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PLANAR IMAGES OF DECOMPOSABLE CONTINUA

CHARLES L. HAGOPIAN

A nondegenerate metric space that is both compact and
connected is called a continuum. In this paper it is proved
that if M is a continuum with the property that for each
indecomposable subcontinuum H of M there is a continuum
K in M containing H such that K is connected im kleinen at
some point of H and if f is a continuous function on M into
the plane, then the boundary of each complementary domain
of f(M) is hereditarily decomposable. Consequently, if M is
a continuum in Euclidean 7-space that does not contain an
indecomposable continuum in its boundary, then no planar
continuous image of M has an indecomposable continuum in
the boundary of one of its complementary domains.

For a given set Z, the closure and the boundary of Z are denoted
by Cl Z and Bd Z respectively. The union of the elements of Z is
denoted by St Z.

THEOREM 1. If X 1is a continuum in a 2-sphere S and I is an
indecomposable subcontinuum of X that is contained in the boundary
of a complementary domain of X, then every subcontinuum of X that
contains a nonempty open subset of I contains I.

Proof. Let D be a complementary domain of X such that I < Bd D,
and let X' =S — D. By Theorem 1 of [1], every subcontinuum of
X', and hence every subcontinuum of X, which contains a nonempty
open subset of I contains I.

DEFINITION. An indecomposable subcontinuum I of a continuum
X is said to be terminal in X if there exists a composant C of I such
that each subcontinuum of X that meets both C and X — I contains I.

THEOREM 2. Suppose X s a plane continuum, I is an indecom-
posable subcontinuum of X, and each subcontinuum of X that contains
a nonempty open subset of I contains I. Then I is terminal in X.

Proof. Suppose there exists a collection E of continua in X such
that for each composant C of I there is an element of E that meets
both C and X — I and does not contain I. Let {U,} be the elements
of a countable base (for the topology on the plane) that intersect I.
For each positive integer n, let P, be the set consisting of all com-
ponents Q of I — U, such that @ meets an element of E that is con-
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tained in X — Cl U,. Since I = UJ7.,8t P,, for some integer =, the
set St P, is a second category subset of I. Let L be the set consisting
of all elements B of P, such that there exists a subcontinuum F of
an element of E contained in X - Cl U, with the property that F
meets both B and X — I and does not intersect I — B. According
to a theorem of Kuratowski’s [3], St L is a first category subset of
I. Let J denote the set of all elements H of E such that H is
contained in X — Cl U, and meets an element of P, — L. Define R
to be the union of all components of St (J U P,) that intersect the
set StJ. Each element of J meets three elements of P,. Hence each
component of R contains a triod. It follows that the components of
R are countable. Since St (P, — L) is a second category subset of I
that is contained in R, there exists a component T of R such that
Cl T contains a nonempty open subset of I. But since Cl T is a con-
tinuum in X — U,, this is a contradiction. Hence I is terminal in X.

THEOREM 3. Suppose M is a continuum with the property that
for each indecomposable subcontinuum H of M there is a continuum
K wn M contarning H such that K is connected im kleinen at some
point of H and f is a continuous function on M into the plane. Then
the boundary of each complementary domain of f(M) 1is hereditarily
decomposable.

Proof. Suppose a complementary domain of f(M) contains an
indecomposable continuum I in its boundary. According to Theorems
1 and 2, I is terminal in f(M). Hence there exists a composant C of
I such that each subcontinuum of (M) that meets both C and f(M) — I
contains I. Let p be a point of f(C). Define Z to be the p-component
of f7'(I). As in the proof of Theorem 2 of [2], f(Z) = I.

Let A be a composant of I distinct from C. There exists a
continuum H in Z such that f(H) meets A and C, and no proper
subcontinuum of H has an image under f that meets both 4 and C.
Note that f(H) = I and H is indecomposable. There is a continuum
K in M containing H that is connected im kleinen at some point of
H. Hence there exists a continuum W in K whose interior (relative
to K) meets H such that f(W) does not contain I. Each composant
of H meets W.

Let « be a point of HN f*(C). Since the z-composant of H
intersects W, it follows that f(W) is contained in C. Let y be a
point of HN f'(A). There exists a proper subcontinuum Y of H
that contains y and meets W. Since f(Y) meets both 4 and C, this
is a contradiction. Hence the boundary of each complementary domain
of f(M) is hereditarily decomposable.
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COROLLARY 1. If a continuous image of a hereditarily decom-
posable continuum lies in the plane, then the boundary of each of
its complementary domains is hereditarily decomposable.

COROLLARY 2. If M is a continuum tn FEuclidean mn-space that
does not contain an indecomposable continuum in its boundary and f
is @ continuous function on M into the plane, then the boundary of
each complementary domain of f(M) is hereditarily decomposable.
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