis independent
of /.)

With these remarks Lemma 1 also applies for HR(X). It is clear
that similar modifications give Lemma 1 also for HA(X).

But then the rest of the proof of Theorem 1 including the proof
of Lemma 2 applies almost directly.

COROLLARY 1. Let X be a compact plane set and Ea closed subset.

Then E is an interpolation set for R(X) if and only if for each
ze E there exists a closed disc Nz = {w: \w — z | ^ r j such that E Π
Nz is an interpolation set for R(X Π Nz).

Proof. Clearly EΛ = E Π {w: \ w — z\ ^ z/2} is an interpolation set
for R(XΠNZ).

The approximation technique used in the proof of Lemma 1 shows
that Ez then is an interpolation for R(X).

But then the corollary follows from Rainwaters result.

REMARK. A similar corollary also clearly holds for A(X).
Finally we state a theorem for R(X) which is not difficult to

prove. Perhaps it makes the space HR{X) a little more attractive.

THEOREM 3. Let S be a closed subset of a compact plane set X.
Suppose that

( i ) SΠ dX is a peak interpolation set for R(X)
(ii) Sίl X° is an interpolating sequence for HR(X) .
ThenR(X)\S= C(S).

One proves Theorem 3 by showing that for every / 6 C(S) there
exists g e R(X) such that

| | / - ^ | U ^ 1 | | / | | and

where M is independent of /• This is sufficient by the approximation
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argument at the end of the proof of Lemma 1.
First choose f,eR{X) such that Λ = / on Sf]dKand H/JI ^ | | / | | .
Interpolate then / - fι on S Π X° by / 2 e #i?(X) such that 11 /21 \HR ^

Afill/H where Jlίi is independent of / .
If ε > 0 choose an open set Vε z> S Π dX such that | /21 < ε on

snx°n vε.
Choose also f3eR(X) such that | | / 3 | ^ 2, / 3 = 0 on S Π 3X and

|1 - / 8 | < e on X\F£ and f4eR(X) such that |/4(z) - /2(^)| ^ ε for
all z e S where |/3(z)| ^ ε and such that | | / 4 | | ^ 2 | | / 2 | | M ^ 2MJI/H.

Then put g = f, + fj<. We have ||(/|i ^ (1 + 4^)11/11 and | | / -

So with ε = 1/(4 + θikfO we have what we want.

Finally I want to thank Dr. A. M. Davie for some very helpful
correspondence which gave our results considerably greater generality.
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