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INEQUALITIES INVOLVING | |/ |P AND | |/< κl FOR

f WITH n ZEROS

JAMES BRINK

Let || II,, denote the L^-norm. This paper determines
the smallest possible constants C which satisfy

ll/ILsί C(δ-α) ||/< > ||,

for certain classes of w-times continuously differentiable func-
tions having n zeros on some interval [a, b]. Particular inter-
est is placed on functions having a zeros at a and n — a
zeros at b. It is shown that smallest possible constants exist
for all positive integers n, for all extended real numbers p
and q not less than one, and for a = 0, ... ,n providing the
exponent s is chosen properly. Moreover, these constants
can be used to determine best possible constants when the n
zeros are restricted only by the condition that a are at a and
β < n — a are at b.

Inequalities of the type studied in this paper have been investi-
gated by a number of authors including [15] and [16] who were
primarily concerned with special cases of p and q or were concerned
with small n. For example, the inequality ||/1|25Ξ 2(6 — α) ||/'||2/7Γ when
f(a) = 0ffeσ[a, b] is included in [1] and [7] and | | / [ | 2 ^ (δ-α)2|[/"||2/ττ2

when f(a) = f(b) = 0yfeC2[a,b] is found in [7]. Boyd [4] gives a
method for finding best constants C for inequalities of the form

^\f\v\f{n)\rw{t)dt ^

f(ά) = f(d) = . . . = fin-1](a) = 0, f{n~ι) absolutely continuous, p > 0,
q > 1, and 0 ^ r < q. Not only is this one of the problems we are
studying when r = 0 but his method works equally well on problems
were the zeros are divided among the endpoints at least when p e
[1, c>o) and qe (1, °o). The cases p = °o and q = 1 or oo are studied
separately in this paper. Hukuhara [10] indicates that Tumura [17]
has found inequalities of the form

II/IU ^ (n - 1)^(6 - arWf^WJnln*

and

\\f{k) IL S k(b - α)-*||/<»> \\Jn(n - k)\ , k = 1, . . . , n - 1 ,

for / G Cn[a, b] having n zeros in [α, b] including zeros at a and 6.
This result is also mentioned in [3] and [13]. Coles [6] extends
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Wirtinger's inequalities to include certain cases of the type which we
are studying. Levin [12], [13], Hukuhara [10], and more recently
Hartman [9] have established a related result in which / and its
derivatives have a certain pattern of zeros. Levin's proof motivated
the method used to establish Theorem 4.1 which allows us to con-
centrate our attention on functions having zeros only at the ends of
the interval under consideration.

2* NOTATION. There are a few conventions needed throughout
this paper. We will count zeros according to their multiplicity. Thus,
the statement y{a3) = 0, j = 1, , n must be interpreted to mean
y{ί)(am) = 0, i — 0, , k — 1, if am appears k times among the α/s.
The term " / has k zeros" is used interchangeably with " / has at
least k zeros" unless context demands otherwise. PCn[a, b] denotes
the set of all functions with n piecewise continuous derivatives. The
notation [1, oo] will denote the extended real numbers greater than
or equal to one, and we will define l/oo = 0 whenever needed. As
usual we will use

as the norm on Lp[a, b] for any pe[l, oo) and

= sup{|/(ί)|:ίe[α,6]}

for L°°[a, b].

The basic set used throughout this paper is the set of all / e
Cn[a, b] having at least n zeros on [a, b] and it will be denoted C\[a, b]}.
We will need subsets of Cnζ[a, b\} consisting of all functions / e
C\[a, b\} which satisfy one or more of the following properties:

(a, β) f has a zeros at a and β zeros at 6.
(a) f has a zeros at a and β = n — a zeros at 6.
These subsets will be denoted by including the appropriate symbol(s)
inside the < >. Particular values of q, a, or β will be included. For
example, G\[a, 6], q = 2, a, β = n — ά} = Cnζ[a, 6], q = 2, ay denotes
the subset of Cπ<([α, 6]> containing those functions / satisfying
||/( ί ΐ )([2 — 1 and having a zeros at a and β — n — a zeros at 6.

In §3 we will be able to show that we need only consider func-
tions with nonnegative nth derivative when searching for smallest
constants C = C(n, p, q, a, β) satisfying

(2.1) Il/H, <ς C (δ - α) ' | | /< > ||ff , / e C*<[a, b], a,
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and in § 4 we will show that it is not necessary to consider functions
with interior zeros. In the following section, we find that if s —
n + 1/p — 1/q then

C= max s u p { | | / | | p : / e C <[0,l], «,«'»•

Combining this result with that in §4 motivates our study of

K(n, p, q, a) = sup {||/||,: fe C»<[0, 1], q, a>}

in §§5-10. In addition to finding the value of the K's, the maximizing
functions will also be determined whenever they exist. In §11, we
consider inequality (2.1) for a = β — 1 and a = β = 0.

3* Preliminaries* In Theorem 3.4 we will show that we need
only consider functions whose nth derivative is nonnegative. Some
of the lemmas needed to establish this result will also be useful later
in this paper.

LEMMA 3.1. Suppose that f e Cn<\a, 6]>, f{n) ^0, and f has exactly
n zeros. Then the sign of f(t) is determined for each t by the zeros
of f alone.

Proof. Let t0, , 4-i be the largest zeros of /, , / ( ? ι~υ, respec-
tively. By use of the mean value theorem, one can see that tn_Y< <
tβ < b and tβ^1 — = t0 = b where β is the exact number of zeros
at b. As

f{i)(t) = Γ f{ί-ιl)(s)ds , i = 0, , n - 1 ,
hi

one can see that / ί n " υ ( ί) , ---,f{β){t) are all positive on the interval
(tβ,b). However, on the same interval, f{β~ί](t), ••-,/(£) must alter-
nate in sign with f{β~ι)(t) < 0. Thus, the sign of f(t) is ( — l)β on
(tβy b). The sign of f(t) can be determined between each of the other
distinct zeros by tracing back from zero to zero. In particular, if
feCX[a, b], α> so that β = n - a, then the sign of f(t) is (-1)-5 if
f{n) ^ 0.

It is useful to show that we need only consider functions whose
nth derivative does not change signs, that is, functions whose nth
derivative is either nonnegative or nonpositive.

This result requires a few preliminary lemmas generalizing the
mean value theorem.

LEMMA 3.2. Suppose that α < 6, g =£ 0, ge Cm[a, b], g(a) = g{b) = 0,
and that g has at least m + 1 zeros on [α, 6]. Then ifm^2 there
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exists a nondegenerate subinterval [c, d] c [a, b] on which g' satisfies
all of the above conditions with m and [α, b] replaced by m — 1 and
[c, d], respectively.

Proof. Since g'eC[a, b], by the definition of multiple zeros and
by the mean value theorem, gf must have m zeros on [α, 6] Let c =
m i n {t: g'(t) = 0, t ^ a} a n d d = m a x {t: g\t) = O,t^b}. H e n c e , g'{t)
has m zeros on [c, d]. Suppose c = d or gr = 0 on [c, d]. Since #'(ί)
must have a change of sign on [α, 6], we have α < c <Z d < b. With-
out loss of generality, we may assume that g'(t) < 0 on [a, c) and
g'(t) > 0 on (d, 6]. This would say that a and b would be the only
zeros of the function g and that both must be simple zeros. Thus
cΦ d and g' can not be the zero function on [c, d] and the lemma
is established.

COROLLARY 3.3. Suppose fe Cn[a, 6], that f{a) = /(δ) = 0 and that
f has n + 1 zeros ow [α, 6]. T%βw if f ^ 0, f{n) has a sign change
on [a, b].

Proof. For n — 1, this result is an analogue of Rolle's Theorem.
If / ^ 0, / has a maximum or minimum at some point in (a, b) and
/ ' must change signs in some interval about that point.

For n >̂ 2, Lemma 3.2 states that there exists a subinterval
[cu dj on which / ' e C*"1!^, dj, / ' has w zeros on [cly dj including zeros
at cx and d1? and on this subinterval / ' Ξ£ 0. We can use the lemma
repeatedly until we find f{n~ι) has 2 zeros on subinterval [cn_l9 dn_J.
Showing that fin) has a sign change is identical to the case n = 1 so
the proof is complete.

Comment. If / e Cw[α', 6'] and / has at least n + 1 zeros on
[α', 6'] including at least two distinct zeros then we may apply Corol-
lary 3.3 with a = min {ί ^ a':f(t) = 0} and b = max {t ^ V:f(t) = 0},
respectively, to show that f{n) has a sign change on [α, δ] and hence
on [a', b'].

The following theorem will allow us to consider only those func-
tions whose nth derivative is nonnegative when finding maximums
over CX[a, 6], q, a, /5>. g is said to enclose f if /, ge C\[a, 6], α, /3>
and

(3.1) -|flr(ί)|^/(ί)^|flr(ί)|.

ίx, , tn is a zero seί for / if it is a set of n zeros for / of which
a are at a and /3 at b.

THEOREM 3.4. If f e C\[a, 6], g, a, β) and fίn) changes signs, then
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there exists a function ge Cn(\a, b], q, a, β} which encloses f and whose

nth derivative does not change signs. Hence, \\f\\p ^ \\g\\P9 Pe lh °°]

Proof. We will consider two cases.

Case ( i). Suppose that the only zero set for / satisfies tL = =
tn fMfa) = 0 for i = 0, , n - 1. Then

l / ( ί ) l = IΓ ••• ( '""V^ί

The iterated integral in the last step is the desired enclosing function

g

Case (ii). Suppose that / has a zero set with at least two distinct
zeros. We will show that the function g defined by the conditions

(3.2) g™(t) = \Γn)(t) I, g(U) = 0 , i = 1, , n ,

e n c l o s e s /. C l e a r l y \\g^ \\g = \\f(n) \\q = 1 a n d geC\[a, 6], q, a, β}.
Moreover, we can use Corollary 3.3 to show that g has at most n
zeros since g{n) does not change signs. Thus, g can have no other
zeros than those given.

In order to show that g encloses / let us define h(t) — f(t) — g(t).
Then h also satisfies zero conditions having the same form as (3.2).
we find that

h^(t) = fin)(t) - g^(t)

= f{n)(t)~ \f{n)(t)\

£ 0

so h has at most n zeros. By Lemma 3.1 the sign of h(t) is equal
to the sign of —g(t) for each t. Thus, / is below g whenever g is
positive and above g whenever g is negative. Likewise for — / and
g. Thus, inequality (3.1) is valid and the proof is complete.

4. Simplification of the problem. In the last section we showed
that it was only necessary to consider functions whose nth derivative
does not change signs. In this section we will further simplify the
problem by showing that we need only consider functions without
interior zeros.

THEOREM 4.1. Let

A = {f e C n ( [ a , b], q , a , β } : f h a s n o i n t e r i o r z e r o s , f ί n ) ^ 0}
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and let he Cn([a, 6], g, α, β} satisfying h, —hi A. Then

(4.1)

if the supremum exists.

The proof of this theorem is similar to a proof used by Levin
[12]. In fact, a proof of the equality in (4.1) could be carried out
in a more elegant fashion using the Krein-Milman theorem [11] if we
did not wish to establish the inequality as well.

We begin by looking at a fixed nth derivative g(t) where g ^ 0.
We define the set

(4.2) M(g) = {fe C\[a, 6], α, β): f{n) = g} .

Our method is to show that M(g) is compact and then to show that
the maximum of any convex functional, e.g. || \\p, can not occur on
a function with interior zeros if a + β > 0. Theorem 4.1 can then
be established.

The following two lemmas are useful in showing M(g) is compact.

LEMMA 4.2 [12; p. 398]. Let x0 be a fixed element of a Banach
space X, let E be a closed finite dimensional subspace of X and let
H be a finite dimensional hyperplane {y + xo:yeE}. Suppose that
M is a closed subset of X which is also closed under scalar multipli-
cation. If E Γ\ M = {0}, then HΠ M is compact.

LEMMA 4.3. The set Cn([a, b], a, β) is closed with respect to the
norm

(4.3) | | / 1 | = max max \fim)(t)\ .

These lemmas can be used to establish the following theorem. It
is not necessary to assume g ^ 0 at this point.

THEOREM 4.4. M(g) is a compact set with respect to the norm (4.3).

Proof. Any / e M(g) can be written in the form

(4.4) f(t) - p(t) + Γ \tn~ιg(tn)dtn dt,
J a J a

where p(t) is a polynomial of degree n — 1 or less. Hence, M(g) =
Hf) Cn(\a, b], a, β) where H is the set of all functions satisfying f{n) =
g or, equivalently, equation (4.4). If we let E be the ^-dimensional
subspace of polynomials of degree n — 1 or less, then we see that H
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is the ^-dimensional hyperplane

{p(t) + xo(t): p(t) e E}

where x0 is the iterated integral of equation (4.4). We take M =
Cn([a, 6], a, β} which is closed topologically as well as under scalar
multiplication. Moreover E (Ί Cn(\a, 6], a, β} is the set consisting of
only the zero function since no other polynomial of degree n — 1 or
less can have n zeros. This means all the conditions of Lemma 4.2
have been satisfied. Therefore, M(g) = Hf]M is compact and the
proof is complete.

The following lemma which has been verified by the author is
stated without proof in [12, p. 397].

LEMMA 4.5. Let x(t) and y(t) e Cn[tly t2] have at some point c e
(tl9 t2) zeros of order exactly r and r — 1, 1 ^ r ^ n, respectively. Then
there exists an ε > 0 such that each of the functions

z,(t) = x(t) + εy(t) and z2(t) = x(t) - εy(t)

has not less than r zeros on [tlf t2].

We are now ready to find sup {||/ | |p: fe M(g)}. For g ^ 0 we
define Mι = ML(g) to be the subset of M(g) containing the functions
without interior zeros and M2 = M2(g) be the subset of M(g) which con-
tains functions / which have a zero of order greater than n at toe
(α, 6) and which satisfy f(t) Φ 0 elsewhere on [a, b]. M2 = 0 unless
a = β = 0.

THEOREM 4.6. If g ^ 0 and heM(g) - M, then

Proof. It was shown in Corollary 3.3 that because g ^ 0, any
function in M(g) has exactly n zeros unless it has exactly one distinct
zero and this zero is of order greater than n.

Since M(g) is compact, there exists f0 e M(g) such that

| |/o| |, = sup{||/| |p:/eΛf(flr)}.

We begin by showing that /„ must be in Mι U M2. Suppose other-
wise. Let tl9 , tn be the set of zeros for fQm Of these zeros a must
at a and β at b. Since f0 £ {Mι U M2), we may assume that there is
an interior zero tt = = tr of order r ^ n — a — β.

Let

p(t) = (t- tj'-'it - tq+ι) . (t - tn)
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so that p(t) is a polynomial of degree n — 1 with a zero of order r — 1
at tλ. Hence by Lemma 4.5 there exists an ε > 0 such that both
3i(*) = fo(t) + ej)(ί) and z2(t) = /0(ί) — εp(ί) have r zeros in some neigh-
borhood of tγ which may be chosen so small that it contains no other
zeros of /0. Moreover, zγ and z2 must be members of M(g) as zγ and
z2 have n zeros on [α, 6] and z ^ =«2Λ) = 0. We have /0(ί) = [zί(t) + z2(t)]/2.
Thus, by Minkowski's inequality

(4.5) l l/oll^[ | |«i l lp+l |2.IIJ/2

so that either

(4.6) ll/oll,^ll«illp or \\fQ\\p^\\z2\\p.

In order to complete the contradiction to the definition of fQ we
must show that strict inequality holds for one of the possible inequa-
lities in (4.6). We can do this as follows. For p = 1, equality holds
in Minkowski's inequality and hence in (4.5) only if zx and z2 always
have the same sign. This is impossible for zι and z2. For finite p > 1,
equality is possible in Minkowski's inequality only if zλ and z2 satisfy
Dz.it) = Ez2{t) for some D, E ^ 0, D2 + E2 > 0. This is also impossible
for our zt and z2. The comments regarding equality in Minkowski's
inequality can be deduced from an inspection of its proof. For p =
oo, we can show that either | |/ 0 |U < HsJU or | |/ 0 |U < | |32 |U. We see
that this is the case by noting that if |/0(ί0)l = 11/olUι then either

= \fo(to) + ep(to)\

or

\z2(t0)\ = \fo(to)-ep(to)\>\f0(t0)\ .

The necessary contradiction to the definition of fQ has now been
obtained as strict inequality holds in at least one of inequalities (4.6).

We can complete the proof of the theorem by showing that if f0

maximizes | | / | | p t h e n / 0 g M 2 . Suppose otherwise. Let heCn([a, δ]>
be a function which satisfies | h(t) \ = \fo(t) \ and whose sign will be
determined later. Then \h{n)(t)\ = \fo

in)(t)\. Since /0 and h must have
a zero of order greater than n at some point c, we can write h(t) —
(t — c)nhn(t) where hn is continuous and hn(t) = 0 if and only if t = c.
Consider the functions h(t) ± e(t - c)n~ι = (t - c)n~ι[{t - c)hn(t) ±e]. As
we will insist hn(t) > 0 for t Φ c, we can find ε^ ε2 > 0 such that
zSt) = h(t) + ε^t — c)n~ι and z2(t) = h(t) — ε2(t - c)n~ι have distinct zeros
of orders 1 and n — 1. As shown above, either zt or z2 satisfies
II%i\\P > \\h\\p = ||/o[|p AS shown in the proof of Theorem 3.4 we can
find a function / such that f{n) = \zίn) \ and | | / | | p ^ | | ^ | | p . But f{n) =
g so / G M(g) and we have the contradiction to the maximizing prop-
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erty of /0. The theorem is valid.

The last theorem can now be used to establish Theorem 4.1.

Proof of Theorem 4.1. Recall that Mι depends on g so that A =

Let foe Cn([a, 6], q, a, β}. As shown in Theorem 3.4, there exists
a function h in the same set which satisfies h{n) ^ 0 and \\fo\\p ^
By Theorem 4.6 we have that if hZM^h^), then

The proof of the theorem is now complete.

5* The constants K(n, p, q, a). Let us return to the problem
of finding best possible constants C which satisfy the inequality

(5.1) \\f\\, £ C (δ - ay\\f^\\PffeC\[a9 b], a, β) .

If we choose s = n + 1/p — 1/q and transform the problem to the
interval [0, 1], the above inequality reduces to

(5.2) | | / I I , ^ C||/< > L / e C»<[0, 1], a, β) .

If in addition f/\\fin)\\q is replaced by /, we have that the last two
inequalities are equivalent to

(5.3) Wf\\P^C,feC\[0,l],q,a,β).

With this in mind we define

(5.4) K(n, p, q, a) = sup {||/||p: / e C\[0,1], q, a}}

for n = 1, 2, •; p, qe [1, oo]; and a = 0, , n. Then the smallest
possible constant C satisfying inequalities (5.1, 2, 3) is

(5.5) C = max {K(n, p, q, a'): a ^ a' <, n - β} .

Methods for determining the constants K(n, p, q, a) will be studied in
the following sections. But first we will look at some of their prop-
erties.

THEOREM 5.1. For any n = 1, 2, «« and any a = 0, , n; the

constants K(n, p, q, a) satisfy

(5.6) K(n, p, q\ a) ^ K(n, p, q, a) for q ^ qf ,

(5.7) K(n, p, q, a) ^ K(n, p', q, a) for p ^ pf ,

and
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(5.8) K(n, 1, oo, a) ^ K(n, p, q, a) ^ K(n, oo, 1, a)

Proof. The first two of the inequalities can be proven using the
following fact. For h e Z/[0, 1]

(5.9) P I I ^ P H , if l£p<r

where equality holds if and only if h is a constant function. This
can be shown by use of Holder's inequality for finite p and r. The
result is clearly valid for r = oo.

Inequality (5.6) may be proven as follows. Suppose n and a are
given and that feC\[0, 1], a). By inequality (5.2) with

C = K(n, p,q,a), β = n - a

and by (5.9),

11/11, ^ K(n, p, q, a) | |/< > ||, ^ K(n, p, q,

providing q ̂  q'. But K(n, p, q\ a) is the smallest number K such
that 11/11, ̂  K\\f{n) \\q, for all / e C*<[0, 1], α> Inequality (5.6) follows
directly.

For p ^ p', we have

As before, K{n, p, q, a) is the smallest number K for which | | / | | p ^
K\\f{n)\\q is valid for all /eCΛ<[0, 1], α> and inequality (5.7) follows.

In order to show inequality (5.8) and complete the proof, we notice
that

K(n, 1, co, a) ̂  K(n, 1, q, a) ̂  K(n, p, q, a)

^ K(n, p, 1, α) ̂  if(^, co, l, a) .

Inequalities (5.6-8) would be valid in terms of the extended real
numbers even if some of the constants were infinite. However, in-
equality (5.8) and the existence of the upper bound would be sufficient
to show that K(n, p, q, a) exists and is finite for all p and q.

THEOREM 5.2. [8] In K(n, p, q, ά)p is convex in p.

Proof. Let n, pL, p2, q, and a be given and consider the inequalities
WfWpi ^ K(n9 piy q, a), i = 1,2, which must hold for every

/ e C <[0, !],?,«>•

Let θlf θ2 ̂  0 satisfy 6^6^ = 1, raise the above inequalities to the
θtPi power and then multiply to obtain
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Pi, Q, <*)]θ^[K(n, p2, q,

But by the Riesz Convexity Theorem we have that the left hand side
is at least as large as \\f\\r

r where r = θ1p1 + θ2p2. This means that
for any / e Cn([0, 1], q, a} we have

| | / | | r ^ [K(n, Pι, q, a)]θ^[K{n, p2, q, a)\θ^ .

But K{n, r, q, a) is the smallest number greater than | | / | | r for all /
so that

K{n, r, q, a) :S [K(n, pu q, a)]W[K(n, p2, q, ά)]θ^lr .

The proof is completed by raising the above inequality to the r power
and then taking logs.

THEOREM 5.3. For n = 1, 2, •; p, q e [1, oo]; and a = 0, , n;

K(n, p, q, a) = K(n, P, Q, a)

where 1/p + 1/Q = 1 and 1/q + 1/P = 1.
The proof of this theorem will be delayed until we have studied

methods for evaluating the K's.

We notice that by the symmetry in the boundary conditions

(5.10) K(n, p , q, a) = K(n, p,q,n - a) ,

6* K(n, p, q, a) for q = ooφ In this section we will show that
the function g defined by the boundary value problem

(6.1') 9in)(t) = 1 >

( 6 . 1 " ) <7(ί)(0) = 0 , i = 0, . . . , α - l ;

( 6 . 1 " 0 g { i ) ( l ) - 0 , i = 0 , . . . , n - a - l ;

maximizes | | / | | p over all functions / in the set C%<[0, 1], q = oo, a)
for every extended real number p ^ 1. Using this fact, we can easily
calculate K(n, p, co, a) as defined by equation (5.4).

THEOREM 6.1. The solution of the boundary value problem (6.1),
namely g(t) = ta(t — ΐ)n~a/nl, satisfies

(6.2) -\g(t)\£f(t)^\g(t)\, te[0,l],

for every f e Cn([0, 1], q = ooya) with equality for te(0, 1) only if
f = ±g Hence, the constants K(n, p, °o, a) exist and

(6.3) K(n,p, o o , α ) = \\g\\p, pe[l, oo] ,
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K(n, p, ooy a)

n&

(6.4^) [{poc)\ (pn — pa)l/(pn + ΐ)l]llp/nl , p = 1, 2, ,

(6.4^) α α (π — ά)n~al{nl nn) , p = °o ,

for n = 1, 2, αm£ α = 0, , n .

Here Γ(x) denotes the gamma function and 0° = 1.

Proof. Clearly g(t) satisfies the problem (6.1). Inequality (6.2)
can be established by an enclosing argument as in the proof of Theo-
rem 3.4, case (ii). Define h(t) = f(t) — g(t). As / and g are both in
CX[0, 1], a), so is h. One sees that

h^(t) = Γn)(t) - gM(t) = f { n ) { t ) - 1 ^ 0

since | | / ( w ) |U ^ 1.
For finite p, calculations may be simplified by expressing \\g\\l in

terms of the beta function.

7* K{n, p, q, a) for q = L In this section we will show that it
is possible to express K{n, p, 1, a) in terms of a Green's function.
Our main theorem is:

THEOREM 7.1. For n = 1, 2, •; p e [1, 00]; a = 0, •••,%; <md / e
C%<[0, 1], g = 1, a); the constants K{n, p, 1, a) exist and

(7.1) | | / | | p < JΓ(Λ, p, 1, a) = max{||flr(ί, s) \\p: 0 ^ s ^ 1}

where g(t, s) is the Green's function for the boundary value problem

(7.2an) yin)(t) = 0

(7.2b% α) y ^ ( 0 ) = 0, i = 0, . . . , a - l ;

(7.2cnα) y^(l) - 0 , i = 0, , w - α - 1 .

Since the only solution of this boundary value problem is the trivial
one, y = 0, the Green's function g(t, s) exists and can be determined
uniquely from the following properties [5, p. 192]:

( i ) (dk/dtk)g(t, s) is a continuous function for k = 0, , n — 2,
on the rectangle 0 ^ ί, s ^ 1 and is continuous for k = n — 1 and n
on the triangles 0 ^ t < s ^ 1 and 0 ^ s < t ^ 1.

(ii) (3-1/3ίn-1)flf(8 + , s) - ( S - V δ ί - 1 ) ^ - , 8) = 1.
(iii) For each fixed s e [0, 1], #(£, s) is a solution of the boundary

value problem (7.2Λα) except at t = s.
Of course
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(7.3) y(t) = [g(t, s)f(s)ds
Jo

is the solution of y{n)(t) = f(t) subject to the boundary conditions
(7.2b, O .

The Green's functions g{t, s) will be considered to be functions of
the variable t indexed by the parameter s. This convention will allow
us to use the notation g{i)(t, s) for the ith partial derivative of g(t, s)
with respect to t.

A major part of the proof of Theorem 7.1 is based on the fact
that for a = 1, , n — 1 and / e Cn([0, 1], q = 1>, there exists s e
0, 1) such that

- \ 9 ( t , 8 ) \ < f ( t ) < \g(t,8)\ , ί e ( 0 , l ) ,

at least if f{n) ^ 0. This s satisfies the equation /'—"(O) = ^"-"(O, s).
As the first step in showing this, we note that g(t, 0) has n — a

zeros at t — 1 and by the continuity of the function and the first
n — 2 partials, g(t, 0) must have a ^ n — 1 zeros at t — 0. Thus on
the interval 0 = s ^ t ^ 1, g(t, 0) is a polynomial of degree n — 1 at
most, has % zeros, and thus, must be the zero function. Likewise
for s = l. Hence

g(t, 0 ) E 0 Ξ g(t, 1) , a = 1, , n - 1 .

Now that we have g(t, 0) we can show the following:

L E M M A 7.2 . For a = 1, •••, w - 1; n = 2, 3, •••; αmZ A e ( — 1 , 0),

exists se (0, 1) swcΛ ί/^αί βr(ί*~1}(0, s) = k.

Proof. Despite the fact that g(t, 0), appears to be an analytic
function, in the limiting sense it must have a jump in the n — 1st
derivative at t = s = 0. Since g{n~ι){t, 0) = 0 for t > 0, we must have
that g{n-ι){t, s) -* - 1 as (t, s)—(0, 0) with 0 ̂  ί < s. Clearly ^ ^ ( O , 1) =
0. By the continuity of g{n~ι)(t, s) on the triangle 0 <; t < s ^ 1,
flf(Λ""υ(0, s) must take on any given value of ke ( — 1, 0).

We need the corresponding results for a — 0 and a = n but the
reader can as easily verify the following:

THEOREM 7.3. For any positive integer n, the Green's function
for the boundary value problem (7.2wα) with a = 0 is given by

, x ί - ( * - sy-'lin - 1)! , for O^t^s^l,
g(t s) = \

(0 , /or O^s^ίl,
and for a = n
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O fίw 0 <C t <C Q <L 1, j ur v / ^ 6 -^= o —^ -L ^

Proo/ o/ Theorem 7.1. Suppose that we are given

By Theorem 3.4 there exists a function / in the same set which
satisfies fin) ^ 0 and | |/ 0 | | p ^ | | / | | P By Theorem 4.1 we may assume
/ has no interior zeros. We will show that if s — s0 is picked pro-
perly and satisfies

(7.4) g^(0, s0) = / ^ ( O ) , 0<-ι>(l, s0) = /'"""(I)

then

(7.5) -\9(t,8ά\<f(t)<\g(t,80)\, ί e ( 0 , l ) .

But first we need to show that such an s0 exists.
First for a = 1, , n - 1. Let k = f{n~l){G). Since f{n)(t) ^ 0,

we have

f{n-ι){l) = k + [f{n)(t)dt = k + \\Γn) | |x = k + 1 .
Jo

Since fίn) ^ 0, f{n~ι) is increasing and because / has n zeros, fin~ι)

changes sign so that ke( — 1, 0). By Lemma 7.2 there is an sfl such
that equations (7.4) hold.

For a = 0, we have that f{n~ι){l) = 0 so that

f{n-ι)(0) = rn-ι){i)- l = - l .

By Theorem 7.3, equations (7.4) are satisfied in terms of limits by
s0 = 1. Likewise the equations are satisfied with s0 = 0 for a = n.

We can show that inequality (7.5) is valid with s0 as chosen above.
For any n — 2, 3, and a — 1, , n — 1, we define

h(t) = f(t) - g(t, s0) G C-2[0, 1] .

Since both f(t) and g(t, s0) satisfy the boundary conditions (7.2b, cnα),
so does h(t). Moreover, h can never be the zero function. We have

A<-«(ί) = f«-»{t) - g{n-ι){t, s0) ,

(7.6) ίλ(w-1}(ί) S O for 0 ^ t < s0 ,

l / ^ - ^ O ^ O for s o < ί ^ l .

Clearly h{n~ι)(t) has exactly one sign change on [0, 1] and for each
t Φ s0, h

{n~ι){t) and flf(n-1)(ί, s0) have opposite signs. Suppose that &(£)
has an interior zero. In this case the continuous function h{n~2){t)
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must have (n + 1) — (n — 2) = 3 zeros, and since the function h(t)
has 3 distinct zeros, the 3 zeros of h{n~2){t) are distinct. Two of these
zeros must fall in either [0, s0] or [s0, 1]. By the extension of the
mean value theorem used in the proof of Corollary 3.3, h must change
signs within that interval. Since this is impossible, h(t) can have no
interior zeros.

As in the other theorems established by this method, h(t) and g(t, s0)
have opposite signs. This can be established by noticing that the
conclusion of Lemma 3.1 remains true if we only insist that fίn~ι) is
integrable, is nonpositive on [a, tn^], and is nonnegative on [tn_l9 6].
Inequality (7.5) can then be established by use of an enclosing argu-
ment as in the proof of Theorem 3.4, case (ii). Hence \\f\\P<\\g(t, so)\\p.
This can be shown for a = 0 and n with sQ chosen as indicated earlier,
that is with s0 = 1 and 0, respectively.

Now we can easily complete the proof of Theorem 7.1. Since
g(t, s) is a continuous function of two variables, \\g{t, s)\\p (norm over
t e [0, 1]) is a continuous function of s e [0, 1]. Therefore, its maximum
exists. We have

(7.7) H/oll, ^ 11/11, < \\g(t, so)||, ^ max{||flr(ί, s)\\p: 0 g s ^ 1}

for all /0 G Cn([0, 1], q = 1, ά). Moreover, this is the least upper bound
over CX[0, 1], q = 1, a) because for any given se [0, 1], the Green's
function g(t, s) can be approximated as closely as desired by functions
in C*<[0, 1], q = 1, a) with respect to the norm | | / | | = max {\\fii} ||L:
i = 0, ••, n — 1}. The theorem is now established.

It would seem desirable to have a formula for the Green's func-
tion for calculating numerical values of K(n, p, 1, a). The author
derived one such formula involving a double summation and a com-
parable formula is stated in [14]. As these formulas are rather com-
plicated, it appears easier to use a method suggested in Coddington
and Levinson [5, p. 190-193]. It allows one to find the Green's func-
tion by solving a linear system of dimension n — a.

In certain cases, the theory of the adjoint boundary value problem
is useful as an aid in calculating K(n, p, 1, a).

THEOREM 7.4. For any n = 1, 2, , and any a — 0, , n, the

adjoint of the boundary value problem (7.2wα) is the boundary value
problem

(7.8aβ) (-l)V* }(ί) = 0

(7.81U y{i)(0) - 0 for i - 0, , n - a - 1

(7.8O y{i){l) = 0 for i = 0, , a - 1 .

Moreover, the Green's function for the adjoint problem is
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g*(t, s) = g{s, t)

where g(t, s) is the Green's function for (7.2ΛΛ).

This theorem can be established by using Coddington and Levinson
[5, p. 284-297].

We can now derive a few formulas for the constants K{n, p, 1, a)
for certain special choices of p and a. Some hints for calculating
the constants will be given for a few cases when special formulas are
not available.

The problem of finding K(n, <χ>,l, a) has been shown to be equiva-
lent to finding some best possible bounds for the Green's function.
Beesack [2] has obtained some results in this area and in particular
gives K(n, ©0,1,0) = K(n, oo, 1, n). In fact, the cases a = 0 and n
are easy. By Theorem 7.3 one sees that \\g(t,s)\\p is maximized by
s = 1 if a — 0 and s = 0 if a = n. Thus, for any positive integer n,

K(n, p, 1, 0) = K(n, p, 1, n) = [(n - 1)1 (pn - p + I) 1 "]" 1 , p e [1, oo) ,

K(n, co, 1, 0) = K(n, oo, 1, n) = [(n - I) ! ]" 1 .

We have two results which are obtained by use of the adjoint
boundary value problem. The first concerns p = oo.

THEOREM 7.5. For any n = 1, 2, , and any a = 0, , n, the

Green's function for the boundary value problem (Ί.2na) obtains its
maximum magnitude along the line s = 1 — t.

Proof. Suppose that n and a are given. Let ga(t, s) be the
Green's function for problem (7.2wα), let gn-a(t, s) be the Green's func-
tion for the symmetric problem (7.2%>Λ_α) and finally gt{t, s) be the
function for the adjoint problem (7.8wα). Suppose \ga(t,s)\ obtains its
maximum at the order pair (ta, sa). Then by symmetry \gn_a(t,s)\
must obtain its maximum for some point with t = 1 — ta and \g*(ty s) \
must obtain its maximum at some point with t = sa. But by considera-
tion of the associated boundary value problems, we have gn-a(t, s) =
(-l)ng*(t, s) so that sa = 1 — ta and the proof is complete.

By use of the adjoint problem once again, we can show

(7.9) K(n, 1, 1, a) = K(n, oo, oo, n — a) — K(n, oo, oo, a)

or

(7.10) K(n, 1, 1, a) =
nln
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for any positive integer n and any a = 0, , n. If n and a are
given, we have

rπ
O g S ^

0 < ί <

K(n, 1, 1, α) = max

= max

= max

{>:
{lί
{lί

g(t, s) | dt

1

flr(s, t)ds :
0

1

flr*(ί, s)ds
0

0 ^ t ^ lj

where #*(£, s) is the Green's function for the adjoint problem (7 8nα).

The last integral is the solution of the nonhomogeneous equation

(—l)VΛ)(ί) = 1 satisfying the adjoint boundary conditions (7.8b, cnα).

Therefore, | fV(ί , s)(fe = \(-l)ntn-°(t - l)a/nl \ which must be max-

imized over t to obtain K{n, 1, 1, a). For all practical purposes this

was done when the function g(f), as given in Theorem 6.1, was

maximized in order to obtain K{n, co} oo, a) so equation (7.9) and hence

(7.10) are valid.

8* K(n, p, q, a) for p = ooφ The following theorem shows that
Theorem 5.3 is valid for p = oo or q = 1.

THEOREM 8.1. 1/ w = 1, 2, •••; ge [1, oo]; a = 0, •••,%; απd / e
Cu<[0, 1], q, a} then

II/IU ^ # ( " , oo, g, α) = K(n, P, 1, α) , 1/P + 1/g = 1 .

Equality holds if and only if (i) q — ^ and fin) = ± 1 or (ii) g e (1, oo)
α^d | / ( n ) (^) | ? is a nonzero multiple of \g*(t, s)\p, the Green's function
for the adjoint boundary value problem (7 8wα), where s is selected
so that \\g*(t,s)\\p is maximized.

Proof. By Theorem 4.1 we need only consider functions for which
neither / nor f{n) change signs. The Green's function g(t, s) for the
boundary value problem (7.2Λα) does not change sign either. By (7.3),

f(t) = \ g(t, s)f(n)(s)ds. Hence by Holder's inequality and by Theorem
Jo

7.4,

JHpll/' 'll, = \\9*(s,t)\\P\\f^\\g, ί e [ 0 , l ] ,

where || | |p indicates norms over s e [ 0 , 1]. Hence,

II/IU ^ max {| |flr*(β,t)||P: t e [0, 1]} | I / ( % Ί I ,

and K(n, oo? qy a) ^ K(n, P, 1, n — a) — K(n, P, 1, a). By considering
the possibility of equality in Holder's inequality, we see that the
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statements regarding equality are valid for q e (1, oo). For q = co and
1, we use Theorems 6.1 and 7.1 and the proof is complete.

For hints regarding means of calculating

K(n, °o9q,a) = K(n,P,l,a),

we can refer to the last part of §7.

9* K(n, p, q, a) for p = !• The following theorem shows that
Theorem 5.3 is valid for p = 1 or q = co.

THEOREM 9.1. If n = 1, 2, •• •; qe [1, co]; a = 0, •••, n; and f e

Cn<[0, 1], q, a) then

l ^ K(n, 1, q, a) = K{n, P, - , a) , 1/P + 1/q = 1 .

Equality holds if and only if ( i ) g = co αwd / ( w )(£) = ± 1 or (ii)
(1, co) and \f{n)(t)\q is nonzero multiple of \tn~a(t - l)a\p.

Proof. Let / e CΛ<[0, 1], q, a}, β = n - a, and flr(ί) - V(t - l)a/nl.
We notice that ||flr||p = K(n, P, co, β) = iί(^, P, oo, α) and that #(%) =
1. We may assume / does not change signs and that fin) ^ 0. By
integration by parts, we have

[f(t)dt = f(t)g<"-ι)(t)
Jo

i -0

+ ( - l

due to the boundary conditions satisfied by / and g. Thus,

I = \\f{n)9 Ik ^ I I ^ I I P | [ / U ) II, = K(n, P, co, a)Λ .

For g G (1, co), equality holds if and only if \f{n) \q is a nonzero multiple
of I g \p. Our other remarks concerning equality follow from Theorems
6.1 and 7.1.

Theorem 6.1 is useful for finding formulas for K(n, 1, q, a).

10. K(n, p, q, a) for other p and q. The following theorem is
an application of a method suggested by Boyd [4]. Actually the
technique can be used on a more general class of equalities than we
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are considering in this paper. The reader can verify that the result
given here for p = 1 reduces to that found in the last section.

THEOREM 10.1. Ifn = l, 2, •• ; p e [ l , oo);qe(l, c o ) ; α = 0 , •••, n;
and f e CΛ<[0, 1], q, a) then

(10.1)

where λ is the largest eigenvalue of the differential system

(10.2a) y{n) = ( - l ) -β[(-l)βw/λJ 1 / («- 1 } ,

(10.2b) w ( n ) = yv~ι ,

(10.2c) τ/(ί)(0) - w{i){l) = 0 , ί = 0, , α - 1 ,

(10.2d) y(ί)(ΐ) = w{ί)(0) = 0 , i = 0, , w - α - 1 ,

(10.2e) ||2/(W)IL = 1 .

Equality holds in inequality (10.1) if and only if y = f(t) is part of
a solution of (10.2).

Proof. If g(t, s) is the Green's function for the boundary value
problem (7.2), then by equation (14) in [4] we have

T[h(t)] = [g(t, s)h(s)ds
Jo

is a compact operator from Lq[0, 1] to Lp[0, 1]. Thus, by Boyd's
Lemma 1 there exists f0 e Cn([0, 1], q, a) such that | |/ 0 | |P = K(n, p, q, a).

We can use Lemma 2 [4] to show that y = fo(t) is part of solu-
tion of system (10.2). We can show that the conditions of that lemma
are satisfied as follows. Since g{n~ι){t, s) has only one sign change
g(t, s) can not change sign. T[h(t)] as defined above is a bounded
operator since it is compact. The boundary value problem (10.2)
follows from equation (19) [4] and statements concerning λ also follow
from the conclusion of the lemma so Theorem 10.1 is valid.

We can complete the proof of Theorem 5.3 at this time. The
cases p=°°9l, orq=oo9l where covered in the last two sections.

Proof of Theorem 5.3 for p,qe ( 1 , oo). L e t P = q/(q - 1) a n d Q =
pl(p — 1). We can show that the system (10.2) can be rewritten in
an equivalent manner that allows us to determine K(n, P, Q, a).
Notice that
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We define Y = (-ΐ)awfXlίQ and W = (-l)n~aX(P~1)ίpy. After noting
q = P/(P -l),q-l = 1/(P - 1), p = Q/(Q - 1), and p - 1 = 1/(Q - 1),
we see that system (10.2) becomes

Γ(ί)(0) - TF(i)(l) = 0 , i = 0, , n - a - 1 ,

F4>(1) = TF(ί)(O) - 0 , i = 0, , α - 1 ,

| | Γ ( W ) | | Q = 1

Comparing this system to (10.2) we see that it is the system for
determining K(n, P, Q, n — a). Hence,

K(n, P, Q, a) = K(n, P,Q,n- a) = [λp /*]1 / p = λ1/2? = K(n, p9 q, a)

and the proof is complete.
Theorem 10.1 can be reduced to Theorem 9.1 if p = 1. The fol-

lowing corollary concerns another special case.

COROLLARY 10.2. For q = 2, system (10.2) can be replaced by

y { 2 n ) = ( - l ) V " V λ ,

0<«(O) = y<n+i\l) = 0 , i = 0, , α - 1 ,

2/ ( ί )(l) = ?/ ( ί l + ί )(0) - 0 , i = 0, . . . , r c - α - l ,

EXAMPLE. JSΓ(2, 2, 2, 1) - 1/ττ2 = 0.101321- . This follows since
1/τr4 is the largest eigenvalue of the above system if n = p — 2 and
a = 1. The maximizing function # is /(ί) = 21/2 sin (πt)/π2.

l l Maximums over Cw<[α, 6], α, /S> for certain α and β. The
cases of most general interest may well be a = β = 1 and a — β =
0. We define

, p, q) = sup {||/1|,: / e Cw<[0, 1], g, α - 1, /S = 1>}, n = 2, 3, • • ,

and

M(w, p, q) = sup {11/11,: / e C'<[0, 1], g>} , ^ = 1, 2, .

By equations (5.1-5) we have that L = L{n, p, q) and M = Λf(w, p, g)
are the smallest constants satisfying

ll/ll, ^ L (6 - α) | l/ ( n ) II, . / e CX[α, 6], α - 1, β = 1> ,
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and

^ M-{b- α) s | |/ ( w ) | l , , feC\[a,b]} ,

where s — n + 1/p — 1/q. By equation (5.5), we see that

L(n, p, q) = max {K(n, p, q, a) : 1 ^ a g, n - 1}

and

M(n, p, q) — max {K(n, p, q, ά) : 0 ^ a ^ n} .

The last equations show the need to investigate K(n, p, q, a) as
a function of a. On the basis of numerical data for q = 1, ^ and
Theorem 5.1, it is conjectured that K(n, p, q, a) is a convex function
symmetric about a = n/2 for fixed n, p, and g. If this is true,

L{n, p , q) = K(n, p , q, 1) = K(n, p,q,n- 1)

a n d

M(n, p, q) = K(n, p, q, 0) = K(n, p, q, n) .

We can show that these equations are valid in case q = °o or p = 1 as
follows.

For q = co, we know that K{n, p, CKD, a) = [I(a)]ιlPln\ where

f ι

Jo

It is easy to show that the integral I (a) is concave up as a function
of a. We have

Γ(a) = p[ In [t/(l - t)][ta(l - t)n'a]pdt
Jo

and

/"(α) = p2[{\n [t/(l - t)]}2{ta(l - t)n-"}*dt
Jo

which is clearly positive. With this knowledge of the graph of the
integral, we see that its maximum must occur at an endpoint of the
interval in a. Thus, by symmetry, K(n, p, <̂ , a) must have it maxi-
mum at a = 1 and n — 1 in the case of L(n, p, oo), and at a = 0 and
n in the case of M(n, p, co). The case p — 1 follows from Theorem
5.3.

The following formulas can be obtained by using Theorem 6.1
and equations (7.9, 10). For n = 2, 3, ,

ψ ^ 6
nl I Γ(np + 2) J
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) = (n - l)*-η{n\nn) ,L(n, 1, 1) = L(n, o

and for n = 1, 2, ,

M(w, p, oo) - (np + ΐ)~llP/n\, p e [1, co) ,

M(w, 1, 1) = M(n, oo, oo) = 1/w! .

According to Theorem 5.3, we have that

L(n, p, q) = L{n, P, Q) and M(n, p, q) = M(n, P, Q)

where lip + 1/Q = 1 and 1/g + 1/P = 1.
Tables 11.1 and 11.2 contain some values of L(n, p, q) and

M(n, p, q). According to the last paragraph, L{n, 1, 2) = L(n, 2, co)
and L(n, &o, 2) = L(^, 2, 1). Likewise for the M's. The tables can
also be used for finding values of K(n, p, q, a) for a = 0, 1, n — 1,
and n.

Table 11.1 L(w, p, q)

V

1

2
oo

2

1

2
oo

V

1

2
oo

2

1

2
oo

Q

1

1

1

2

oo

oo

oo

Q

1

1

1

2

oo

oo

oo

1/8 =.125

1/4^3 = .14434
1/4=.25

l/τr2=. 10132

1/12=.08333

1/2/30=. 09129
1/8 =.125

Table

n = l

1

1

1

2,'π = .63662

1/2=.5

l//3 = .57735
1

w = 3

2/81 = .02469

.02927

.04508

1/72=.01389

l/6»'/Ϊ05=.01626
2/81 = .02469

11.2 M(n, p, q)

n = 2

1/2=.5

l / / 3 = . 57735
1

1/6 = .16667

1/2/5 = .22361
1/2=.5

n = 4

9/2048 =.00439

.00549

.00902

1/480=.00208

1/48/63=.00262
9/2048=.00439

n = 3

1/6 =.16667

1/2/5= .22361
1/2 = . 5

1/24 = .04167

1/6/7 = .06299
1/6=.16667

12* REMARKS. The author has compiled table of the constants
K(n, p, q, a) for q — 1 and ^ and of the Green's functions for values
of n as large as 7.

The reader may have observed that some of the results can be
easily generalized to allow weighted Lp norms and/or arbitrary but
fixed location of n zeros in some interval [α, b].

Applications of this paper to the area of polynomial interpolation
problems are immediate. The author will consider applications to the
field of disconjugate differential equations in a forthcoming paper.
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