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A CLASS OF BILATERAL GENERATING FUNCTIONS
FOR CERTAIN CLASSICAL POLYNOMIALS

J. P. SINGHAL AND H. M. SRIVASTAVA

In this paper the authors first prove a theorem on bilateral
generating relations for a certain sequence of functions. It
is then shown how the main result can be applied to derive
a large variety of bilateral generating functions for the
Bessel, Jacobi, Hermite, Laguerre and ultraspherical polyno-
mials, as well as for their various generalizations. Some
recent results given by W. A. Al-Salam [1], S. K. Chatterjea
[2], M. K. Das [3], S. Saran [6] and the present authors [9]
are thus observed to follow fairly easily as special cases of
the theorem proved in this paper.

Let the sequence of functions {S,(x)|» = 0,1, 2, --+} be generated
by

< w S, 1)
1 Am 'n,Sm+n ~ Y 7 anim Sm h ’ t ’
(1) % AnaSua@)t” = 20 S5, 0)

where m is a nonnegative integer, the A, , are arbitrary constants,
and f, g, h are arbitrary functions of z and ¢.
In the present paper we first prove the following

THEOREM. For the S,(x) generated by (1), let
(2) Flz, t] = io 0,8, (x)t"

where the a, #+ 0 are arbitrary constants.

Then
(3) S, YF[h(x, 1), yt/g(x, 1)]

= 3 S@a, )t ,
where 0,(y) s a polynomial of degree n in y defined by

(4 ) an(y) = kZ:‘O akAk,'n—-kyk .

We also show how this theorem can be applied to derive a large
number of bilateral generating functions for those classical polynomial
systems that satisfy a relationship like (1). In particular, we discuss
the cases of the Bessel, Jacobi, Hermite, Laguerre and ultraspherical
polynomials.
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2. Proof of the theorem. If we substitute for the coefficients
o,(y) from (4) on the right-hand side of (3), we shall get

20 S.(@)o, ()t = go S.(@)t" k% WAy it

Ms

L W) S AuaSui@)t”

@, 1) 3, aSub(z, Owtlo@, 1),

>
1]

I

by using (1), and the theorem follows on interpreting this last ex-
pression by means of (2).

3. Applications. As a first instance of the applications of our
theorem, we recall the following known generating function for the
ultraspherical polynomials [5, p. 280]:

5 < m+n 2 n . a—m—2 Ax_t
( ) ”E=‘JO( n )Pm+n(x)t _‘10 Pm( p )r

where o = (1 — 2t + 372
Formula (5) is of type (1) with f= 0,9 =p, h = (¥ — t)/0, and

A, = (m;: n), and therefore, our theorem, when applied to the

ultraspherical polynomials, gives us

COROLLARY 1. If

(6) Flz, t] = 3, a,PA)t" ,
then
|t =t Y] S pa n
(7) or[22E U = 5 P
where, as well as in what follows,
n (n
(8) ba(y) = 3 ( k)akyk .

Corollary 1 was proved recently by Chatterjea [2]. Note that
in his long and involved derivation of Corollary 1, Chatterjea made
use of the following formula of Tricomi:

R x _ (_1)n(x2 _ 1)1+(1/2)n dr s 1y
(9) Pn(v(xz_l)) = . S -1

Evidently, in view of the known generating function (5), formula (7)
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would follow from (6) and (8) in a straightforward manner, without
using (9).

Next we consider the Laguerre polynomials which satisfy the
relationship [5, p. 211]

5 (" e
(10) T

= (@ —mmexp (.1——90 tt)'mi)(l - t) ’

which is of type (1) with f= (1 — )" exp{—at/l — )}, g =1 — 1),

h=z/1—t),and 4,,, = M+ M) Thus we arrive at the following
n

special case of our theorem:
COROLLARY 2. If
(11) Fle, 8] = 3 a,LP@)t"
7n=0

then

(12) a~WH“mngFLffl?J

= 3 L @b (w)t" -

Corollary 2 provides us with the corrected version of a result
proved earlier by Al-Salam [1, p. 134].

On the other hand, if we consider the formula (see, for instance,
[4], p. 58)

by

(m + n
(13) =

" )L:,f;::‘*”’(x)t”
= (1 + et L™ (x(l + 1) ,

we shall obtain the following particular case of our theorem :
COROLLARY 3. If
(14) Flz, t] = 2 a, L™ (z)t*
then .
(1 + e Flol + 1), yt/1 + )]

15 -
(15 = 3 L @bt .
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For the simple Bessel polynomials defined by [5, p. 293]
(16) Yu(®) = 2Fo|:—n, n+1;—; —% w] )
we have [3, p. 409]
== tn
Z ym+n(x) '_'
=) n!

= (1 = 2oty =+ exp {1 = ng—zx—t)} y’”<17?i_“‘f_‘2x_t)> ’

a7

and on comparing (17) with (1) we are led to the following result of
Das [3, p. 410]:

COROLLARY 4. If

(18) Fls, 1] = 5, 00.®) =,
then
(1 — 2xt)~*exp 1 — V({1 — 2xt) F x , yt
(19) { * } [l/(l —2xt) V(1 — th)]
=3 0@ S -
n=0 n!

Similarly, if we compare (1) with the known formula [5, p. 197]
(20) 3, Huva(@) & = exp (20t — ) Ho(w = 0),

where H,(x) denotes the Hermite polynomial of degree n in =z, we
shall obtain a class of bilateral generating functions for these polyno-
mials, given by

COROLLARY 5. If

@1) Flz, ] = 3, % H, @)t

=0 n!
then
exp (2xt — ) F[x — ¢, yt]

22 o n
) =3, H@bo L .
n=0 nl

For the Jacobi polynomials we first observe that the special case
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y = 1 of the bilinear generating relation (21), p. 465 of Srivastava [8]
leads us to the elegant formula

)
>
n=0

(m+n
n

)Pyﬁﬁ——nm—-n,,s-—m—m) (x) tr
- _]; }a—-m _]; . 1 pg—m
23) {1+ 1@+ {1+ ie@-1Y
g 1
(a—m,g—m) il 2 __ .
X Py (m + 3 (x l)t)

Note that the last formula (23) is a generalization of the well-known
result

oo

24) 3 Pemio (g = {1 + % @ + 1)t}“{1 + % (@ — 1)t}”,

n=0

which follows at once from (23) when m = 0.
A comparison of (23) with (1) yields

COROLLARY 6. If
(25) Flz, ] = 3 a, P (@)t ,
n=0
then
1 « 1 5
{1 + @t l)t} {1 +5G@ l)t}

(26) X F[x + %(wz — 1, yt/{l + —;—(x + l)t}{l + %(x - 1)t}]

Ms

P (@)b, ()1 .

0

3
il

Next we set v = 0 in the bilinear generating relation (18), p. 464
of Srivastava [8]. On replacing a,v and A by 1 + a+ 8,1 + « and
1 + a + m respectively, it is easy to see that

QWZﬂmwMWﬂ
27 "
@7 L

—a-tefi- 2@+ Pem@),

where, for convenience,

(28) X = {x — % @ + 1)t}{1 - %(x + l)t}—l i
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We thus obtain

COROLLARY 7. If
(29) Flo, 8] = 3, a, Pl @)t
then

a—w@—i@+n§*“ﬂxwm—m
2
(30) N

= 3, Pesm @b, @)t

where X 1is given by (28).

Lastly, we recall the following generating relation [9, p. 79, eq.
(3.6)]
DY

n=0

m + n
( )Gmn@c, v, b, )t
n

(1) = (1 — at)™ = exp [pa{l — (1 — at)™")]
X GP @1 — at)y™= r, p, a) ,

where the G(x, r, p, @) are polynomials in 2" introduced by us [9]
in an attempt to provide an elegant unification of the various recent
extensions of the classical Hermite and Laguerre polynomials given,
for instance, by Gould and Hopper [4] and others referred to in our
earlier paper [9]. A comparison of (31) with (1) would yield the
following result:

COROLLARY 8. If
(32) Flzx, t] = f‘, a,GP (x, r, p, @)t",
n=0

then
(1 — at)y™=exp [pa'{l — (1 — at) "N F[z/(l — at)', yt/(1 — at)]

(33) -
= Z‘ G;X)(x, r, D, a)bn(y)t” .

Corollary 8, which incorporates Corollaries 2 and 5 as its particular
cases, was proved earlier by us [9, p. 82, § 6] by using an operational
technique.

Now we recall the sequence of functions {f,(®)|n =0,1,2, «-+}
defined by Rodrigues’ formula



A CLASS OF BILATERAL GENERATING FUNCTIONS 761

(34) Fol@) = p(m)(x) gx— @@},

where ¢(x) and ¥(x) are independent of n. By using Taylor’s theorem
it is readily seen that the f,(x) are generated by

S te(m) . _ 9@
(35) > aTm + ) Fmra(@)E prEo t)fm(x + %),

m=0,1,2 ---,
which evidently is of type (1) with

—_ Mm) - %@ - =

Thus the sequence {f,(x)}, considered recently by Saran [6], is merely

a proper subset of {S,(x)} defined by the generating relation (1).
Consequently, as a very special case of our theorem we can obtain

the following corollary which happens to be the main result of Saran’s

paper [6]:
COROLLARY 9. For the f,(x) defined by (34), let
(37 Flz, f] = 3, a,fu@t",

where the a, = 0 are arbitrary constants.

Then
s F[e —t,yt] _ 3 (=0
(38) o = 2 ey T
where
(39) @) = 3 (~mhasy® -

By comparing (34) with Tricomi’s formula (9) it would seem
obvious that Corollary 1, involving ultraspherical polynomials, is
contained in Corollary 9. However, it may be pointed out that the
scope of Corollary 9 is very limited, since Rodrigues formulas of most
of the classical polynomials require that the function ¥'(x), involved
in (34), depend upon both % and z. Besides, the factor g(n) on the
right-hand side of (34) is superfluous. Indeed, in equations (34), (35), (37),
(38) and (39) one can replace, without any loss of generality, f,(x) by
#(n)f'n(x) and Ay by an/#(n)’ n =0, 1, 2,00

In conclusion, we remark that by assigning special values to the
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arbitrary coefficients a, it is easy to obtain, from Corollaries 1 to 9,
a large variety of bilateral generating functions for the Bessel, Jacobi,
Hermite, Laguerre and ultraspherical polynomials, and their generali-
zations studied earlier. For example, Corollary 2 would lead us fairly
easily to a number of extensions of the well-known Hille-Hardy
formula given, for instance, by Srivastava [7] and Weisner [10]. The
details involved are quite straightforward and are, therefore, omitted.
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