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UNIVERSAL COSIMPLE ISOLS

ERIK ELLENTUCK

Our results follow from a single priority scheme which
we give in detail. They are (i) if an arbitrary n + 1-ary
relation over the nonnegative integers determines an w-ary
function, then its canonical extension to the isols determines
a function on the cosimple isols if and only if the function
determined on the integers is an almost recursive combina-
torial function, and (ii) every countable partially ordered set
can be embedded in (a) the cosimple isols, and even more (b)
the cosimple regressive isols. The remaining material gen-
eralizes and extends these results.

l Independence* Let ω = the nonnegative integers, P — the
set of all subsets of ω, and Q = the set of all finite subsets of ω.
Use XkA for the ifc-fold direct power of A. The results of this section
all follow from the priority method of [11]. Let / : ω —> X2Q be a
sequence of pairs f(s) = (as, βs) where as Π β8 = 0 , and let g: ω —> ω.
The requirement Rk = {(as, βs)\g(s) = k). ξ eP is said to meet the
requirement Rk if a £ £, ζ Π β = 0 for some (a, β) e Rk. With every
pair (/, g) as above we associate the priority sequence ζ: ω —• Q
constructed in stages. Stage s = 0, £0 = 0 and for stage s > 0, ξ9 =
£,_! if (1), (2), or (3) below is true. Otherwise ξ, = ζ8_x U a9.

(1) ξs^f)βsΦ0.

(2) there is an r < s, r > 0, #(r) < r̂(s) such that

ocr g ίr_!, α r £ fr, fββl Π βr = 0 and αβ Π /5r ^ 0 .

(3) there is an r < s, r > 0, g(r) = ^(s) such that

<*r g ίr-i, α r S ίr and f,«! Π /3r = 0 .

The requirement Rk is met at stage s if s > 0, #(s) = Λ and as g f β β l

but (Xs £ ίs. The requirement Rk is injured at stage s if for some
r <s,Rk was met at stage r, ξ8^ f] βr = 0 but f, Π βr Φ 0 . The
basic combinatorial content of the priority method is summarized in
the fundamental

LEMMA 1. (Sacks [11]). For each k the set of stages s where Rk

is either met or injured is finite.

Proof. First we need two facts, (4) and (5) below. They are
(4) if Rk is injured at stage s then for some j < k, Rj is met

at stage s.
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This follows because if Rk is injured at stage s then there is an r < s
such that Rk was met at stage r, fs_1 Π βr = 0 but ξs ΓΊ βr Φ 0-
Hence (1), (2), and (3) fail at stage s and r > 0, g(r) = k, ar g fr_1 but
tfr £ ίr. If flf(r) < #(s) then (2) is true at stage s and if g(r) = #(s)
then (3) is true at stage s. Hence g(s) < #(r) = k. The second fact
that we need is

(5) if Rk is met at stages r and s where r < s then for some
u, r < u < s and iίΛ is injured at stage t&
This follows because if Rk is met at stage r then (1) fails at stage
r, so ίr_! Π /9r = 0 , and αrr g £r_! but ar S fr Since α:r Π /Sr = 0 we
have ξr Π βr = 0 and since i^ is met at stage s, (3) must fail at
stage s. But r > 0 and g(τ) = βr(s) which implies £,_,. Π /5r ^ 0 . Let
u be the least integer r < u < s such that f u Π /5r ^ 0 . Clearly Rk

is injured at stage u.
We prove our lemma by induction. Suppose that for each j < k

the set of stages s where R5 is met or injured is finite. Choose
u < ω such that for no j < k and s > u is i^ met or injured at
stage s. Then for s > u, Rk cannot be injured at stage s because
otherwise by (4) Rό would be met at stage s for some j < k. Also
for at most one s > u is Rk met at stage s because otherwise by
(5) Rk would be injured at some stage r > u.

With every pair (/, g) as above we associate the priority set ξ =
\Js<ωξ8 where ζs is the priority sequence associated with (/, g). First
note that if a requirement Rk is met at stage s and subsequently
never injured then ζ meets Rk. We lift recursive notions from ω to
Q via the canonical enumeration of finite sets and note that ξs is
recursive in the pair (/, g) which implies that ξ is r.e, in the pair

(/, flf).

Let j : X2ω —+ ω be the usual recursive one-to-one onto pairing
function with first and second inverses k, I respectively. Let ωn =
{j(x, n) I x < ω} and an = a Π α>\ φjy) is a partial recursive function
which enumerates with index n all partial recursive functions whose
range and domain are contained in Q. Let (n89 7S, Ss) be a total recur-
sive enumeration of {{n, 7, S)\φn{i) — δ}. We define (/, g) as follows.
/(2s + 1) = (a2s+ί, β2s+ι) where a2s+ί = δs - γ s , β2s+1 = ys, and g(2s +

1) = 2^s + 1. /(2s) = (a2s, β2s) where a2s, β2s, Ur<2s(^r U βr) are pairwise
disjoint, both a2s, β2s are subsets of ωka{s)) each containing l(k(s)) + 1
elements, and #(2s) = 2k(s). Let ξ: ω—+Q be the priority sequence asso-
ciated with (/, g) and let ξ — Us<α>?3 b e the priority set associated with
(/, g). Throughout the remainder of this section ξs, ξ will keep these
meanings. Let η = ω — ξ.

LEMMA 2. rf1 is infinite for each m < co.
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Proof. Suppose ηm contained n elements. Let k = 2j(m, n) and
let u < ω be such that for no s > u and j tί k is R, either met or
injured at stage s. Choose s > u such that g(s) = k. Since s > u,
ft = ft-i and hence (1), (2), or (3) hold at stage s. By construction of
/, both (1) and (2) fail at stage s, so (3) must hold. Hence there is
an r<s, r > 0 , g(r) = g(s) such that ar§£ξr-l9 tfr£fr, and ξ^Πfir = 0
/9r contains w + 1 elements of ωm, and for t ^ s, ft Π βr = 0 because
otherwise i£fc would be injured at stage ί. Hence £ r £ η.

Let ikf be the class of partial recursive functions φ whose range
and domain are both included in Q, which are increasing, i.e., if
a 6 domain (φ) then a £ φ{oc), and which are monotone, i.e., if a, β e
domain (<p) and a § /3 then 9>(α) S ^(/S).

LEMMA 3. i^or each φeM there is a 7e Q, 7 S ^ sw& ίΛαί/or αW
α e Q , 7 u t f § ^ βiίΛβr α ί domain (φ) or φ(a) = a or φ(a) Π ζ Φ 0 .

Proof. Let <p have index ?ι in the enumeration of partial recur-
sive functions above and let k = 2n + 1. Choose w < ω such that
for no s > u and i g k is iẐ  either met or injured at stage s. Choose
y eQ such that η Π \Jr^uβr £ 7 £ ? . Suppose there were an a e Q,
7 i o : £ ί such that a e domain (<p) and a g φ{a). Then for some s,
as = 9>(α) — oc, β8 = a, and #(s) = A. s > u for otherwise α £ τ .
Hence ft = fs_x so that (1), (2), or (3) must hold at stage s. Since
ft-i£sί and a £ 97, (1) fails at stage s. If there were an r<s, r>0,
^(r) = j < k such that JBj is met at stage r and ft_x Π /Sr = 0 then
βr S V since otherwise uJy would be injured at some stage t > u.
Hence βr £ a and so (2) fails at stage s. Hence (3) holds at stage s
and there is an r<s, r > 0 , g(r) = g(s) = & such that ar^ξr^u α r £ f r

and ft_! Π βr = 0 βr S=V ί ° r otherwise i?Λ would be injured at some
stage t > u. 0 ^ α:r = £>(#.) — /9r £ ί and by monotonicity we have

Π ί ^ 0 .

Let /I = the isols and for aeP let Req (a) = the recursive equiv-
alence type of α. ί̂z (the cosimple isols) ~ the set of those isols which
can be represented as Req (a) where ω — a is r.e. and Λ? = Λz — ω9

i.e., the infinite cosimple isols. For the rest of this section we fix
the following notation S — {ym \ m < ω) where ym = Req (r]m) for m < ω.

THEOREM 1. S is an infinite subset of A™.

Proof. First we show that η is immune, η is infinite by Lemma
2. Suppose that η contained an infinite r.e. subset β which we assume
is enumerated by a total recursive function b(ri). Define a recursive
function φ: Q-+Q by letting φ(a) = a U {&} where b is the first element
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in the enumeration b(ri) which does not occur in a. Since φeMthere
is a 7 e Q , 7 g ^ such that f or all a e Q, 7 £ a £ V either a g domain (φ)
or 9?(α) = α or φ(a) Π £ =£ 0 . Since all three of these possibilities
are ruled out by our construction, η is immune, ξ is r.e. since it is
r.e. in (/, g), the latter clearly being recursive. Each ξm is r.e. since
it is the intersection of two r.e. sets and each rf1 is immune since it
is an infinite subset of an immune set. Thus S £ Λ?. Next we show
that if m <n < ω then ym Φ yn. Otherwise there would be a one-
one partial recursive function p which maps Ύ]m onto rjn. Define a
recursive function ψ\ Q—>Q by letting ψ(a) = a{jp(am). Since φeM
there is a ye Q, y £ V which satisfies the conclusion of Lemma 3. By
our construction ψ(ά) — a for each ae Q, 7 ^ a ξΞ: η. Choose x e ηm —
p~ι(y) SO that p(x) e φ(y U {x}) = 7 U { 4 Since p(x) ί 7 we have p(x) =
x so that ηmf)ψ Φ 0 , a contradiction.

A set A of isols is called strongly recursively independent if for
each n > 0, R £ Xw+1ω satisfying (w0, , v»_i€ ω)(3! vπe ω)(v0, ,
vn)eR, and distinct elements x0, •• 9xnr.1eAJ if there is an xneA
such that (xQ, , xn) e i^ then i? is the graph of an eventually recur-
sive combinatorial function.

THEOREM 2. S is strongly recursively independent.

Proof. Let n, R, x0, , xn~γ be as in the hypothesis of the above
definition. Using Theorem 3.1 of [10] ((R x S)Λ = RΛxSΛ, and ωΛ =
Λ) there is no loss of generality in assuming that xm = 2/m for m <
n. Suppose there is a z e A such that (y0, , 2/%_i, ̂ ) e RΛ. For α: G
P let α = (α°, -α""1). Then there is a ζ e 2 and a recursive i2-frame
F such that (ί?, ζ) e j ^ ( F ) If α = (α0, , α^O, where possibly some
of the at are themselves tuples, and CF(a) is defined, define Ci{aQ, •••,
a{, , α^O = βi where ^ ( α ) = (/90, , βn~d and αy ^ βs for i < ^
(here V occurs as a superscript to exactly one cti and ^ denotes compo-
nentwise inclusion). Now define a partial recursive function φ whose
range and domain are included in Q as follows. φ(a) = a (J β where
β = Cί(a^ 0) . Since φeM, Lemma 3 yields a 7e Q, 7 £ η such that
for all a e Q, 7 £ a £ 17, either α: g domain (9?) or φ(α) = a or 9>(α) Π ί 9̂
0 . Since (iy, ζ) e s*f{F) only the second of these alternatives can
occur, i.e., φ(a) = α. But this implies that CF(a, 0) = {a, Cί{a, 0 0)
for each a e A = {a e XnQ\y ^a^fj). If a e A let ψ(a) = C (̂α, 0 0
so that (a, ψ{a)) e F. Let Λ denote componentwise intersection and
observe that (a A a', 0) ^ (α, f(α)) Λ (a', ψ(a') = (α Λ α', ψ(α) Π ̂ («0)
so that α/r(α: Λ α') S ψ(oc) Π α/r(α') But then our hypothesis that R is the
graph of a function give (i) ψ(a A a!) = ψ(a) Π ψ{a!) and (ii) a ~ a!
componentwise implies ψ(a) ~ ψ{af) (here ~ denotes equal cardinality)
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for every a, a' e A. For m<n let pm be a one-to-one function mapping
co onto rf1 — τ w No recursive condition is placed on the pm's. For
a = (a0, , an^) e Xnω let p(a) = (po(ao), , p ^ n - J ) and define a
function φ: XnQ-+Q by 9>(α) = <f (7 V p(α:)) where V denotes component-
wise union, ψ inherits properties (i) and (ii) from ψ and is therefore a
combinatorial operator inducing a combinatorial function r: Xnω —> ω
such that if Ύm has cm elements then (xQ + c0, , av-i + <V-i, r(a?0, ,
aV-OJeiZ for every (a?0, * fx^eXnω. Thus i2 is the graph of an
eventually combinatorial function. Let B — {{a, β) e (XnQ) x Q\a/\
7 = 0 and CF(aVΎ, 0) = (a V 7, /S)}. 5 is r.e. and if we let | |
denote componentwise cardinality, R = {xe Xn+1ω\(3 a)(x = \cc\ and
a e B)} is an r.e. set which is the graph of r. Thus R is the graph
of an eventually recursive combinatorial function.

2* Applications*

COROLLARY 1. Let n > 0 cmcί iϋ S Xw+1ω ίfce graph of a function
r. Then (i) r is eventually recursive combinatorial if and only if
for each xeX*Λ? there is exactly one yeΛ such that (x, y) eRΛ, (ii)
r is almost recursive combinatorial if and only if for each x e XnAz

there is exactly one yeΛ such that (x, y) eR Λ . This solves the problem
left open on the middle of page 247 of [7].

A set A of isols is called recursively independent if for each n >
0, R £ Xno), and distinct elements xQ, , av-i € A, if (α?0, , x*~d €
i?4 then there exists a e Q such that X"(ω — α) £ R.

THEOREM 3. If A is a strongly recursively independent set of
isols, then A is recursively independent.

Proof. For R £ Xnω let R = {(α?, 0) | x e R} U {(a?, 1) | a? e Xwα> - JS}.
β is the graph of the characteristic function r of R and satisfies
(Vαj)(aj 6 R —> (aj, 0) 6 JB) in ω and hence in Λ. Let a?0, , xn^ be distinct
elements of A and suppose that (x09 , aĵ j) e iί^. Then (x09 , a?n-ι,
0) e RΛ which implies that r is eventually combinatorial. Since even-
tually combinatorial functions are eventually monotone, r is eventually
equal to 0 or eventually equal to 1. If r is eventually equal to 1
there is an a<ω such that (Vx0, , x^(x0 + α, , av-i + a)$R holds
in ω and hence in Λ. This implies that at least one of the x/s in A
is finite, in fact < α. Clearly no member of a strongly recursively
independent set can be finite so r must be eventually equal to 0

COROLLARY 2. S is recursively independent.
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A set A of isols is called independent if for each n > 1 and
distinct elements x0, , xn^ e A, x0 ^ xι + + α?^.

THEOREM 4. If A is a recursively independent set of isols then
A is independent.

Proof. Fix n and let R = {(α?0, , aw-i) € Xnω\xQ<^%i+ +

αv-J. Then (vα0, , »»-i, 2/)(»0 + 2/ = ^ + + a?»-i — (»o, , α»-i) e

J?) holds in ω and hence in A. Thus if α?0, •• , ^ _ 1 are distinct

elements of A and xQ fg ^ + + α?n_i then (a?0, , xn_t) e RA1 a con-

tradiction.

COROLLARY 3. S is independent.

Let A be a set partially ordered by a relation R. We say that
(A, Ry can be embedded in A if there exists an order isomorphism
h: A —> /ί with respect to the usual ordering of Λ. The following
theorem is of interest when compared with results in [5].

THEOREM 5. Every countable partially ordered set can be embedded
in the cosimple isols.

Proof. By a result of [9] there is a recursive relation R which
partially orders ω in such a way that every countable partial ordering
can be embedded in <(ω, Ry. We prove our theorem by embedding
<(co, Ry in Λz. Assume that R is reflexive and define h(n) — U {ηm\mRn}.
h(n) is an immune set whose complement in ω is (J {o)m \ ~ mRn) U
(ί IΊ U {ωm I mRn}) which clearly is an r.e. set. Thus Req (h(n)) e Λz.
If n0Rnt then h(n0) £ h{n) and h(n0), h{n^) — h(n0) are recursively
separated by the recursive set (j {o)m\mRn0}. Thus Req (h(n0)) ^
Req {h(n$) by the identity function. If ~ mRn but Req (h (m)) ^
Req (/̂ (̂ )) then for some one-one partial recursive function p, ψ s
domain (p) and p maps ηm into U { ^ | i ̂  m). Define a partial recursive
function φ whose range and domain are included in Q by φ(a) =
α: U p{am). Then ?>(α) = α for all a e Q, 7 S cc S ^ where 7 is given by
Lemma 3. If x e ψ — p~~l{j) then p{x) e φ(y U {x}) = 7 U M Since
p(a?) ί 7 we have p(a;) = x so ηm f) {j {rf\j Φ m} Φ 0, & contradiction.
Thus Req (h(m)) g£ Req (A(n)) and we see that Req (h(n)) is the required
order isomorphism.

There are several ways to extend Theorem 5. If R' is a partial
ordering of A say that <(A, Ry is Rf-embedded in A if the mapping
h: A —• Λ is an R — R' order isomorphism. For iϋ' we are interested
in <Λ, the canonical extension to A of iϋ = {(#, #) e X2α>\x < y), and ^^,
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the canonical extension to Λ of R — {(x, y) eX2ω\x ^ y). Then we
have

COROLLARY 4. Every countable partially ordered set can be both
<Λ and ^Λ embedded in Λz.

Proof. Let R, h be as in the proof of Theorem 5. First we show
that if mRn and mΦn then Req (h{m)) <Λ Req (h(n)). Since mRn and
mΦn, h(m) g Ξ h ( n ) . L e t xe h(ri) — h(m) a n d l e t F = {{a, β) e X2Q\x£a
and αu{#} ϋ/3} F is a recursive <-frame from which (h(m), h(n)) is
attainable. Next we show that if ~ mRn then ~ Req (h(m)) ^ R e q (h(n)).
For suppose that F is a recursive ^-frame and (h(m), h{n)) ej%f(F).
Since ~ mRn, ψ g fe(m) and ψ Π M )̂ = 0 . Now define a partial recur-
sive function ψ whose range and domain are included in Q as follows.
<p(a) = a U β where β = β0Uβi and CF(am, 0) = (/90, /5i). Since φ eM
Lemma 3 gives the required T. If a g ηm then <ρ(α: Uτ)=α:UT which
implies that if CF(am(jτm, 0) = (/So, /3i) then /?!S7. Since α g f can be
made as large as we please, F is not a ^-frame. Hence (h(m), h(n)) g
j^f(F). To complete our proof recall that for %, v e -4, u<v—>n<Λv—>
^ ^^ v, w ̂  v —• w ̂ ^ v, and u = v~^u ^ΛVy all implied by a meta-
theorem.

Another way to extend Theorem 5 is to try to embed partially
ordered sets into the cosimple regressive isols Λrz. Let τ be an infinite
retraceable set enumerated in increasing order as {tn\n < ω] where
tn < tn+1 for n < ω and let p be a partial recursive special (cf. [3])
retracing function for τ. τ is called T-retraceable if for every partial
recursive function h there is u < ω such that for all n > u either
tn $ domain (h) or h(tn) < tn+ι. By a result of [8] T-retraceable sets
with r.e. complement exist and they are necessarily immune. Fix τ
in the following discussion as Γ-retraceable with r.e. complement, p
is a total recursive function (cf. P.5 of [3]) and p*(x) = (μri)(pn(x) =

LEMMA 4. If a, β S τ are infinite recursively equivalent sets
then a Π β Φ 0 .

Proof. Let h be a partial recursive one-to-one function mapping
a onto β. By T-retraceability there is a u < ω such that for all n >
u, if tnea then fe(ίw) ^ tn (since fe(ίΛ) < ίΛ+1 and h(tn) e β <5 τ), and if
ίw 6 ̂  then h~ι{Q ̂  ίn. Recast the second conclusion as tn ^ h{tn) if
λ(ίn) 6 /5 and p*(h(tn)) > u. Choose v! > u such that p*{h{tn)) > u for
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n > vf. Thus if n > v! and tnea t h e n h(tn) ^ t n ^ h(tn), i.e., tneaP\j3.

THEOREM 6. Every countable partially ordered set can be embedded

in the cosimple regressive isols.

Proof. Let R be as in the proof of Theorem 5, σ = ω — τ, and
for m < ω let μm = {a; < ω|&(p*(α?)) = m}. For any set a let a w =
a f] μm. Our embedding is defined by h(ri) = U {τm\mRn}. To show
that λ(w) is retraceable note that h(ri) is recursively separated from
τ — h(ri) by the recursive set U {μm\mRn} and then use P.5 of [2]
to conclude that h(n) is retraceable. h(n) is an immune set whose
complement in ω is U {μm \ ~ mRn} U {<? Π U {μm I mRn}) which is clearly
r.e. Thus Req (h(n)) e Λr* If nJRn^ then λ(w0) S h{n^ and Λ(w0), H^i) —
h(n0) are recursively separated by the recursive set U {μm\mRn0}.
Therefore Req (h(nQ)) ^ Req (h(n^). If - mlfri but Req (h(m)) ^ Req (fe(w))
then for some one-to-one partial recursive function qy τm £ domain (q)
and q maps τ m into \j{τj\j Φ m}. Since this is ruled out by Lemma
4 Req (h(n)) is the required isomorphism.

Let Sr = {zm I m < α>} where s;m = Req (τm) for m < ω.

COROLLARY 5. Sr is an infinite independent but not recursively
independent subset of Λ?z.

Proof. We only show that Sr is not recursively independent.
The rest is obvious from the proof of Theorem 6. If n > m then
j(n, x) > j(m, x). Define a function q on μn by q(x) = (μy)(3s ^ ί>*(a?))
(2/ = 2>8(#) and p*(^/) =j(m, ϋ(p*(#)))). ^ is readily seen to be a many one
partial recursive function which maps τn one-to-one onto τm. Hence
Req (τn) ^ * Req (rm) and therefore Req(τw) ^^Req (τm) by Theorem 2.1
of [1] (which asserts that ^ * agrees with ^Λ on Λr.

Corollary 5 explains why in Theorem 6 our method did not give
^Λ or <Λ embeddings. In [6] it is shown that Req (τ) where τ is
Γ-retraceable is universal, i.e., {Req (τ)} is recursively independent.
Call x e A strongly universal if for each R £ X2ω satisfying
(Vvo)(ll vj(vo, Vj) eR, if t h e r e is & yeΛ s u c h t h a t (x,y)eRΛ t h e n R
is the graph of an eventually recursive increasing function.

THEOREM 7. Req (τ) is strongly universal.

Proof. Let R be as in the hypothesis of the above definition.
Assume there is an isolated ζ i f t ) and recursive iϋ-frame F such
that (r, ζ) is attainable from F. For x < ω let s(x) = {pn(x) \ n ^
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p*(x)} and let 7 — {x<ω\(s(x), 0 ) G F * } . Clearly s(x) is a recursive
function and 7 is an r.e. set. For x e 7 let h(x) = the maximum element
of d{s(xy, 0 ) . h(x) is partial recursive and since τ gΞ 7, defined on
all of r and maps τ into τ. Hence there is a w < o) such that λ(ίw) ^
tn for w > tt This implies that Cϊ>(8(xY, 0) = s(x) for all # e τ with
p*(x) > u, and consequently for such x we have CF(s(x), 0) = («(a?),
Ci(s(x), 00) e F Clearly the set {(m, w) | (ix)(x e τ and p*(a?) > u and
m = \8(x)\ and π = |C (̂s(a?), 001)} is the graph of an increasing func-
tion contained in R and has a recursive extension {(m, ri)\(3a, β)(a,
β)eF and m — \a\ and w = |/9|} so R itself is the graph of an
eventually recursive increasing function.

COROLLARY 6. Req (τ) is universal.

Proof. Just as in the proof of Theorem 3 using the fact that a
bounded eventually increasing function is eventually constant, q.e.d.

Using a somewhat different priority method, we have been able
to extend the results of this paper to the cosimple regressive isols.
They are stated below without proof for comparison with Corollary 1.
If /: ω -+ω let Af{x) = f(x + 1) - f(x). If /: Xnω — ω and i < n let Λ
be just like Δ except that it is applied to the ΐth argument of /.
Let A — the composition Δo Λ-i Then Af is well defined and is
consistent with the notation for the one variable case. / is called
recursive increasing if / is recursive and Δf(x) ^ 0 for all x e Xnco.
where f(x0 + 1, , α?w-1 + 1) = f(xQf , a?n-i) and f(x) = 0 otherwise.
Eventually recursive increasing and almost recursive increasing are
canonically defined.

THEOREM 8. Let n > 0 and R £ Xn+1ω the graph of a function
r. Then r is almost recursive increasing if and only if for each
x e XnΛrz there is a ye A such that (x, y) e RΛ.

A function/: Xnω-^ω is called recursive regular if there are unary
recursive increasing functions gt for i < n such that f(x09 , α?n_i) =
minimum {go(xo), •••, ̂ %-i(^-i)}. Eventually recursive regular and αi-

recursive regular are canonically defined.

THEOREM 9. Lei w > 0 αraί i? £ X^+'ω ίΛe graph of a function
r. Then r is almost recursive regular if and only if for each
x6 XnArz there is a ye Ar such that (x, y) e RΛ.

In both of these theorems the y in question, when it exists, is
actually an element of Λz.
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