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COHOMOLOGY IN THE FINITE TOPOLOGY AND
BRAUER GROUPS

RAYMOND T. HOOBLER

An exact sequence relating Br(X), the Brauer group of
a regular scheme of dimension ^ 2, and Amitsur cohomology
(obtained as the cohomology of the sheaf of units on an
appropriate Grothendieck topology) is derived by functorial
methods. In order to do this we first show that any torsion
element of H\XetiGm\ i.e., Pic(X), and HKXet,Gm), i.e.,
Br(X), is split by a finite, faithfully flat covering Γ-»X.
After proving a divisibility result for Pic(X) under such
coverings and some preliminary investigation of cohomology
in the topology defined from such coverings, the exact sequence
which is analogous to that of Chase and Rosenberg is obtained.

Let X be a regular scheme with dim X <Ξ 2, i.e. ^y is a regular
local ring for all yeX. Grothendieck has then shown that the Brauer
group of the scheme X, Br (X), is isomorphic to H2(Xet, Gm) where
Xet is the etale site on X [2]. On the other hand Chase and Rosenberg
have given an exact sequence relating the kernel of Br (R) —+ Br (S)
with H2(S/R, Gm) where S is a finite, faithfully flat i2-algebra [5].
This result suggests that the Brauer group of X, X a regular Japanese
scheme with dim X ^ 2, might be described by H2(Xf, Gm) where Xf9

the finite site on X, is the one suggested by using coverings of the type
giving the Chase-Rosenberg exact sequence. Surprisingly, H2(Xf, Gm)
turns out to be too large. The measure of the difference lies in
Pic (X). If Pic (X) is torsion, then H2(Xf, Gm) is the Brauer group
of X.

Clearly we must first show that any Azumaya algebra on X can
be split by a finite, faithfully flat covering of X. This and some
curious results on the behaviour of Pic (X) constitute the major part
of the first section. In the next section the cohomology groups,
Hn(Xf, Gm), are investigated by spectral sequence arguments, and a se-
quence similar to the Chase-Rosenberg sequence is derived. The result
mentioned above then follows immediately from this sequence and the
splitting theorems of the first section. In a forthcoming paper most
of these results will be extended to the ^-primary component of Br(X),
I a prime, for aίfine schemes X of characteristic ln. This accounts
for the condition Sp (I) introduced in the second section.

We have generally adopted the style of Artin's Grothendieck
Topologies [1] since it seems to be more readily available than SGAA
[2]. This makes no difference in the results since all of the topologies
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we will use are generated from pretopologies and the Cech cohomology
groups in such topologies can be computed as in Artin's notes [2;
Exp. I, 2.1.4 and Exp. V, 2.1, d)]. A general knowledge of sheaves
of Azumaya algebras on schemes is assumed. For details the reader
can consult Grothendieck's Bourbaki talk [9] which is a straightforward
extension of the work of Auslander and Goldman in the affine case
[3]. We have adopted Bourbaki's convention of calling central, sep-
arable algebras (in the language of Auslander-Goldman) Azumaya
algebras.

In what follows all rings and schemes are noetherian. All rings
have 1 and are commutative unless they are Azumaya algebras.

1* Some splitting theorems* We will be interested in the fppf
(faithfully flat of finite presentation), etale, Zariski, and finite topologies
on (Sch), the category of schemes belonging to a fixed universe. They
are generated from pretopologies [2; Exp. I, 2.1.2] where for Xe (Sch),

ψi

{Xi > X}iei is a covering family of X in the fppf, etale, Zariski,
or finite pretopology if (1) for all ie I,Ψi is resp. flat and locally of
finite presentation, resp. etale [6; Exp. 1], resp. an open immersion,
resp. finite, flat and (2) \JiBI<Pi(Xi) = X- Fixing a scheme X we get
the fppf, etale, Zariski, and finite sites on X denoted by Xfppf, Xβt,
XZar, and Xf respectively. They are formed by taking the full
subcategory of (Sch)/X such that the structure map satisfies condition
(1) on the covering families in the respective pretopologies. The set
of covering families of X will be denoted Cov X* where * = fppf, et,
Zar, or / respectively. These sites are related by morphisms of sites
Xfppf — Xet -^-> XZar and Xfppf — X 7 for any Xe (Sch). The
category of sheaves of abelian groups on these sites will be denoted by
χ^9 * = fppf, et, Zar, or /.

Let X be a scheme, F a presheaf of abelian groups on the site
X* where * = fppf, et, Zar, or /. Hn(X*, F) will denote the Cech
cohomology of F on X* and H*(F) will be the presheaf on X^
given by H%(F)(Y) = Hn(Y, F) for Ye ObX*. If Fe X*, Hn(X*, F)
will denote the cohomology (by derived functors) of i^on the site X*,
and Hl{F) will be the presheaf on X* given by Ht{F){Y) = Hn(Y*,
F) for YeOhX*. If Y is a scheme over X, faithfully fiat quasi-
compact descent theory shows that the functor of points of Y defines
a sheaf in any of the above topologies [6; Exp. VIII]

LEMMA 1.1. Let X be a scheme, X= Xx _IL IL Xn be a decomposi-
tion of X into connected components, io : Xy—>X, 1 ^ j <£ n, be the inclu-
sion map. Given Fό e X,-*, let F= ©£=iii* F3 where * is any of the above
topologies. Then there is a natural isomorphism φ * ^ Hm(Xjή(, Fj) —»
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Hm{X*, F) for all m. Moreover if F is representable, then F =
φy=i h*i*F in any of these topologies.

Proof. X* is noetherian with final object (of finite type in the
language of [2]). Consequently Q)ij*Fj defined as a presheaf is a
sheaf and φ Hm(X*, ij*Fj) —• Hm{X*, F) is an isomorphism for all m

[1; II, 5]. Moreover for any Y-^X, Y =, φ~\Xx) JL ••• JL φ~\Xn).
Hence X* — Xx* x x Xn* and so i^ is exact, 1 ̂  j ^ n. Thus
the Leray spectral sequence for is collapses, and Hm{X^, Fά) —> H™{X*,
h'*Fi) is an isomorphism for all m.

Suppose Y—¥-> X represents F. Then φ~ι{Xό) represents i*F,
and so F == φ?=1 ijJfF.

COROLLARY 1.2. Let X be a scheme, X = Xλ Ji Jl Xn δe α
decomposition of X into connected components, Gm^x be the sheaf of
units on X*. Then φ* = 1 H

m(X^y Gm,Xj) —> Hm(X*, GmiX) is an isomor-
phism for all m.

Recall that an integral domain R is Japanese if the normalization
of R in any finite extension of its quotient field is an .R-module of
finite type [7; 0, 23.1]. We extend this to schemes by calling a scheme
X Japanese if for every point ye X, ^y/Pi is Japanese for all p{e
Ass

PROPOSITION 1.3. Let X be a regular, connected scheme with
dim X ^ 2.

(1) If X is Japanese, then {Y—>Xe Cov X//Y is normal and
integral} is a cofinal subset of Cov Xf.

(2) Let {Xi -^-> X}iei € Cov Xet be a finite set of etale maps with
Xi finite over the open subscheme <Pi(Xi). Then there is Y—>Xe Cov Xf

and {Ui~-+ Y}iele Cov Yz&τ which refines {Xi xx Y —> Y).

Proof. (1) Let Z-~+XeCovXf, Z^—> Z where Z is one of the
irreducible components of Z given the reduced subscheme structure.

Let Y—Ψ—*X be the normalization of X in the function field of Z.
Since Z is finite over X, φ factors through Z. Since X is Japanese,
φ is finite and onto. To show that φ is flat we may assume that
X = Spec R, R a regular local ring with dim JB ^ 2, and Y = Spec S
where S is the normalization of R in a finite extension field of the
quotient field of R. But then S is a Cohen-Macauley ring since it is
normal and dimS ^ 2. Hence S is iί-flat [7; 0,17.3.5].

(2) Since <pt is etale Xi is a regular scheme [6; Exp. I]. Moreover
Vi = <Pί(X;) is an open set in X since ^ is flat of finite presentation
[8; 2.4.6]. Let Yi be the normalization of X in the ring of regular
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functions on X^ φ\\ Yt —> X is finite since the ring of regular functions
on Xi is a finite product of finite separable extension fields of the
function field of X. φ\ is flat and onto by the argument above.
Now φ'c^Vi) = Vi x Yi is the normalization of Vi in the ring of rational
functions on Xi where the fibred product is always over X. But φi

is finite over F<. Hence X{ is finite and normal over V{ and so Xi =
Vi x Yi.

Let Γ = X ίe7Y;. 9>: Γ- -XeCovX/ since I is finite. Let I7i =
^"'(Fi) x Γ. Then the section Vt x Γ ^ — - ^ X* x Yi induces a map
JTi = F i X Γ - ^ I i X Γ defined over X. Thus the Zariski covering {Z7J
of F refines the etale covering {Xi x Y—> Y}.

Now suppose X is a scheme with no embedded components, and
let ylf * ,yn be the generic points of the irreducible components of
X. Then Rx> the sheaf of rational functions in the Zariski topology,
can be ^identified with ©*=iii*(^.) where is: Spec (^.) —*X is the
canonical map. Let Rx be the subsheaf of units of Rx. There is
an exact sequence of sheaves

0 — Gm — lίf > Divx > 0

where Gm is the sheaf of units and Diυx — Cokernel (k) is the sheaf
of Cartier divisors on X in the Zariski topology [12]. Since &>*. is a
constant sheaf on the irreducible space Y — Spec (^yy), fP(Γzar, ^%)
vanishes for i > 0. In particular the long exact cohomology sequence
for any open set U S X give an exact sequence

(1.4) o — r ( σ; em) - r ( 17, Λj) - r ( cr, z>/rx) — Pic (u) —> 0

since H^Uzar, Gm) = Pic (Z7), the group of isomorphism classes of
invertible ^-modules.

THEOREM 1.5. Let X be a regular, Japanese scheme with dimXrg
2, U an open subscheme of X, X—•XeCovX/.

(1) If yeH^UetyGn) is a torsion element, then there is Y—>
Xe Cov Xf and φ\ Y-> Xe Mor Xf, such that φ*(y) = 0 in H\φ-ι{U)et,
Gm).

(2) If yeH^UttjG*) and n is any positive integer, then there
are Y-> Xe Cov Xf, φ: Y-+ Xe Mor Xf, and y e H\9~\U)et, Gm) such
that ny = φ*(y).

Proof. Since H\Yet, GJ = H\YZΆΐ, GJ ~ Pic (Γ) for any scheme
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Y[2; Exp. IX, §3], (1) and (2) may be phrased in terms of Pic (X),
Pic(Y), and Pic(Z7). Moreover we may assume that X and X are
connected, X a normal, integral X-scheme.

(1) By (1.4) there is a Cartier divisor DeΓ(U,Dίvχ) such that
δ(D) = y and nD = (/), f e Γ(U, Jβf), where (/) denotes the Cartier
divisor of the rational function /. D is determined by a Zariski
covering {Ϊ7J of U and local equations / 4 e Γ(Ui9 Ri) = K* such that
fi fi1 e Γ(UiΓ) Uj, Gm) where K* is the group of units in the function
field K of X. Moreover we may assume that f~lmf*GΓ(Ui,Gm) for
all i. Let Y be the normalization of X in L = K{VJ),9\ Y-+X,
V=φ~ί(U),Vi = φ-1(Ui), &=?>*(/,) e Γ(F,, Λ£) and g=φ*(f) e Γ(V, Rϊ).
Since F is integral, {F<} and g{ define φ*(D) e Γ(V, Div?). By con-
struction there is ^ 6 Γ ( F , Λ * ) with gn = g. But then the Cartier
divisor (g~λ) + <£>*(£>) has local equations g{ = ^~1 ^ ί with ^? e Γ(7ί, Gm).
Since Γis normal, ^ e Γ( V4, ^ F ) , and so d^g-1) + Ψ*{D)) = 0 - <P*(δ(D)) =
<P*(y). Finally the argument of Proposition 1.3 shows that Y—•

/ as desired.

(2) Again we may assume that X is a normal, integral X-
scheme. Represent y by a Cartier divisor DeΓ(U,Divχ) where D
is defined by local equations / , G Γ(C7,, JB|) = K*, {U^l^ίSn, a
Zariski covering of U, such that frfT'eΓiUiΠU^G^). Let Z, =
^0Λ/77)i=i,. .,», Γ be the normalization of X in L, φ:Γ->X, F< =
<P~\Ui), and Vr = 9>-1(EΓ). As in 1.3, Γ—JΓeCov-Σ/. Moreover
"(<Λ ^Tr 1 )" e Γ(V< n_Fy, Gm) and so f/JT. ^/TΓ G Γ(F, Π F, , Gm) since Y
is normal. Thus {V/J are local equations of a Cartier divisor
JEG Γ(F, Divy). Clearly Ĵ57 = ?>*φ) and so nδ(E) = δ(φ*(D)) = <p*(y)
as desired.

The following result was pointed out by J. L. Verdier.

PROPOSITION 1.6. Let X be any scheme, y a torsion element in
H\Xet,Gm). Then there is Y-^->XeCovXf such that φ*{y) = 0 in
Hι(Y.t,Gm).

Proof. Let L be the invertible ^Vmodule whose class in Pic (X)
is y, s G Γ(X, L%n) the global section defining the isomorphism ^x—»L<8m.
Then R = ©JLO L®V(1 - s)(φJU L®0 is a coherent faithfully flat sheaf
of ^z-algebras, and clearly L ® ^ x J? = R as sheaves of jB-modules.

Let Y - Spec (R). Then Γ - ^ I G Cov Xf and ?>*(L) = ^ r .

More surprising and much more interesting is the next splitting
theorem for elements of Br (X), the Brauer group of X[9].
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THEOREM 1.7. Let X be a regular Japanese scheme with dim X ^
2, yeH2(Xet, Gm). Then there is φ: Y->XeCovXf with φ*(y) = 0
in H\Yet,Gm).

Proof. Grothendieck has shown that Br (X) s H\ΫeU Gm) and
Br (X) is torsion for any scheme X[9). Moreover if X is regular
with dim X £ 2, then Br (X) = H\XeU Gm) [10]. Thus we may assume
that X is connected and n y — 0 for some integer n. Since an
Azumaya algebra can be split locally (in the Zariski topology) by

finite etale coverings and X is noetherian, we can find X >X and
a finite Zariski covering {J7J of X such that (φ \ Ui)*(y) = 0 in H2(Uiet, Gm)
by Proposition 1.3. Thus it suffices to show that given X-+Xe
Cov Xf, y e H2(Xet, Gm) an element of order n and a Zariski covering {[7J

of X such that y\Ui = O in H2(Uiet,Gm), then there is Y-^Xe
Mor X / ? Γ- +XeCovX/, such that φ*(y) = 0.

In the Leray spectral sequence for εx: Xeί —• XZar, Rιe^(Gm) — 0 since
the Zariski topology contains enough coverings to split elements of Pic.
Thus the exact sequence of low degree terms gives an exact sequence

0 > iP(XZ a r, Gm) -U H\XeU Gm) > Γ(X, R%ΛGm)) .

Since y is split by a Zariski covering of X, there is an element z e
iϊ2(XZ a r, Gm) of order n with j(z) = y.

The spectral sequence iP(X Z a r , Hq

z&τ(Gm)) => ίP(X Z a r , Gm) gives an
exact sequence

0 - iϊ 2(XZ a r, Gw) - U ίί2_(XZar, 6?w) — JϊH-Xza,, flSariC,)) where
HLx{Gm) = Pic. In particular i(#) may be represented by a Cech cocycle
{Viίh Via e Pic (ί/;. n Z7y) with ^ + yjk =_yik e Pic (ϋi Q Uj Π Z7*), where
{ΪJi} is a finite Zariski covering of X. Since π i (y) — 0, we may
assume there are yi e Pic (t/i) with ^ — ys = n-yi5e Pic (Ui Π Z7y). By
Theorem 1.5, there is φ: Γ - ^ X e M o r X / , Ϋ —>XeCovX/ and ^ G
Pic {φ~ι(U^)) with ny{ — φ*(y^ for all i. Altering the Cech cocycle
{^*(»«)} €_^1({^1(C7ί)}, Pic) by ^({^r1}), it suffices to split y in iP(XZ a r, Gm)
by 7-> J under the assumption that n yi3 = 0 in P i c ί ^ Π Uj) where
{yiό} is a Cech cocycle representing i(y). Again by Theorem 1.5
there is φ: Ϋ—>XeMorX/, Ϋ—>XGCOVX/, such that for each pair
i, 0, φ^iVij) = 0 in Pic (φ"1 (Ui Π Uj)). Thus we may assume that
y = φ ) , n β = 0 for some zeH*(XZiue, Gn). Moreover we may assume
X is normal and integral by Proposition 1.3.

Represent z by the Cech 2 cocycle {uijk}, uijkeΓ(Vi Π Vs Π V*, 6rm)
with UiMUTliUmUjh = 1 in Γ(F 4 Π F y Π F& Π Vly Gm) where {Vjf=1 is a
finite covering of X. Since wz = 0, we may also assume that there
are units vtie Γ(Vi Γ) Vi9 Gm) with viS vTk Vjk = w?yj!. for all i, j , k. Let
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K be the function field of 1, L = K( Ψv^, ?)i^,i<^ where ξ is a primi-
tive mth root of unity, and n = prm, (m, p) = 1, if p = char if > 0,
n — m otherwise. Let 3Γ be the normalization of X in L, φ: Y-+X.
The argument of Propositition 1.3 shows that φ e Cov Xf and, of
course, there is a morphism ψ: Y-+X of X-schemes. Since tyviSe
Γ{ψ~~ι(ViΓ\Vj),Gm) we may assume that the cohomology class ze
H2(YZa.τ, Gm) that we must split can be represented by {vijk} where vi3Ίse
Γ(Vi Π Vj Π Fit, μn) and μ% is the sheaf of nth roots of unity. Now
Y has a global section of order m where n — prm, (m, p) = 1, if p =
char L > 0 and m — n otherwise. Hence μu is the constant sheaf
Z/mZ on Y[6; Exp. XI, §6]. Since Y is irreducible and a constant
sheaf on an irreducible space is flask, H2(Yz*τ, μΛ) = 0 . The Cech
cohomology spectral sequence then shows that H2(Yz&ΐ, μn) = 0 and so
z — 0 in fi"2(Y"Zar, Gm) as desired.

COROLLARY 1.8. Let A be an Azumaya algebra on X, X a regular

Japanese scheme with d i m X ^ 2 . Then there is Y >XGCOVX/

and a locally free coherent £7Y-module F such that φ*(A) = End^γ(F).

REMARK. Let X be a regular connected Japanese scheme with
dim X ίg 2, and let K be a finite extension of the field of rational
functions on X. The Japanese assumption on X was only used to
show that the normalization of X in L, a finite extension of if obtained
by adjoining wth roots of elements in K, was finite over X. Thus
without the Japanese assumption Theorems 1.5 and 1.7 hold for
(n, p) — 1 where p = char iΓ > 0 (w = order of y in Theorem 1.5, (1)
and Theorem (1.7)) since in this case the above extensions are separable
and (2) of Proposition 1.3 did not use the Japanese assumption.

2* Finite cohomology. This section is devoted to determining
the structure of Hn(Xf, Gm). The results when combined with the
splitting theorems of the previous section describe the relationship
between Br (X) and H\Xf, Gm) for a regular Japanese scheme X with
dim X ^ 2.

THEOREM 2.1. Let X be a connected scheme, Y —φ—> Xe CovX/.
Then there are natural maps i # : Hn{X*, Gm>x) -+Hn(X*, <P*Gm,γ) and
N*: £P(X*, Ψ*Gm>γ) ~»£P(X*, Gm,x) for n^O such that N*i* is mul-
tiplication by rk^Σ(φ^^γ) where * = fppf, et, Zar, or f. Moreover
Hn(Xf, Gm) is a torsion group for all n > 0.

Proof. Let * = fppf. Then i* comes from the natural inclusion

Gm,x -^-> φ*Gm,rwhere Gm,x, <P*Gm>γ e X f p p f .
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Let R be a ring, S a finite jB-algebra which is free as an iϋ-module.
Define N: S* —» i2* where i2*, £* are the units of Ry S respectively by
setting N(u) = det (Lu) where Lu is the i?-linear map of S defined by
left multiplication by the unit u. Since Lu is an isomorphism, its
determinant is a unit in R. The functorial properties of det show
that N is natural in R. Thus if Y—Ψ—>X is any finite faithfully
flat morphism, then φ*έ7γ is a locally free coherent sheaf of <^
and N extends to a morphism of sheaves JV: φj^γ) —*&x [12; Lecture
10] which is natural with respect to base change of X. Thus it
extends to a map N: φ*Gm>γ —> Gm,x e Mor Xfppf by commutativity of
the diagram below for any Xx —> X2 e Mor Xfppf:

Γ(YX X2, Gm,γ) JL Γ(Xl9 GmyX)
XX

I
Γ(YX Zi, Gm,x) i Γ(Xιt GUtZ) .

X

If X is connected, then rank ( ί 7 χ (^ H ί (^ )

F )) is a constant and for any

X1 —• JSΓί G ObX f p p f the composite

sends u to ^ w where m = r a n k ^ X i ((9? x -SΓ1)*(^prχ2'1)) = r a n k ^ x

Thus JV induces

iV*: ί ί w (X f p p f , ^*G W , F ) > Hn{Xmu Gm>x)

for all n^O and by universality N*i* is multiplication by
The morphisms of sites Xfppf —• X* where * = et, Zar, or / gives a
map N: φ*GmfY—*Gm>x e Mor X* which extends to N*: Hn(X*, φ*Gm γ) —>

Hn{X*, Gm x) with the desired properties. In particular the kernel
of i* is torsion.

Finally we must show that Hn(Xf, Gm) is torsion for all n > 0.
If Y-+XeGov Xf, then φ*: Xf—> Γ/ is exact and left adjoint to φ*.
In particular

H«{Yf, Gm>γ) > H*(Yf, Gm,x)

is an isomorphism [1; II, 4.13] and so we will drop the subscript X
on Gm>x. We will use induction on n, n ^ 1, to show that for a scheme
X, Hn(Xf, Gm) is torsion. By Corollary 1.2 we may assume that X is
connected. Let y e Hn{Xf, Gm). There is φ: Y—> Xe Cov Xf such that
<p*(y) = 0 in Hn(Yf, Gm) [1; II, 2.5], Now the map φ* may be written
as the composite

H (X,, Gu,z) - ^ H (X,, Ψ*Gm,γ) - ί U i?"(Y>, G..r)
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where en is the edge homomorphism of the Leray spectral sequence for
φ: Y-+ X, Hp{Xf, Rqφ*{Gm>γ)) => Hn{Yf, Gm>γ). By the above the kernel
of i* is torsion and so it suffices to show that the kernel of en is
also torsion for n^l. For n = 1, the exact sequence of low degree
terms shows that Hι{Xf, φ*Gm>γ) is a subgroup of Hι{Yfy Gm>γ). For
n > 1, any element in the kernel of en is in dr(E?~r>r~1) for some r,
2 ίg r ^ n. Hence it suffices to show that Hm{Xf, Rιφ*(Gm)) is torsion
for 1 ^ I ^ n — 1 and m ^ 0.

In general Rιφ*(Gm) is the sheaf in X r associated to the presheaf
Ϊ H Hl(XXx Yf9 Gm,γ) for any ϊ e Ob JE> [1; II, 4.7], and so is torsion
by the induction hypothesis. Hence, it is sufficient to show that
Hm(Xf, F) is torsion for any torsion sheaf FeXf and m ^ 0. Let

nF be the kernel of multiplication by n on F. Then F = lim nF and

Hm(Xf, F) = lim Hm(Xf, nF) since the topology on X/ is noetherian

[1, II, 5.3 and 5.4]. But multiplication by n is the zero map on nF
and so by universality multiplication by n on Hm(Xfi nF) is also the
zero map for m ^ 0. Since the limit of torsion sheaves is torsion,
Hm{Xf, F) is torsion for m ^ 0.

COROLLARY 2.2. Let X be a scheme, Y-^-> X e Cov Xf. Then
the kernel of iJ2(X fppf, Gm) —> H2( F f p p f , 6?m) is torsion.

Proof. As in the proof above it is sufficient to show that the kernel
of iP(Xfppf, ΨM -+i?2(F f p p f, GJ is torsion. But Γ(X, &φ*Gm) = 0
since for any Xe Ob Xfppf and any element yeH\X Xx Yfpp{, Gm) =
Pic (X Xx Y) there is a Zariski covering {?7J of X such that 2/|σixr = 0
in Hι(Ui XjΓfppf, Gm) [12; Lecture 10]. Hence this map is injective.

We are now in a position to evaluate some of the cohomology groups
of Gm in the finite topology. If G is a group or a presheaf on X* in
some topology, let Gt and G{1) denote the subgroup or subpresheaf
consisting of torsion elements and elements whose order is a power
of I respectively. For a fixed scheme X we have morphisms of sites

Xppf * Xf and Xfppf > Xet. Grothendieck has shown that ε2 induces
an isomorphism Hn(Xet, Gm) —• Hn(Xfvvΐ, Gm) for all n ^ 0 [11; Appendix].
This immediately extends the results of the previous section to equi-
valent results about H^X^f, Gm), ΐ = 0,1, 2.

The proof of the main theorem is based on the Kummer sequence

(2.3) 0 >μn >Gm-^Gm ,0

where n is the wth power map. Since taking nth roots of global
units gives a finite faithfully flat extension, this is an exact sequence
of sheaves in both Xf and Xfppf. We will leave it to the context to
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determine in which topology μn and Gm are sheaves.

DEFINITION. A scheme X satisfies Sp(£) for some prime I if for
Ye ObX^ and y e Hι(Ymΐ, Gm), ther

and yeH'iYw, Gm) with ly = φ*{y).
any Ye ObXf and y e iΓ( Yfppf, Gm), there is Ye ObX/ , Y-?U Ye Mor JE)

By Theorem 1.5 if X is a regular Japanese scheme with
2, then X satisfies Sp(ϊ) for all primes I.

THEOREM 2.4. Let X be any scheme. Then Hι{Xf, Gm) ^ Y\zt (X),
and R1τ^(Gm) is torsion free. There are exact sequences

0 - Pic, (X) — Pic (X) - Γ(X, Rιτ*{Gm)) ->
£72/ V" /^ \ Γ * T7U ΓT2/V Γ* \ ZJ1 / V Γ>l/τ- /^ \ ™™A
si v-Λ/, cτTO; > J^ /I v̂ -fppfy ^m) —* -ti \Λ.f, it ~*i*m) ana

0 . Z7T1T72/V" /^ \ v ΊJ2/V Γ1 \ ^ Γ'ίΎ J?^σ- Γ1 \
—> r It (Afppf, ixm) —• Jtl (Afppf, Cτmj —> i ( A / , XC T%ljrm),

where FιH2(Xίwΐ, Gm) is a torsion group. If Fie (X) is torsion, then τ*
is injective. If X satisfies Sp (I), then Γ(X, Rιτ*(Gm)) is l-divisible and

<τ /7\ H72/ V /^ \/7\ v / ZTfi XJ2/V" /^ \\/7\
1^(6). ϋ (Ay, (τm)(6j > (^ i l (Afppf, (jrm)){ί)

is onto. If Pic (X) is torsion, then τ*(l) is an isomorphism.

Proof. For any Y—>Xe ObX/, the spectral sequence coming from
t: Xfppf —• X/ applied to the Kummer sequence gives a large diagram
with exact columns coming from the low degree terms of the spectral
sequences and all but the third row exact from the Kummer sequence:

Γ(Y,Gm) -

Γ(Y,Gm)-

(2.5)

F

0

I
-*IP(Yf,μn)

J
—> ίί^Yfppf, μn

1
P(Y 7?V ft

i
H\Yf,μn)

1
1

0

I
> & \ X/9 <*m) —

1
) ** HHY G )

Γ '
) > Γ(Y, liτ*Gj-

I
>H>(Yf,Gm) —

1,

^ F ' ί ί 2 ( y Γ p p f J G m ) -

i
ti (If, It T*(τm) .

0

1

( i
-» iϊ^Yfppf

I
1
1
1

->F'iϊ2(Y

Gm)

fppf>
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The middle column suitably interpreted is the 6 term exact sequence
of the theorem. By definition of the filtration on the spectral sequence,

0 > FΉ\YίvvU Gm) > H*(Yίnί9 Gm) > E!ί° S Γ(Yf, R2τ,Gm)

is exact. By Corollary 2.2, FΉ2(Yίpvΐ, G), which consists of these
elements in H2(Yΐvpf,Gm) that are split by Ϋ—> Ye Cov Yf for some
Ϋ, is a torsion group. Moreover JEP(Y"fppf, Gm) ~ Pic (Y). Thus the
naturality in Y of (2.5), Proposition 1.6, and Theorem 2.1 combine to
show that Hι{Xf, Gm) ~ Pic* (X) for any scheme X.

In order to show that R1τ^(Gm) is torsion free, it is sufficient to
show that Rιτ*{μn), the sheaf associated to Y—>iϊ1(Ffppf, μn) for Y-+
Xe Ob Xf, is 0 [1; II 4.7]. So given Y^Xe Ob Xf and » e iΓ(r f p p f , μ%),

we have n'i*(y) = 0. By Proposition 1.6, there is F > FGCOVΓ"/

with φ*(i*(y)) = 0. Hence ?>*(3/) = d°(u) for some ueΓ(Ϋ, Gm). Ad-

joining an nth. root of w to Y, we get F • FGCOV Yf such that
φ*(y) — 0 in iĴ Ϋfppf, μn) by the exact cohomology sequence coming
from (2.3). Since there is a covering map of Y which splits y, the
associated sheaf is trivial. In particular if Pic X is torsion, then
H2(Xf, Gm) contains a torsion free subgroup which contradicts 2.1
unless Γ(X, Rιτ*{Gm)) = 0.'

Now suppose X satisfies Sp (I). If Γ(X, R2τ^{μι)) -> Γ(X, R2τ*{Gm))
is injective, then Γ(X, Rιτ*{Gm)) -> Γ(X, -BV^GJ) is onto. Thus it is
sufficient to show that for any Y—> Xe Cov Xfyye H2(Y{pv{, μt) such

that j\(y) = 0 in i 7 2 ( Γ w , (?m), there is Γ— X G COV X7 and F — Γ G
Mor X/ such that φ*(y) = 0. Since ^(T/) = 0, there is ze Pic (F) such
that d\z) = t/ where d1: JSΓ̂ Ffppf, 6?m) -^ iί2( yfppf, μt) is the connecting
homomorphism coming from (2.3). Since X satisfies Sp (I), there is Ϋ—>

XeCovXf, Ϋ-?-*Ye1Λ.oτXf, and zePic(Ϋ) such that hz = φ*(z).
But then φ*(y) = 0 since ^(ί S) = ςp*(i/) = 0.

Finally we must show that

τ*(l): H\Xfi Gm)(l) - (FΉ\XίVPί, GJ)(l)

is onto. First note that for any presheaf of sets F on Xf, UeOb Xf,

and any element yeH}(F)(U), there is a covering V-^—*U and an

element yte F(V) which represents φ*(y) in H}{F)(V). This may be

seen by representing y by an element y^FiV) such that p*(y^) =

pί(yd e F(V XuV) where V-^U is a covering of Z7 and p{ is the

projection map onto the ith factor. Then φ*(y) is represented by vf{y^) G

F(V x F)where F X ^ F ^F is a covering of F. Since pfd/J = p}(yd>
yιGF(V) represents φ*(y).

Now if H\Xf, IPτ+G^Q,) — 0, then the exact long middle column of
(2.5) shows that τ#(ϊ) is onto. So suppose xe H\Xf, R^τ^G^ and l x =
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0. Since H\Xf, Rιτ*Gm) ~ Hι(Xf, Rιτ*Gm), there is Y^XeCovXf

and yeΓ(Yχx Y, R'τ^GJ satisfying the cocycle identity which repre-
sents x in Hι{Xf, Rιτ*Gm). Moreover we may choose Y so that for
some element y e Γ(Y, Rιτ^Gm) we have p*(y) — pf(y) — ly. Since
Rιτ*Gm is the sheaf in Xf coming from the presheaf i2fPPf(6rm), the
above remark and the observation that H°(H°(F)) is the sheaf associated

to F shows that there is Y,-^Ye Cov Yf and 2 e iΓ(Γ l f p p f , Gm) =
Pic(Y'1) such that z represents φ*(y). Thus since X satisfies Sp (I),
we may assume that there is y1e Γ(Y, j β ^ G J with ly1 = y by taking
a refinement in Cov Xf of Y—*X if necessary. Altering the original
Cech cocycle y by the boundary p^ivd — Pi&i) a n d denoting the
resulting cocycle by zλe Γ(Y Xx Y, Rιτ^Gm), we find that lz1 = 0.
Since Rιτ*Gm is torsion free, 2X = 0, and so ?/ = 0.

COROLLARY 2.5. Let X be a regular Japanese scheme with dim X g
2. T%βn £Aere is an exact sequence

0 - Pic t(X) > Pic (X) > Γ(Xf, R'τ^Gn)

> H\Xf9 Gm) > Br (X) > 0

where Br (X) is the Brauer group of X and Γ(Xf, Rιτ*Gm) is a vector
space over the rationals of dimension = dim.Q (Pic (X) ® z Q). In par-
ticular if Pic, (X) = Pic (X), then H\Xf, Gm) ~ Br (X).

Proof. By Theorem 1.7 every element of £Γ2(XfPpf, Gm) can be split
by a covering map of X in Xf. Hence

F1H2(XfpPf} Gm) — iϊ2(Xfppf, Gm) ,

and by Grothendieck's result this is Br (X). The dimension statement
follows immediately since the other terms are torsion groups.

COROLLARY 2.6 Let X be a regular Japanese scheme with dim X g
2. Then i?2(X fppf, Gm) = iί 2(X f p p O Gm).

Proof. The morphism τ: X fppf —• Xf induces a mapping of spectral
sequences between Cech and sheaf cohomology:

[H*(Xf, Hj{Gm)) = > H*(Xf, Gm)\ > [^(X f P P r , Hϊvvί, (Gm))

===> Hn(XίvvU Gm)] .

The mapping between exact sequences of low degree terms gives

0 > H\Xf, Gm) > H*(Xf, Gm) > Hι{Xfy H}{Gm))

0 > iϊ 2 (X f P p f , Gm) > £P(X f p p f , Gm)
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Moreover H}{Gm){Y) = Pic, (Y). If xeίίι{Xf, H}(GJ), then it can be
represented by y e Pic* (YXX Y) where Γ ^ J e Cov Xf. Since YXΣY
is finite over X, y can be split by a Zariski covering of X[12]. Thus
τ*(x) = 0 and so τ* factors through H2(XfT>pΐy Gm). Since r* is surjec-
tive, we get the desired conclusion.

REMARK. The argument Bass uses to prove that K\R) is a
finitely generated abelian group for R a finite ϋf-algebra [4; Theorem
18.6] may be copied to show that Pic (jβ) is a finite group if R is a
finite Z-algebra.
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