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GENERALIZED QUASICENTER AND HYPERQUASICENTER
OF A FINITE GROUP

J. B. DERR AND N. P MUKHERJEE

The notion of quasicentral element is generalized to p-
quasicentral element and the ^-quasicenter and the p-hyper-
quasicenter are defined. It is shown that the p-quasicenter
is p-supersolvable and the p-hyperquasicenter is ^-solvable.

The quasicenter Q(G) of a group G is the subgroup of G generated
by all quasicentral elements of G, where an element x of G is called
a quasicentral element (QC-element) when the cyclic subgroup (%}
generated by x satisfies <*><#> = <2/X&> for all elements y of G. The
hyperquasicenter Q*(G) of a group G is the terminal member of the
upper quasicentral series 1 = Qo c Qx c Q2 c aQn = Qn+1 = Q*(G)
of G, where Qi+1 is defined by Qί+1/Q< = Q(G/Qi). Mukherjee has
shown [3, 4] that the quasicenter of a group is nilpotent and the
hyperquasicenter is the largest supersolvably immersed subgroup of
a group. The proofs of these structure theorems rely on the fact that
the powers of QC-elements are again QC-elements.

In this paper we generalize the notion of a quasicentral element
in a way which allows the results about the quasicenter and the
hyperquasicenter [3, 4] to be extended. All groups mentioned are
assumed to be finite.

For a given group G and a fixed prime p, the definition of QC-
element might suggest that an element x of G be called a p-quasi-
central element provided tx}Ksi} = <J/><Λ> holds for all ^-elements
y of G. An apparent difficulty with this definition is that the powers
of p-quasicentral elements need not again be ^-quasicentral elements.
For example, consider the group of order 18 defined by G = <(α, δ,
x\az = ό3 = 1 = x2, [a, b] — 1 = [a, x], [b, x] = α>. A simple calculation
shows that ax is 3-quasicentral while x = (ax)3 is not 3-quasicentral—
otherwise ζxyζby = <δ)><(α?]> shall imply that x normalizes <δ>, which
is not the case however. Because of this example we choose to
generalize the notion of a QC-element as follows.

DEFINITION 1. Let G be a given group and p a fixed prime.
Suppose x is an element of G and let the order of x be written as
\x\ = prm where (p, m) = 1. Then x is called a ^-quasicentral (p-QC)
element of G provided <V*><» = (y}(xm} and <a?pr><2/> = <y><xpr>
hold for all p-elements y of G. (It should be noted that every element
of a p'-group is p-QC.)
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THEOREM 1. If x is a p-QC element of a group G and k is a
fixed integer, then xk is also a p-QC element of G.

Proof. Suppose \x\ = phm where (p, m) = 1. Since \xm\ = ph,
\xph\ = m and xpb commutes with xm, <x} = (xpb) (xm) = <αm> (xph}.
If \χk\ = pcn where (p, e) = 1, then (xk)pC is a p'-element of (x) and
(xk)n is a p-element of <#>. It follows that (xk)pC is some power of
xph and {xkγ is some power of xm. To show that xk is a p-QC
element of G, it will suffice to show that φmY) (y} = <#> <(a?w)*>
and <(»pV><i/> = <#X (<&'*)*> hold for all integers i and all ^-elements
1/ of G.

Let 7/ be any ^-element in G. Since x is a p-QC element of G,
(xm}(y} = <1/><«W>. Therefore <#mX?/> is some subgroup H of G whose
order divides | α w | |2/l Since xm is then a p-QC element of the p-
group H, xm is a QC-element of H. It follows [3, 4] that every power
of xm is a QC-element of H. In particular, <(αjw)*><2/> = <2/><(α?m)<>
holds for every integer i.

Now proceed by induction on the order of G to show that
((xphyy(y} = <2/><(»'*)*> holds for every integer i and every p-element
y. Let 7/ be a fixed p-element of G of order p r . If (xpb)(y} = <i/><ίcpδ>
is a proper subgroup of G, induction completes the argument. Assume
therefore that G = <a?pδ><3/> = ^ X ί ^ 6 ) ) . Then G is a supersolvable
group (Theorem 13.3.1, [5]).

Let π denote the set of prime divisors of \xpb\ = m which are
larger than p. Since G is supersolvable with order | G | = prm, G has
a normal Hall π-subgroup K. Distinguish two cases.

Case 1. π is empty. Then p is the largest prime dividing
Since (y} is a Sylow p-subgroup of G, {y} must be normal in G.
Clearly <(αjpδ)*><2/> = (y)φphY) holds for all integers i in this case.

Case 2. π is nonempty. Let s and £ denote integers such that
x1 = (αjp&)s is a 7Γ-element, a?2 = (xphY is a π'-element and xpb = x^x2 =
^^i (Theorem 4, [2], p. 23). Then <#!> is a Hall 7r-subgroup of G.
Since (? is supersolvable, <X> ^ G. It follows that (x[}(y} = <#X#ί>
holds for every integer i. Since <(a?pδ)*> = < ί̂> <ίφ for all integers
i, the argument will be complete if we show (xt}{y} = <2/><̂ 2> holds
for all i. Since (x^) is a normal Hall ττ-subgroup of G, the Schur-
Zassenhaus theorem shows that G possesses a τr-complement JB. Since
y is a 7r'-element of G, we may choose R so that 7/ e R. Then <y> is
a Sylow p-subgroup of R. Since R is supersolvable and p is the
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largest prime dividing \R\, <#> <] iϋ. We now use the fact that x2 is
a Tr'-element. Since R is a Hall π'- subgroup of the solvable group
G, some conjugate x\ of x2 lies in R. It now follows from G = {xpb)(y}
that £2 G R, since every element # in G can be written as (xpb)uyv for
some integers u, v. Therefore (xi}(y} = <2/X#2> holds for every
integer i. This completes the proof of the theorem.

LEMMA 1. Let θ be a homomorphism from a group G onto a
group G. If x is a p-QC element of G, the image xθ of x is a p-QC
element of G.

Proof. Let | x | = pbm where (p, m) = 1 and let | ̂  | = pcn where
(p, Λ) - 1. It follows that <£> - <aj»δ> <£-> and <^> = < W > <(&*)»>.
Now <s'> = (xy implies <&**>* =_<(&*)*•> and <&•>' = < « T > .

Let ΰ be any p-element of G. Then there is a p-element y of G
with / = w. Since α? is a p-QC element of G, (xpb)(y} = <2/><^δ> and
(xmχyy = (yXxmy. This shows <xph}\yy = <yy<xpb>β and <α;w>^<^>^ =
<yy<xmy. Now <̂ />̂  - </> - <^> implies <(^)pC> <^> = <^> <(»0pβ> and

)%> The proof of the lemma is therefore complete.

DEFINITION 2. Let G be a given group and p a fixed prime.
The p-quasicenter QP(G) is the subgroup of G generated by all p-QC
elements of G.

We mention a few simple consequences of the definition of the
p-quasicenter. For any group G and any prime p, the quasicenter
of G is contained in the p-quasicenter of G. The p-quasicenter of a
group is always a characteristic subgroup of the group. It should
be noted that if a prime p does not divide the order of a group G
then QP(G) = G.

THEOREM 2. For any group G and every prime p, the p-quasi-
center QP(G) is p-supersolvable.

Proof. First we notice that QP(G) = G is p-supersolvable if p
does not divide | G | . Consequently we assume that p divides \G\.
The proof is by induction on | G | .

It suffices to show that G contains a nontrivial normal subgroup
N of order p or of order prime to p. For, by induction, QP(G/N) is
then p-supersolvable. Since Lemma 1 shows QP(G)N/N S QP(G/N) it
will follow that QP(G) is p-supersolvable. (This is because of the fact
that normal subgroups of p-supersolvable groups are p-supersolvable and
N being of order p or prime to p, the p-supersolvability of QP(G)N/N
implies QP(G)N is p-supersolvable.) Since QP(QP(G)) = Qp(G)y induc-
tion lets us assume that QP(G) = G. Thus G is generated by p-QC
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elements xί9 x29 , xn. First we show that G contains a proper normal
subgroup. Distinguish two cases.

Case 1: Some xi has order divisible by p. Assume p divides the
order of xγ. Then there is an integer d such that \xf\ = p. Since
xf is a p-QC element of G, <#f> permutes with each Sylow p-subgroup
of G. Therefore (xf) lies in the maximum normal p-subgroup OP(G)
of G. Therefore OP(G) is a proper normal subgroup of G or OP(G) =
G and G is a p-group. If G is a p-group, the theorem is trivially
true.

Case 2: No #{ has order divisible by p. Then xl9 x29 •••,#» are
ί?-QC elements of G with p'-orders. Since \G\ is divisible by p, G
must contain nonidentity p-elements Let T denote the subgroup of
G generated by all the ^-elements of G. Since T<3 G, we can assume
T — G. Therefore G contains nonidentity ^-elements yl9 y29 •••, ym

with (yl9 y29 , ym} = G. Let q be the largest prime dividing the
product |<Bi| |#2l ••• \xn\. First suppose p > q. Since x{ is a p-QC
element and yt is a p-element, <#;> <^> = <#!> <#;> holds for all
i — 1, 2, , n. It follows (theorem 13.3.1, [5]) that <#iXl/i> is super-
solvable of order | xt | | ̂  | for i — 1, 2, , w. Since »< is a p'-element
and p > q, (yΐ) is a normal Sylow p-subgroup of each group <a?i><i/i>.
Then α?i, α?2, •••,»» normalize < !̂> and (yΐ) is a normal subgroup of
G — (xly x2, •••, xn}. Now suppose p < q and let \xλ\ be divisible by
g. Let s be an integer such that <#*> is a Sylow g-subgroup of <X>.
Since (x^(yi) — (yj}(Xι} is a supersolvable group and q is the largest
prime dividing | ^ | |̂ il> Vs normalizes <^s> for j — 1, 2, , m. There-
fore {^i) <] G — <^, i/2, ' ••, 2/m> This shows that in every case G
contains a proper normal subgroup M. If M has order prime to p,
we are finished. Assume now that M is a minimal normal subgroup
of G and p divides \M\. We will show that \M\ — p.

Since QP(G) = G, G is generated by p-QC elements xιy x2, ,
xn of G. For each i9 1 ^ ί ^ n9 <^> = <tΊ> < 2̂> (vd.} where
^1, 2̂, * " , Vdi a r e powers of «<, vx is a ^-element, and v29 %, , ^^ are
p'-elements of prime power orders. Since powers of p-QC elements
are also p-QC elements, it follows that G can be written as G = <αx,
α2, , ah, b19 b29 , bk) where each α̂  is a p-QC p-element of G and
each bj is a p-QC p'-element of G having prime power order.

Let P denote the subgroup of G generated by all p-QC p-ele-
ments of G. Clearly P is a characteristic p-subgroup of G with
<αx, α2, , ah} g P. Since M is a minimal normal subgroup of G,
P Π Λf = 1 or P n i k ί ^ M . First suppose that P Π -M = 1. Then [P,
I ] £ P ί l I = l and P centralizes M. Let weM with |w| = p.
Clearly α* normalizes <^> for i = 1, 2, , ft. Since each 6̂- is a
p-QC element of G, (bi)(w) = <»<&,•> holds for j = 1, 2, •••, k. It
follows that each group <6y><w> is supersolvable of order |δy| |w|.
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Since | bό | is a power of a prime other than p, {bj} is a Sylow sub-
group of (bj}(w}. Hence b3- normalizes <w> or w normalizes <δ,, > for
each i = 1, 2, , fc. Since <&,-> ί l M = l implies δ,,- normalizes <w>,
<w> <3 G unless <&,) Π M Φ 1 for some j . Assume that (bd} Π M Φ 1
for some integer d, 1 ^ d ^ k. This implies that some prime different
from p divides the order of M. Since every power of bd is a p-QC
element of G, QV(M) Φ 1. From the minimality of ikί it follows that
QP(M) = M, since Qp(Λf) is characteristic in M and Λf is normal in
G. Induction applied to M then shows that M is p-supersolvable.
If N is a minimal normal subgroup of M then | JV| is either p or
is prime to p. Then T—(N9\geG} is a normal subgroup of G
contained in M and T = N91 N9 where gί9 , gt are elements
of G. But M being minimal normal in G it follows that T — M.
Therefore M is either a p-group or a p'-group, since T is so. But
p divides the order of M and therefore M must be a p-group.
This however contradicts the assumption that <6rf> Π M Φ 1. Thus
<w> <] G. Since <w> ^ M9 M = {w} and Jlf has order | w| = p . Now
suppose P Oi M — M. Then Λf is a normal subgroup of the p-group
P and Jlίfl Z(P) Φ 1. Let z be a nonidentity element of M Π ̂ (P)
with \z\ = p. Since 2 e Z(P)9 surely (a19 α2, , ah} normalizes {z}. On
the other hand, M being a p-group it is evident that <6y> n M = 1
for each i = 1, 2, , fc. As before, <#> < G unless {δ̂  ) Π M Φ 1 for
some i . Therefore <̂ > ̂  G. Since 1 =£ <2;> S M, the minimality of
Λf shows ikΓ = <2;>. Therefore M has order |JS| = p and the proof is
complete.

Since the quasicenter of a group is nilpotent it is natural to ask
if the p-quasicenter of a group must be p-nilpotent. We give an
example to show that this need not be the case. Let S3 denote the
symmetric group of degree 3. The 3-quasicenter of S3 is S3 itself.
Clearly Q3(S3) = S3 is not 3-nilpotent.

DEFINITION 3. Let G be a given group and p a fixed prime.
The upper p-quasicentral series 1 = Ho c Hx c c Hn = Hn+1 of G
is the characteristic series where Hί+1 is defined by Hi+JHi = QP(G/H^.
The number of distinct nontrivial terms in the upper p-quasicentral
series of G is called the p-quasicentral length of G. The terminal
member of the upper p-quasicentral series of G is called the p-hyper-
quasicenter of G. We denote this characteristic subgroup of G by

THEOREM 3. In any group G, the p-hyperquasicenter Q$(G) is
the intersection of all normal subgroups N with QP(G/N) = N/N.

Proof. Let S = Π {N\N^ G and QP(G/N) = N/N}. Clearly
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S £ QP(G). We now show that Q*(G) is included in every normal sub-
group N for which QP(G/N) = N/N. Let 1 - HQ c Hγ c H2 c . c Hm =
Qp(G) be the upper p-quasicentral series of G. Trivially HQ £ N.
Assume that H{ £ N and iϊ ί + 1 gΞ i\Γ. Then for some p-QC element yH{

of G/Hif ygN. This implies that under the natural homomorphism
of G/Hi to G/N, the p-QC element yHt is mapped onto the p-QC ele-
ment yN of G/iV. Therefore QP(G/N) is nontrivial, a contradiction.
Hence Hi+1 £ JV and QP(G) £ -ZV* follows by induction.

We shall now investigate the structure of the p-hyperquasicenter
Q*AG).

LEMMA 2. Let G be a group and p a fixed prime. If N<\ G
and iSΓS Q*(G) then Q*(G/N) - Qt(G)/N.

Proof. Let 1 = Ho c H, c iϊ2 c c Hn = Q*(G) be the upper
p-quasicentral series of G and let N/N = L0/Na LJNa czLk/N =
QP(G/N) be the upper p-quasicentral series of G/N. By Lemma 1,
H.N/N = QP(G)N/N a QP(G/N) = Lx/iV. Thus ftg^g I*. Now
assume iί^ £ Lk and deduce iί ί + 1 S Lk. Since ί^ C Lfc, G/Lk is a
homomorphic image of G/Hi. Let # be the natural homomorphism
described by {xH%)θ = ̂ LA. Then Lemma 1 shows that {QP{G/Hτ))θ £
QP(G/Lk) - JVL*. Since Q^G/iJ,) - Hi+JHi9 {QP{G/H%))Θ = Hi+1Lk/Lk £
Lk/Lk. Therefore Hi+1QLk and by induction HnQLk. We complete,
the proof by showing L* S Hn = Qϊ(G) for each i = 1, 2, , k. By
hypothesis Lo = NQ QP(G). Now assume L€ S QP(G) and deduce Lί+1 S
Ql(G). Since L< £ Q*(G), G/Q${G) is a homomorphic image of G/L,.
The argument above can be repeated to obtain Li+1 £ Qt(G).

THEOREM 4. For any group G and any prime p, Qp(G) is p-
solvable.

Proof. If QJ(G) = QP(G), Q*(G) is p-supersolvable and the theorem
is proved. Assume now that QP(G) £ Qt(G). Let N denote any
minimal normal subgroup of QP(G). Since QP(G) is p-supersolvable, N
has p'-order or \N\ = p. Set S = (N9\geG). Since iV< QP(G) <
G, ΛΓ̂  < Qp(G) for each g e G. It follows that S has order prime to
p or order a power of p. Since S<3G and S^QP(G) £ Q* (G) induction
shows that Q*(G/S) = Qt(G)/S is p-solvable. Therefore QJ(G) is p-
solvable.

It is possible to characterize the p-hyperquasicenter in terms of
the normal subgroups included in it. We begin with the following
definition.

DEFINITION 4. Let G be a group and p a fixed prime. A normal
subgroup N of G is called p-hyperquasicentral (p-HQ) if N/MΠ
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Qp(G/M) Φ M/M holds for each normal subgroup M of G which is
properly contained in N.

The lemmas proved next will be useful for the proof of Theorem 5.

LEMMA 3. Let G be any group and p a fixed prime. If N<\G
then Q*(G)N/NSQUG/N).

Proof. Let 1 = HQ c Hx c H2 c c Hn = Q*(G) be the upper p-
quasicentral series of G. By Lemma 1, HtN/N = QP(G)N/NQ QP(G/N)Q
Qt(G/N) = L/N. Thus HXN^L. Now assume H{N^ L and deduce
that Hi+1N^ L. Since Hi £ 22* JV, G/HiN is a homomorphic image of
G/if;. Let φ be the natural homomorphism of G/Hi onto G/HiN de-
scribed by (αfly* = xHiN. Then Lemma 1 shows (Qp(GJHi))φ S
Q9(G/H<N). Since ^( ί?/^) = i W Ή , Hi+1N/H{N - (Hi+JHt)* S
Qp(G/HiH). Next let β be the natural homomorphism of G/HiN onto
G/L given by ( α f l W - »L. By Lemma 1, (Qp(G/HiN))θ ̂ QP(G/L) =
L/L. Since Hi+ίN/HiN S Qp(G/HiN), (Hi+1N/HiNY - Hi+1NL/L s
L/L. Therefore Hi+1N £ L and the assertion follows.

LEMMA 4. 1/ cm?/ £wo groups Gx and G2 are isomorphic under a
map θ then {QP{GX))Θ = QP(G2).

LEMMA 5. .For α%?/ group G and any prime p, the product of
p-HQ subgroups of G is a p-HQ subgroup of G.

Proof. It suffices to show that for any p-HQ subgroups A and
B of G, the product AB is a p-i?Q subgroup of G. Let M be any
normal subgroup of G with M £Ξ Aί?. If ikf £Ξ A or M ^ B then
AB/M Π Qp(G/M) Φ M/M. Now suppose ikf is not a proper sub-
group of either A or i? Since Af]M=A and B Π M ~ B together
imply AB S M, we may assume i£ = A Π M £ A. Since A is p-HQ,
A/R Π Q*P{G/R) Φ R/R. Let 2/22 be any nonidentity element of A/R Π
Q*P{G/R). Then p i and # g 22 show # g Λf. Since Λf/22< G/22, Lemma
3 shows Qt(G/R) M/R/M/R s Q*(G/R/M/R). It now follows from the
isomorphism of G/R/M/R and G/ikf that i/M is a nonidentity element
of Q*(G/M). Therefore AJ3/ikf Γi Qt(G/M) Φ M/M and the assertion
is proved.

THEOREM 5. For any group G and any prime p, QP(G) is the
product of all p-HQ subgroups of G.

Proof. Let S denote the product of all p-HQ subgroups of G.
From Lemma 2 and the definition of p-HQ subgroup it is easily
seen that QJ(G) is a p-HQ subgroup of G. Therefore Ql(G) S S.



628 J. B. DERR AND N. P. MUKHERJEE

Assume for the sake of contradiction that Q*(G) £ S. Since S is
a p-HQ subgroup of G (Lemma 5) S/Q*(G) Π Qϊ(G/Q*(G)) Φ Q*(G)/
Q*(G). Since Q*(G/Q*(G)) = Qt(G)/Q*(G), this is the desired con-
tradiction.

It should be remarked that for a set of primes π, ττ-quasicentrality
can be defined in a manner analogous to #>-quasicentrality. The p-
quasicenter and p-hyperquasicenter can be extended in the natural
way to obtain the notions of π-quasicenter and ττ-hyperquasicenter.
It is easily checked that the results about the p-quasicenter and the
p-hyperquasicenter of a group remain valid when p is replaced by π.
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