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GENERALIZED QUASICENTER AND HYPERQUASICENTER
OF A FINITE GROUP

J. B. DERR AND N. P. MUKHERJEE

The notion of quasicentral element is generalized to p-
quasicentral element and the p-quasicenter and the p-hyper-
quasicenter are defined. It is shown that the p-quasicenter
is p-supersolvable and the p-hyperquasicenter is p-solvable.

The quasicenter Q(G) of a group G is the subgroup of G generated
by all quasicentral elements of G, where an element « of G is called
a quasicentral element (QC-element) when the cyclic subgroup (x>
generated by x satisfies {x){y) = {yp<{x) for all elements y of G. The
hyperquasicenter Q*(G@) of a group G is the terminal member of the
upper quasicentral series 1 =Q,CQ,CQ,C *++ CQ, = Q.+, = Q%G
of G, where Q,., is defined by Q,..,/Q; = Q(G/Q;). Mukherjee has
shown [3, 4] that the quasicenter of a group is nilpotent and the
hyperquasicenter is the largest supersolvably immersed subgroup of
a group. The proofs of these structure theorems rely on the fact that
the powers of QC-elements are again QC-elements.

In this paper we generalize the notion of a quasicentral element
in a way which allows the results about the quasicenter and the
hyperquasicenter [3, 4] to be extended. All groups mentioned are
assumed to be finite.

For a given group G and a fixed prime p, the definition of QC-
element might suggest that an element x of G be called a p-quasi-
central element provided <{z>{y)> = {y><{x> holds for all p-elements
y of G. An apparent difficulty with this definition is that the powers
of p-quasicentral elements need not again be p-quasicentral elements.
For example, consider the group of order 18 defined by G = (a, b,
zla* =0 =1=2"[a, b =1=][aq2],[b 2] =ay. A simple calculation
shows that ax is 8-quasicentral while ¢ = (ax)® is not 3-quasicentral—
otherwise {z)><{b> = (by<{x) shall imply that » normalizes <b), which
is not the case however. Because of this example we choose to
generalize the notion of a QC-element as follows.

DEFINITION 1. Let G be a given group and » a fixed prime.
Suppose z is an element of G and let the order of x be written as
|z| = p™m where (p, m) = 1. Then x is called a p-quasicentral (p-QC)
element of G provided {z™>{y) = {y)>{az™) and (2" ){y) = {yp{a”")
hold for all p-elements y of G. (It should be noted that every element
of a p'-group is p-QC.)
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THEOREM 1. If z is a p-QC element of a group G and k is a
fiwed integer, then x* is also a p-QC element of G.

Proof. Suppose |x| = p*m where (p, m) =1. Since |z™| = p?,
|#?’] = m and «** commutes with 2™, (&) = (&?"> (&™) = (&™) (x*™d.
If |2*| = p°n where (p, ¢) = 1, then (z¥)*° is a p’-element of <{x) and
(¥)" is a p-element of {x). It follows that (x*)*° is some power of
#?° and (¢*)* is some power of ™. To show that a* is a »-QC
element of G, it will suffice to show that <{(x™)><{y) = {¥> {(z™)*)>
and {(@*")* <> = (¥D{(=*")*> hold for all integers ¢ and all p-elements
y of G.

Let y be any p-element in G. Since z is a p-QC element of G,
™ y) = {y>{e™>. Therefore {x™){y) is some subgroup H of G whose
order divides |z™|-|y|. Since 2™ is then a p-QC element of the p-
group H, z™ is a QC-element of H. It follows [3, 4] that every power
of z™ is a QC-element of H. In particular, {(z™H{y> = {yd{(&™*)
holds for every integer <.

Now proceed by induction on the order of G to show that
(@) y> = yd{(x*’)*> holds for every integer i and every p-element
y. Let y be a fixed p-element of G of order p™. If <(ax?*Y{yd = (y){&?">
is a proper subgroup of G, induction completes the argument. Assume
therefore that G = (&?"){y> = (yD{(@*")>. Then G is a supersolvable
group (Theorem 13.3.1, [5]).

Let m denote the set of prime divisors of |#?’| = m which are
larger than p. Since G is supersolvable with order |G| = p™m, G has
a normal Hall 7-subgroup K. Distinguish two cases.

Case 1. 7 is empty. Then p is the largest prime dividing |G|.
Since <{y> is a Sylow p-subgroup of G, {y) must be normal in G.
Clearly <(x?°)">{y> = (y){(@*")*> holds for all integers ¢ in this case.

Case 2. m is nonempty. Let s and ¢ denote integers such that
z, = (x*’)° is a w-element, x, = (@*’)t is a m'-element and «*’ =z, =
2,2, (Theorem 4, [2], p. 23). Then {(x,) is a Hall m-subgroup of G.
Since G is supersolvable, {z,) <IG. It follows that {(z){yd> = {y){=i)
holds for every integer 4. Since {(x?")*) = <(&i) (x> for all integers
1, the argument will be complete if we show {iy{y> = (y)<{=i> holds
for all 7. Since <{z,> is a normal Hall m-subgroup of G, the Schur-
Zassenhaus theorem shows that G possesses a w-complement R. Since
y is a m’-element of G, we may choose R so that ye R. Then <{y) is
a Sylow p-subgroup of B. Since R is supersolvable and p is the
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largest prime dividing |R|, {y>) <I{ R. We now use the fact that x, is
a m'-element. Since R is a Hall n'- subgroup of the solvable group
G, some conjugate «¢ of x, lies in R. It now follows from G = (x*">{y)
that x,€ R, since every element g in G can be written as (x*°)*y* for
some integers u, v. Therefore <(xi){y)> = {y)<{«i> holds for every
integer ¢. This completes the proof of the theorem.

LE@MA 1. Let 0 be a homomorphism from a group G onto a
group G. If x is a p-QC element of G, the image z° of x is a p-QC
element of G.

Proof. Let || = p*m where (p, m) = 1 and let [2/| = p°n where
(p, m) =1. It follows that (&)= <x?*) (™) and (&’ = {(x’)**) {(z%)".
Now (a2’) = (x)’ implies (z*")’ = {(x’)*") and (&™)’ = {(")").

Let # be any p-element of G. Then there is a p-element y of G
with 9’ = %. Since # is a p-QC element of G, (x*">{y> = (yH{x?") and
<am<y) = <y)<z™). This shows (2*')(y)’ = {y)’<z*")’ and <&™)’(y)’ =
ey, Now (y)’ = <y’y = (@) implies {(**)*") (&) = <uy{(2")*") and
@)y <uy = {ay{(x?)"y. The proof of the lemma is therefore complete.

DEFINITION 2. Let G be a given group and p a fixed prime.
The p-quasicenter Q,(G) is the subgroup of G generated by all p-QC
elements of G.

We mention a few simple consequences of the definition of the
p-quasicenter. For any group G and any prime p, the quasicenter
of G is contained in the p-quasicenter of G. The p-quasicenter of a
group is always a characteristic subgroup of the group. It should
be noted that if a prime p does not divide the order of a group G
then Q,(G) = G.

THEOREM 2. For any group G and every prime p, the p-quasi-
center Q,(G) is p-supersolvable.

Proof. First we notice that Q,(G) = G is p-supersolvable if p
does not divide |G|. Consequently we assume that p divides |G]|.
The proof is by induction on |G]|.

It suffices to show that G contains a nontrivial normal subgroup
N of order p or of order prime to p. For, by induction, Q,(G/N) is
then p-supersolvable. Since Lemma 1 shows Q,(G)N/N < @,(G/N) it
will follow that Q,(G) is p-supersolvable. (This is because of the fact
that normal subgroups of p-supersolvable groups are p-supersolvable and
N being of order p or prime to p, the p-supersolvability of Q,(G)N/N
implies Q,(G)N is p-supersolvable.) Since Q,(Q,(G)) = @,(G), induc-
tion lets us assume that Q,(G) = G. Thus G is generated by p-QC
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elements %, ,, -+, #,. First we show that G contains a proper normal
subgroup. Distinguish two cases.

Case 1: Some z; has order divisible by p. Assume p divides the
order of x,. Then there is an integer d such that [2?| = p. Since
xf is a p-QC element of G, (x> permutes with each Sylow p-subgroup
of G. Therefore {#¢) lies in the maximum normal p-subgroup O,(G)
of G. Therefore O,(G) is a proper normal subgroup of G or O,(G) =

G and G is a p-group. If G is a p-group, the theorem is trivially
true.

Case 2: No z; has order divisible by ». Then z, %,, -+, z, are
p-QC elements of G with p’-orders. Since |G| is divisible by p, G
must contain nonidentity p-elements. Let T denote the subgroup of
G generated by all the p-elements of G. Since T <J G, we can assume
T = G. Therefore G contains nonidentity p-elements ¥, ¥, ***, Yn
with {y, ¥, -+, Yny = G. Let ¢ be the largest prime dividing the
product |x,|+|2,| +-- |2,|. First suppose p > gq. Since z; is a p-QC
element and y, is a p-element, <{x,> (¥, = {y,>{x;> holds for all
©=1,2 +++, n. It follows (theorem 13.3.1, [5]) that {#;)<¥,> is super-
solvable of order |w;|:|y.| for ¢ =1,2, -+-, n. Since x; is a p’-element
and p > q, () is a normal Sylow p-subgroup of each group <z, >{¥,>.
Then x,, x,, ---, #, normalize {y,> and {y,> is a normal subgroup of
G = (&, % +++, ¢,». Now suppose p < ¢ and let |z,| be divisible by
qg. Let s be an integer such that {x) is a Sylow g-subgroup of {(z,>.
Since <z ){y;> = {y;»<=x,> is a supersolvable group and ¢ is the largest
prime dividing |y;||#.|, ¥; normalizes {(x!> for j = 1,2, ---, m. There-
fore <x:) <1 G = Y, Yo, ***, Yuy- This shows that in every case G
contains a proper normal subgroup M. If M has order prime- to p,
we are finished. Assume now that M is a minimal normal subgroup
of G and p divides |M|. We will show that | M| = p.

Since Q,(G) = G, G is generated by p-QC elements =, ,, ---,
x, of G. For each 4, 1 =<1 m, (&) =<v)<{v,) +-<{v,;,) Where
Uy, Vg * v+, Vg, are powers of x;, v, is a p-element, and v,, vy, <« -, v,, are
p’-elements of prime power orders. Since powers of p-QC elements
are also p-QC elements, it follows that G can be written as G = <a,,
Qgy * =+, Ay, by, by, =+, b,y where each a; is a p-QC p-element of G and
each b; is a p-QC p’-element of G having prime power order.

Let P denote the subgroup of G generated by all p-QC p-ele-
ments of G. Clearly P is a characteristic p-subgroup of G with
{a,, Ay +++, ar> & P. Since M is a minimal normal subgroup of G,
PNM=1or PNM= M. First suppose that PN M = 1. Then [P,
Ml PNM=1 and P centralizes M. Let we M with |w| = p.
Clearly a; normalizes (w) for ¢+=1,2, -+, h. Since each b; is a
»-QC element of G, (b ){w) = {w)<b;> holds for j =1,2, -+, k. It
follows that each group <(b;>{w) is supersolvable of order |b;|-|w]|.
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Since |b;| is a power of a prime other than p, (b, is a Sylow sub-
group of {(b;>{w). Hence b; normalizes {w) or w normalizes <{b;> for
each j=1,2,--- k. Since <b;) N M =1 implies b; normalizes {w),
{w) <1 G unless <b;> N M = 1 for some j. Assume that <b,>)N M =1
for some integer d,1 < d < k. This implies that some prime different
from p divides the order of M. Since every power of b; is a p-QC
element of G, Q,(M) = 1. From the minimality of M it follows that
Q,(M) = M, since Q,(M) is characteristic in M and M is normal in
G. Induction applied to M then shows that M is p-supersolvable.
If N is a minimal normal subgroup of M then |N| is either » or
is prime to p. Then T = (N’|geG) is a normal subgroup of G
contained in M and T = N%... N’ where g, -+, 9, are elements
of G. But M being minimal normal in G it follows that T = M.
Therefore M is either a p-group or a p’-group, since T is so. But
p divides the order of M and therefore M must be a p-group.
This however contradicts the assumption that <b,> N M == 1. Thus
{w) <1 G. Since {w) & M, M = {(w) and M has order |w| = p. Now
suppose PN M = M. Then M is a normal subgroup of the p-group
P and MNZ(P) + 1. Let z be a nonidentity element of M N Z(P)
with [z| = p. Since z¢ Z(P), surely {a,, a,, *++, a,) normalizes {z). On
the other hand, M being a p-group it is evident that <b,)N M =1
for each j =1,2, -+-, k. As before, () <IG unless <{b;) N M = 1 for
some j. Therefore <z) <1 G. Since 1= {z) & M, the minimality of
M shows M = (z). Therefore M has order |z| = p and the proof is
complete.

Since the quasicenter of a group is nilpotent it is natural to ask
if the p-quasicenter of a group must be p-nilpotent. We give an
example to show that this need not be the case. Let S, denote the
symmetric group of degree 3. The 3-quasicenter of S, is S, itself.
Clearly @,(S,) = S, is not 3-nilpotent.

DEFINITION 8. Let G be a given group and » a fixed prime.
The upper p-quasicentral series 1 = H,c H,c --- Cc H,=H,,, of G
is the characteristic series where H;,, is defined by H,,,/H; = Q.(G/H,).
The number of distinet nontrivial terms in the upper p-quasicentral
series of G is called the p-quasicentral length of G. The terminal
member of the upper p-quasicentral series of G is called the p-hyper-
quasicenter of G. We denote this characteristic subgroup of G by

Q(G)-

THEOREM 3. In any group G, the p-hyperquasicenter Qi (G) is
the intersection of all mormal subgroups N with Q,(G/N) = N/N.

Proof. Let S=N{N|N<IG and @Q,(G/N)= N/N}. Clearly
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S S Q*(G). We now show that Q}(G) is included in every normal sub-
group N for which Q,(G/N)= N/N. Let 1=H,Cc HcH,C+--CH,=
Q} (@) be the upper p-quasicentral series of G. Trivially H, & N.
Assume that H; S N and H;,, £ N. Then for some p-QC element yH,
of G/H;, y¢ N. This implies that under the natural homomorphism
of G/H; to G/N, the p-QC element yH,; is mapped onto the p-QC ele-
ment yN of G/N. Therefore Q,(G/N) is nontrivial, a contradiction.
Hence H;,, & N and Q}(G) & N follows by induction.

We shall now investigate the structure of the p-hyperquasicenter

Q;(G)-

LEMMA 2. Let G be a group and p a fived prime. If NG
and N & Qi (G) then Q;(G/N) = Q;(G)/N.

Proof. Let 1= H,Cc HcC H,C --- CH, = Q}G) be the upper
p-quasicentral series of G and let N/N = L/NC L,/NC +-+ CL,/N =
Q}(G/N) be the upper p-quasicentral series of G/N. By Lemma 1,
HN/N = Q,(G)N/N < Q,(G/N) = L,/N. Thus H, & L < L,. Now
assume H; < L, and deduce H,,, & L,. Since H,< L,, G/L, is a
homomorphic image of G/H;. Let 6 be the natural homomorphism
described by (¢H,)’ = ®L,. Then Lemma 1 shows that (Q,(G/H)))’ =
Q,(G/L,) = L,/L,. Since Q,(G/H;) = H,.,/H;, (Q(G/H))’ = H;.,L,/L, =
L./L,. Therefore H;,,,= L, and by induction H,< L,. We complete,
the proof by showing L, S H, = Q}(G) for each 1=1,2,.-+, k. By
hypothesis L, = N< Q,(G). Now assume L; S Q,(G) and deduce L,,, =
Q}(@). Since L, S Q} (@), G/Q;(G) is a homomorphic image of G/L,.
The argument above can be repeated to obtain L,,, & Q}(G).

THEOREM 4. For any group G and any prime p, Q:(G) is p-
solvable.

Proof. If Qi (G) = Q,(G), Q;(G) is p-supersolvable and the theorem
is proved. Assume now that Q,(G) & Q}(G). Let N denote any
minimal normal subgroup of @,(G). Since Q,(G) is p-supersolvable, N
has p’-order or |[N|=p. Set S =<(N’|geG). Since N<IQ,(G) <
G, N° 1 Q,(G) for each ge G. It follows that S has order prime to
p or order a power of p. Since S<IG and S< Q,(G) = @} (G) induction
shows that Q}(G/S) = Q}(G)/S is p-solvable. Therefore Q:(G) is p-
solvable.

It is possible to characterize the p-hyperquasicenter in terms of
the normal subgroups included in it. We begin with the following
definition.

DEFINITION 4. Let G be a group and p a fixed prime. A normal
subgroup N of G is called p-hyperquasicentral (p-HQ) if N/MN
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Qi (G/M) #+ M/M holds for each normal subgroup M of G which is
properly contained in N.
The lemmas proved next will be useful for the proof of Theorem 5.

LEmMA 3. Let G be any group and p a fized prime. If N<IG
then Q3(G)N/N < Q;(G/N).

Proof. Letl=H,cHcH,C --- C H, = Q}(G) be the upper p-
quasicentral series of G. By Lemma 1, H,N/N = Q,(G)N/NS Q,(G/N)<
Q}(G/N) = LIN. Thus HNEL. Now assume H;N &S L and deduce
that H;,, NS L. Since H; S H;N, G/H;N is a homomorphic image of
G/H;,. Let ¢ be the natural homomorphism of G/H; onto G/H ;N de-
scribed by (zH))? = xH;N. Then Lemma 1 shows (Q,(G/H))* <
@Q,(G/H;N). Since @,(G/H) = H;.,/H;, H, N/HN = (H;.,/H)* <
Q,(G/H;H). Next let 6 be the natural homomorphism of G/H;N onto
G/L given by (xH;N)’ = zL. By Lemma 1, (Q,(G/H;N))’<= Q,(G/L) =
L/L. Since H;,N/JH;N & Q,(G/H;N), (H;;,N/H;N)’ = H,,,NL|L =
L/L. Therefore H;,,N < L and the assertion follows.

LEMMA 4. If any two groups G, and G, are isomorphic under a
map 0 then (Q,(G)))’ = Q,(G>).

LEMMA 5. For any group G and any prime p, the product of
p-HQ subgroups of G is a p-HQ subgroup of G.

Proof. It suffices to show that for any p-HQ subgroups A and
B of G, the product AB is a p-HQ subgroup of G. Let M be any
normal subgroup of G with MS& AB. If MS& A or M B then
AB/M N Q:(G/M) = M/M. Now suppose M is not a proper sub-
group of either A or B. Since AN M = A and BN M = B together
imply ABS M, we may assume R = AN M A. Since A is p-HQ,
A/RN Q}(G/R) = R/R. Let yR be any nonidentity element of A/R N
Q}(G/R). Then yc A and y ¢ R show y¢ M. Since M/R<IG/R, Lemma
3 shows Q}(G/R)-M/R/M/R = Q}(G/R/M/R). It now follows from the
isomorphism of G/R/M/R and G/M that yM is a nonidentity element
of Q(G/M). Therefore AB/MN Q;(G/M) +# M/M and the assertion
is proved.

THEOREM 5. For any group G and any prime p, Q5(G) ts the
product of all p-HQ subgroups of G.

Proof. Let S denote the product of all p-HQ subgroups of G.
From Lemma 2 and the definition of p-HQ subgroup it is easily
seen that Q}(G) is a p-HQ subgroup of G. Therefore Q}(G) = S.
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Assume for the sake of contradiction that Q}(G) < S. Since S is
a p-HQ subgroup of G (Lemma 5) S/Q;(G) N Q;(G/Q5(G)) # @5(G)/
Qi (G). Since Q}(G/Q} (@) = QF(G)/Q}(G), this is the desired con-
tradiction.

It should be remarked that for a set of primes 7, w-quasicentrality
can be defined in a manner analogous to p-quasicentrality. The p-
quasicenter and p-hyperquasicenter can be extended in the natural
way to obtain the notions of 7m-quasicenter and z-hyperquasicenter.
It is easily checked that the results about the p-quasicenter and the
p-hyperquasicenter of a group remain valid when p is replaced by x.

REFERENCES

1. B. Huppert, Endliche Gruppen I, Springer-Verlag (1967).

2. W. Ledermann, Introduction to the Theory of Finite Groups, Interscience Publishers,
Inc. (1964).

3. N. P. Mukherjee, The hyperquasicenter of a finite group I, Proc. Amer. Math.
Soc., 26, No. 2 (1970), 239-243.

4, , The hyperquasicenter of a finite group I1, Proc. Amer. Math. Soc., 32,
No. 1 (1972), 24-28.

5. W. R. Scott, Group Theory, Prentice Hall, Inc. (1964).

Received April 12, 1971 and in revised form January 13, 1972.

WEST VIRGINIA UNIVERSITY





