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EXTENSIONS OF AN INEQUALITY BY POLYA AND
SCHIFFER FOR VIBRATING MEMBRANES

CATHERINE BANDLE

The inequality by P6lya and Schiffer considered in this
paper is concerned with the sume of the # first reciprocal
eigenvalues of the problem du+2u=0in G, u =0 on dG. First
we extend this inequality to the problem of an inhomogeneous
membrane 4du + Apou =0 in G, ¥ =0 on dG. Then we prove a
sharper form of it for a class of homogeneous membranes with
partially free boundary. The proofs are based on a varia-
tional characterization for the eigenvalues and use conformal
mapping and transplantation arguments.

The inequality by Pdlya and Schiffer considered in this paper is
concerned with the eigenvalue problem 49 + A @ =0 in a Jordan
domain G,® =0 on 0G. It can be stated as follows: Among all
domains with given maximal conformal radius 7, the circle yields
the minimum of the expression >.,*, A\i'. This theorem is related to
the geometrical inequality

(1) Tt< A,

where A denotes the total area of G. The aim of this paper is (i)
to extend the inequality by Polya and Schiffer to the problem of an
inhomogeneous membrane fixed on the boundary, (ii) to sharpen it
for certain kinds of elastically supported, homogeneous membranes.
Instead of considering the problem of an inhomogeneous membrane
we will study the equivalent eigenvalue problem Lu -+ Zu = 0 where
L = 4/p is the Beltrami operator of an abstract surface with the line
element ds’=p(de*+dy?). With the help of inequalities by Alexandrow
[1], we will derive first some relations between 7, 0 and the Gaussian
curvature of the surface. These results will be needed for the theo-
rem concerning the eigenvalue problem. Its proof is essentially based
on a method indicated by Hersch in [6] which uses conformal mapping
and transplantation arguments. In the last part, we give an isoperi-
metric inequality for a class of plane membranes. The extremal
domain is in this case the circular sector.

1. Geometrical preliminaries.

DEFINITIONS 1.1. Let X be an abstract surface given by a Jordan
domain G in the z-parameter plane (z = & + 7y), and by the metric
ds’ = p(z)|dz|* where p(z) is an arbitrary positive function in C2
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A(B) = SL odxdy is the area of a domain BS ¥ and
L) = | VP lde]

is the length of an arc vy < 3. The Gaussian curvature has the form

0° 0
Ko = (~4;Inp)/20[ 4. = @] :
We shall assume that the inequality K; < K, holds in G. Consider
a surface _#, of constant curvature K, given in the following iso-
thermic representation:
(i) w-plane (w = % + iv) with the metric

4¢*

ds* = ——————
@+ [wp)

l[dw® if K, =1/¢
(ii) interior of the unit circle {w; |w| < 1} with the metric

st = — 2 jqwp if K, = —1/¢.
@ — Jwpy
(iili) w-plane with the metric ds* = |[dw|* if K, = 0.

We shall define the metric of _#, by ds® = g(w)|dw[’, where g(w)
depends on K, and is determined by one of the preceding formulas.
Let f.(z) be the conformal mapping from G onto the unit circle
{w; |w| <1} with f,(a) =0 and f)(a) > 0. The conformal radius of
the point a with respect to G is then defined as »,(G) = 1/f.(a) [9,
p. 16]. We set

1 YYD 7l .
(2) R(®) = {EVP(CL) [K,|r(G) if K,#0
V(@) 7.(G) if K,=0.

ExamMpLE. If G is a circle with the radius », the center in the
origin and () = ¢g(z), then R(G) = 7. w.(2) = R,(G)f.(2) maps G
onto the circle {w;|w| < R,(G)}, and z,(w) denotes its inverse. We
shall denotes the circle {w; |w| < ¢} by C.. R.(G) has been chosen in
such a way that

(3) Sgcsg(w)dudv _ Hzaws)p(z)dxdy + o(e) .

Since

dncte® +o(e)? if Ky, # 0
dudv =
SSCEg(w) waw {m? it K,=0,

it follows that
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1 1
(4) lim Ez—”gég(w)dudv - 135?5“%(@,)(@%@

exists and is different from zero.

1.2. Some Properties of R, (G).

(@) R,(G) s invariant under conformal mapping.
Proof. Let £&2):2 =25 be a conformal mapping and let z(&) be
its inverse. We set &@a) = a and &G) = G. The line element of 5

is d8* = p(&)|de® with p(¢) = p(2(8))|dz/ds|*. Since K, is a conformal
invariant, we have

(5) R(G)——Vp(a)IKIT(G)

Am(é) .

Because of the relation |dz/d&|.- afr“(G) =7, (@) [9], it follows that
Ry = R,(G).
(b) If K, <0, then R,(G) <1 for any ae G

Proof. The function p(w) = o(z,(w))|dz,/dw|* satisfies in
= {w; |w| = R.(G)}
the inequality 4, In 9(w) = (2/¢)f(w). By a theorem of Osserman [7]

PN 4c’R?
(6) pPw)=s-———"~ (r=|w|,R, =RJ(G forany weC).
(R: — 77
Since 9(0) = 4¢?, (6) implies R, < 1.
(c) Let p. = n(0C, 0C.) be the modulus of the annulus

D = C\C. [C = {w;|w| < R,}, 9C the boundary of C; C. = {w; |w] <
e}, 0C. the boundary of C.]. Let h be the solution of the Dirichlet
problem 4h =0 in C\C., h =0 on 0C., h = 1 on 0C and let D(h) denote
the Dirichlet integral of 2. Then g, = {D(2)}™*. In an analogous may
we define (I, I'.), where I' and I'. are boundaries of G and z,(C,).
Since the modulus is invariant under conformal mapping, we conclude
that

po=mr,r)=2mk,
27 g

and thus
(7) R, = ee*#c = lim ge*#* [10, p. 45].

£=0

If G is contained in G’, then it follows from (7) and the Dirichlet
principle that R, (G) < R.(G’).
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d) Let A= AG) = SS odxzdy be the total area of G
G
with respect to the metric ds* = p|dz[|?, and let 4, = HC g(w)dudv be

the total area of C with respect to the metric ds*= g(w)|dw/|’. A, takes
the values

4R/l + R2) if K, =c¢
(8) A, = {4nR:/(1 — RY) if K, = —c*
ﬂ.Rz if Kg = 0 .

The following result is an extension of a classical theorem [9, problem
125 IV]. We have

(9) A=A4,.

Equality holds in (9) if and only if G is a geodesic circle on a surface
of constant curvature K,. (If K, >0 we have to assume that A <
4r/K,.)

Proof. Let A,(¢) and Aj(c) denote the area of z,(C.) and C.. By
(7) and Corollary 2 [3] it follows that

1. R 1 A A(e) }
10 F]ﬁ:-—l——“é—{l-————l———.
0 ML r) =5 s o e T P T kae
Equality holds only if I" and I'. are two “concentric” circles on a
surface of constant curvature K,. Suppose that K, = 0. From (8) we
have Aj(e) = 4mc’e® + o(e?). Substituting this expression in (10), we
obtain

dzc’R; - A(dr — K, A\(e) _
Al(e) + o(e?) ~ Ale)dr — K A)

Since lim,_,(A)(¢)/A.()) = 1 (cf. (3), (4)), it follows that

D)

) R=—_4Ac  ndi@+ogy 1 A4
Flr — KAy — 5 e & (47 — K.A)

This inequality implies A, < A. The case K, = 0 can be treated in
exactly the same way and will therefore be omitted.

REMARKS. (1) Let g.(2, @) be the Green’s function defined by
4,9.(2,a) = —0,(2) in G, 9,(2,a) =0on I". g,(w, 0) is the corresponding
Green’s function in C. We shall use the following notations G(t) =
(reGi 0.z, @) > 1), CO) = (we Cigu(w, 0) >t A0 = || pdady and

JG(E

A, ) = Hc(t)g(w)dudv. By the same reasoning as before we can show
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that
(12) At) = A1) .

Equality holds if and only if G is a geodesic circle on a surface of
constant curvature K,. If K, >0, we have, of course, to assume
that A,(t) < 47/K,.

(2) We define R(G) = max,.; R.(G). If G is a circle of radius
r with the center at the origin and the metric ds® = g(w)|dw[’, then
R,(G) = (¥ — |a)/A = |e)r [9]. In this case, R(G) = Ry(G). Because
of (11) we have the isoperimetric inequality: Among all domains with
given total area A and with given K,, the geodesic circles on a sur-
face of constant curvature K, have the largest value of R(G). From
(11) it follows that

4A
o(@)dr — K,A)

If p =1, then (18) reduces to 7ri(G) < A.

13) (@) =

2. Bounds for the eigenvalues of an inhomogeneous mem-
brane. Let Y be an abstract surface given in an isothermic represen-
tation (cf. §1.1). We consider the following eigenvalue problem

I "—;@(w, ) + 2Pz, y) =0 in G

® =0 on I (boundary of G) .

4,/o represents the Beltrami operator of 3. Suppose that a countable
number of eigenvalues 0 <\, <)\, < .- exists. R[v] = D(®) / SS v odxdy
G
[D(v) = “ grad?® 'vdxdy] is the Rayleigh quotient of Problem I. Let
G

L, be an n-dimensional linear space of continuously differentiable funec-
tions which vanish on I, and let v, ---, v, be an orthogonal basis in
L, with respect to the Dirichlet metrie, i.e.,

D(v;, v;) = H grad v, grad v;dedy =0 if 7=7.
G
Following [6] we define T Rinv[L,] = >~ {R[v;]}"'. For the sums of
the reciprocal eigenvalues we have the variational characterization
[5, 6]
14 Z”‘, At =max TRinv|[L,] .
i=1 Ly

The maximum is attained if »; = @; ¢ =1, -+, n are the first » eigen-
functions of Problem I. Assume that (—4,lnp)/20 £ K, = ¢ in G,
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where K, is any real number. In addition to Problem I we consider
the auxiliary problem
Il Av 5436 =0 in  C={w|wl <R}

=0 on 0C ={w;|w|=R,}.

g(w) depends on K, and was defined in §1.1; and R, = V/'p(a) r,/2¢ or
R, =1Vp(a) r, (cf. §1.1). The eigenfunctions of this problem are either
of the form

(15) Pu(r, ) = Ro(iy 7)
or

(16)  &u(r, ) = R,(\, ¥) cosmf and  &,.,(r, 0) = R,(\s, 7) sin mo
m=1,2 ..

In (0, R,), R.(\:, 7) satisfies the differential equation

mR aN,crR _
r 1 &+ 72

&

a7 (rR) —

if K, = =+c¢7% and

(18) wRY —™E S R—0 it K,=0.
r

The boundary conditions are
19) R'(0) < o and R(R,) =0.
We shall call m the order of R. By introducing the new variable

_ {(rz -/ +) if K, >0
e+ /- if K, <0

(17) is transformed into the Legendre equation
d d = myR < _
+ a;I:(zz — 1)Ezy(z)] F 71 + Ncfy(z) = 0.

The following result is a generalization of a theorem of Pdlya-Schiffer
[8]. We shall use a method of proof devised by Hersch [6].

THEOREM 1. If (—4Ilnp)/20 < K, 2t — K,A >0, and n is a
natural number, then we have the isoperimetric inequality
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(20) _1__;._1__;_..._1__1_
MoN Ay,

12
2=

F et

kg
2

where N; is the i eigenvalue of Problem II.

Proof. Let &, (w), -+, P, (w) be the first n eigenfunctions of
Problem II and let U,(2), ---, U,() be the transplanted functions
Ui(?) = &(w,(z)). Because of the invariance of the Dirichlet integral
under conformal transformation, we have Dy (U;, U;) = D(®;, $;) = 0
ifi#4. Uf) t=1, .-+, n can therefore be used as trial functions
for the variational characterization (14). Thus,

I P e

Let &.(w) and &,,,(w) be two functions of the type (16). In this case

Ry (2rm A~ A . 2

S S (P% + Pre)g(w) liz‘ o

o Jo dw g
Dy(py)

22)  (RIUD™ +{R[U]}" =

We observe that
(23) Pi(w) + Pii(w) = O(r)

is independent of 4. By the Schwarz inequality,

p(gz(gf;)) rdf > <SO Brdo) / g:”g(w)rda .

dz,

w [

We note that for fixed r
dz,

S: dw

where L,(¢) is the length of the level line g¢.(z, a) = ¢t = (1/27) In (R,/7)
in the metric of Y. We also observe that S“g(w)rdﬁ = L% (t)/2xr,
0

where L,(t) is the length of the level line g,(w, 0) = ¢ with respect
to the metric of _#%,.

In order to estimate L2(t), we use the following geometrical iso-
perimetric inequality of Alexandrow [1]: If G is a domain on ¥ home-
omorphic to a circle, and if K, < K,, then the following relation holds
between the area A of G and the length L of the boundary oG:

(25) L' > A(dr — K,A) .

V' ordd = L) ,

Equality holds iff G is isometric to a geodesic circle on a surface of
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constant curvature K,."” From this inequality we conclude that
(26) Li(t) =z A.() (4 — K,A.(1) = f(4.) .

A, (t) has been defined in §1.2. If K, <0, then f(4,) is a monotone
increasing function; if K, is positive then f(A4,) is monotone increasing
in the interval [0, 27/K,]. By (26), (12) and our assumption on 4, it
follows that

Lit) = A,(t)(4m — KAy (D) = Li(D) .

Szz
0

From this inequality and from (22) and (23)
{(RIUJY™ + (RIUen )™ = 2357 .

If $, and &,,, belong to the same order m [cf. (16)], we denote by
@,(w) the function for which

(27) {RIU = %at

This implies

Az, 1% 0(z4(w)) 46 > 2
dw!  g(w) rav < L.

By the same arguments as before, (27) holds also for the functions
@p(w) of order 0 [ef. (15)]. This establishes the theorem.

REMARKS. If p is constant we obtain the theorem of Polya-Schiffer
[8, 6]. It is easy to see that (20) is optimal if we choose a such that
R.(G) = max,.; B,(G).

3. Generalization. Let X’ be a piece of an abstract surface with
the line element ds* = |z — a|™*/"v(2) |dz|* where v(2) € C* and 0 = w < 27.
2’ includes the regular surfaces in the usual sense which have at the
point a corner of curvature  [cf. 1]. We assume that (—4,Iny)/2v <
K,. In this case we define

1l S @ErG) if K, -0
2 - o/t

— 2 V@) it K,=0.
2 — w/r

(28) R.(G) =

We consider a circular cone &%, in a three-dimensional space of con-
stant curvature K, with the curvature ® at the corner [1]. It can
be represented by

! This inequality is valid for more general surfaces. A brief summary can be found
in [1, pp. 509, 514].
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(i) sector 0 <6 <27 — @ (0, r polar coordinates of the w-plane)
the lines ¢ = 0 and ¢ = 27 — @ identified, and the metric

4¢?

ds* = ———
1+ [wf)

[dw|* (K, = 1/c%)
(ii) sector 0 < 0 <27 — w,0 < 7r <1 with the lines § =0 and 6 =
27 — w identified, and the metric

l[dw? (K, = —1/¢)

(i) wedge 0< 0 < 27 — w with the lines § =0 and 6 =27 — w
identified and the metric ds* = |[dw[? (K, = 0).

With the help of the function & = w*/®*~*  the sector 0<0< 27 — w
is mapped into the &-plane. g(w) is then transformed into (&) =
g(w(é)) |dw/dé|* which is (&) = (2 — o/m)*|¢]7" /AL |E[77) if K, =
+¢™ or §(§) = (@r — w)/2x)*|&[77 if K, = 0.

ExampPLE. Let G be a circle with the radius », the center in
the origin and the metric ds* = §(£)|d|>. In this case R,(G) = r,. Let
C = {§;|£] < R.(G)} be a circle on the cone &% . The line element is
then ds* = §(&)|dé’. In this metric

+c?

Il

221 — W)ER (1 = R0 if K,
AC - ggcg(g)déldn = {27[2—‘ wRi—w/n if Ko

Il
o

(=& + i)

is the total area of C. A = SS |z — a|™*"v(z)dxdy represents the total
[e]

area of G. All properties (a), (b), (c) and (d) remain valid in this
case. The proofs are the same as in §1.2 except for (d) where we
use Theorem 2 [3] instead of Corollary 2 [3].

We now consider on 3 the eigenvalue problem I, and on Ce &%,
the auxiliary problem II (cf. §2). By transplanting the last into the
w-plane, it becomes equivalent to the following eigenvalue problem:

—Z(’—l%@%-i@:() in {w;|w| <R and 0<argw < 27 — 0}
g(w

=0 on |w|=R;""",
$10=0 = ®|0:27r——w .
By a separation of the variables it follows that &(r, §) is either of
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the type &, = Ry(\i, 7), or else &, = R.(\i, ¥)cosmd and &, =
R, (X, 7) sin mf with m = 27n/@7 — @) (n=1,2, --+). In (0, R,v=)
R,(N:, ) satisfies the differential equation (17) with the boundary
conditions (18). In the same way as in §2 we can prove

THEOREM I'. If (—4Iny)/2v £ K, and 27 — w — KA > 0, then

T i S S NVENE I
)\41 7\:2 >"n >\,1 >"2 7\'7»

This inequality is valid for arbitrary mn.

4. Bounds for the eigenvalues of plane membranes with par-
tially free boundary. Let G be a Jordan domain in the z-plane.
~
Suppose that its boundary consists of three analytic arecs OA4, AB and
—~ ~~ —
BO where OA and BO are concave with respect to G. We assume
N N
further that OA and BO meet in 0 at an angle a(0 < a < 7).

There exists a conformal mapping f(z) from G into the circular
sector 0 <0 <a,r<1. (r,0 polar coordinates of the w-plane) such
that f(0) = 0, f(4A) = 1, f(B) = ¢* and f'(0) > 0 [4, p. 378]. If we put
r, = {f"(0)}}, then w(z) = r,f(z) = 2z + @, + ++-. Its inverse will be
called z(w). We consider the following eigenvalue problem of the
membrane with partially free boundary:

(A) 49+ =0 in G
® =0 on Z\B
@:0 on &uﬁb
on

These eigenvalues will be compared with the eigenvalues X of the
problem

B) 4,6+3=0 in G={w;|w/ <r and 0<argw < a}
=0 on »r=nr7
@[0=0 = ¢|0=a .
The solutions of (B) are
ulr, 6) = J(Vur)
or

Pu(r, 0) = Jun (V'3 1) cos 2Tm
a

and
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Prnlr, 0) = TER (VR ) sin 2Ty 4y g o L
[44

Jg(r) is the Bessel function of order g. (B) can be interpeted as the
problem of a vibrating membrane on a circular cone.

THEOREM II. For an arbitrary integer n we have

L PP 1 S HE SR
k'1 >\‘2 >\’7l >\/1 2 >\"IL

Proof. Let f(w) = f(r) be a function depending only on r. We
first show that every function F(z) = f(w(2)) satisfies the inequality

a

gSGFZ(z)dxdy - §° fz(fr)rdrg

l 40
dw

6=0

. > aS FHr)rdr = gg dudy

By the Schwarz inequality, we have

2 ol )

We observe that L(t) = Saldz/dwltdﬁ is the length of the arez(C,)
where C, is the circulgr axgcw = tAe” 0<60 <a. Let A(t) denote the
area of the domain 2(G,), where G, is the circular sector 0 = r =< ¢,
0 <0 £ a. Because of the concavity of the arcs OA and %?) it fol-

lows from a reflection argument and an 1soper1metrlc inequality by
Alexandrow [1] that

[l

LA(t) = 20A(t) 2

The function & = w** maps the sector 0 < 6 < a onto the &-plane.
Let @ and 7 be the polar coordinates of the &-plane. We have

dz
dw

_ a \? tzx{aN(a—Zu)lm"’ Ngzx _d_Z_ lz ~
3D B (Er— So " rdr o | dw (w(@)] d
1

At) = S g rdrdf

= 2 L] (| s

Since

2 A detailed proof with more general results can be found in [2].
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L we)| =452 Ewe)| 2o,
it follows that

Az |2

27 Jo = | dw !l w=0
and hence
(32) Atz %
(32) and (30) imply

| dz |2 -

(33) S %) a0 = a

which proves (29).
The remaining part of the proof proceeds as in Theorem I (§2).
We transplant the eigenfunction &; into the z-plane. U,(z) =
&;(w(2)) are admissible for the variational characterization (14), and
we thus have
N2
2 g Seq)i

6H Iz TrinolL(U, -, U] = 3 5

o

If

2rmé

Pilr, 0) = J M(Vﬂ) cos
and
Pralr, 0) = JM(VE) sin 27””6‘

then (29) implies
(35) {RIUJY™ + {R[U..l)™ 2 2857

For functions &, which depends only on r we have {R[U,]}™* = \..
It is always possible to choose &,(r, ) such that the last inequality
remains true for & = n. These relations together with (34) establish
the theorem.

The first eigenvalue X, of problem (B) is the same as the first
eigenvalue y,, of the problem 4,9 +v» =0 in G, $=0 on r = 7,
0p/on =0 on 6 =0 and § = . Theorem II and Theorem III in [2]
yield the
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COROLLARY. If A demnotes the total area of G and j, = 2,4048- .-
is the first zero of the Bessel function J(r), then

(36) Lhsns (-j—) .

Equality holds in both cases if and only if G s a circular sector.

The right-hand side of (36) is a generalization of an inequality
by polya and Szego [8]. The following charaterization of 7, is based

on the one indicated in [8] for the conformal radius. Let y(@, r,
be the modulus of the domain G. S G bounded by @,@, 04 and
I, = {z;|z] = ¢}. Itis defined as ‘u(ﬁ, ) = 1/D(h) where 4h = 0 in
G,h=1onI.and A =0 on AB. An easy computation (cf. §1 (c))
yields

(37) 7o = lim eemranro

£—0

Let D denote the shortest distance from the are jﬁ‘.’s’ to the origin 0.

By (37) and the monotonicity of (4B, I') it follows that D < 7.
This inequality together with the corollary implies N\, < (5,/D).
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