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COLLECTIVELY COMPACT AND SEMI-COMPACT
SETS OF LINEAR OPERATORS IN

TOPOLOGICAL VECTOR SPACES

M. V. DESHPANDE AND N. E. JOSHI

A set of linear operators from one topological vector
space to another is said to be collectively compact (resp.
semi-compact) if and only if the union of images of a neigh-
bourhood of zero (respectively every bounded set) is relatively
compact. In this paper sufficient conditions for a set of
operators to be collectively compact or semi-compact are
obtained. It is proved that if Tn-> T asymptotically, where
X is quasi-complete and Tn are ΫF-compact then {Tn — T)
is collectively compact. The final section deals with collec-
tively weakly compact sets. It is proved that in a reflexive
locally convex space a family of continuous endomorphisms
is collectively weakly compact if and only if

- {K*: E* > JS7J,}

is collectively compact.

The concept of collectively compact sets of linear operators on
normed linear spaces was introduced by Anselone and Moore [3].
This concept was studied in greater detail by Anselone and Palmer
[1, 2]. Some of the results in these papers were extended to more
general spaces in [4]. In this paper some further generalizations
are obtained.

2* Let X and Y be topological vector spaces and £f [X, Y],
the set of continuous linear operators on X to Y. The underlying
scalar field will be assumed to be the field of complex numbers,
unless otherwise stated.

DEFINITION 2.1. A subset JtΓcz^f [X, Y] is said to be collec-
tively compact (respectively, weakly compact, totally bounded) if and
only if there exists a neighbourhood V of zero in X such that
J%ΓV= {Kx: Ke JΫ7 xe V} is relatively compact (respectively weakly
compact, totally bounded) in Y.

REMARK. It is obvious that ,5ίΓ collectively compact ==> Sfc~ col-
lectively weakly compact. However, if 7 is a Montel space, the
reverse implication is also true.
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PROPOSITION 2.1. Let 3ίί<z.Sf\X, Y] be collectively compact and
Y, a quasi-complete locally convex space. Then the following state-
ments hold.

(a) The convex hull of 3ίΓ is collectively compact.
(b) The balanced hull of <3ίΓ is collectively compact.
(c) The absolutely convex hull of 3ίΓ is collectively compact.
(d) The closure of 3$Γ in the pointwise topology, and therefore in

£?* [X, Y] is collectively compact.

(e) The set (ΣLi KKn: Kn e 3T, Σ?=i I K\ ^ 6, b > 0, N ^ oo} is
collectively compact, the convergence of the series being in J5?b[X, Y].

Proof, (a) Let $SΓ be the convex hull of ST. As ^T is col-
lectively compact, there exists a neighbourhood V of zero in X such
that ,.sf~V is relatively compact in Y. Now,

where bar denotes the closure. Since Jϊ^V is compact and Y is
quasi-complete, ϊζWΨ) is compact [9, 20.6(3)]. It follows that

is collectively compact. The proofs of (b) —(e) are similar to those
in [1].

PROPOSITION 2.2. Let X, Y and Z be topological vector spaces

and :yΓ c £? [X, Y], ^// c Sf [Z, X], ^T c £f [ Γ, Z] then:

(a) ,9ιί collectively compact and ^ equicontinuous ==* ,^^/f
collectively compact.

(b) J%Γ collectively compact and <yίr relatively compact in the

S^b [X, Y] => Λ^. ίΓ is collectively compact.

Proof, (a) Since Sf is collectively compact, there exists a
neighbourhood V of zero in X such that SίΓV is relatively compact
in Y. Further, by the equicontinuity of ^ " , there exists a neigh-
bourhood W of zero in Z such that ^//Wa V. Hence

From this the assertion follows,

(b) See [4], Prop. 2.3 (b).

COROLLARY. If :?ιf c S^ [X, Y] is collectively compact and
^/f c £f [Z, X] is bounded where Z is barreled and X locally convex,
then S^Γ^/S is collectively compact.

, Y] with the topology of uniform convergence on bounded sets of X.
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Proof. For, if Z is barreled and X is locally convex then
c £ί\ [Z, X] is bounded if and only if it is equicontinuous.
It is proved in [1] that a compact set of compact operators on a

Banach space is collectively compact. We shall prove a similar but
slightly weaker result for topological vector spaces. For this, we
introduce the following definitions.

DEFINITION 2.2. A linear operator KeJ^[X, Y], where X and
Y are topological vector spaces, is said to be semi-compact if it maps
every bounded subset of X into a relatively compact subset of Y.

It is obvious that a compact operator is semi-compact. The con-
verse is also true if X is a quasinormed space.

DEFINITION 2.3. A set of linear operators .3Γ c ^f [X, Y] is
said to be collectively semi-compact, if and only if, for every bounded
set Bd X, ,%^B is relatively compact in Y.

It is clear that a collectively compact set of operators is collec-
tively semi-compact and the propositions proved so far, for collec-
tively compact sets, are also true for collectively semi-compact
operators if X is bornological and Y locally convex, because, a semi-
compact operator is bounded on bounded sets and therefore continu-
ous if the domain space is bornological.

We prove the following

LEMMA 2.1. Let J?~ be an equicontinuous family of operators
on a compact set ,9Γ into a topolological vector space Y. Let J^~ be
compact with respect to the topology of pointwise convergence. Then
the set J?~(.yr) = {f(K): / e J^~, Ke.yT} is compact.

Proof. ^~ is equicontinuous, therefore, f{K) is jointly continu-
ous, in the sense, that the map {^~ x J3Γ) —•> Y defined by
(/, K) —* fK is continuous relative to the product topology [8, 8.14].
Now j ^ ~ x 3ίΓ is compact, hence J^~' 3ίf] the continuous image of
J^ x ,9Γ is compact.

The following proposition generalizes the theorem 3.6 in [4].

PROPOSITION 2.3. Let X, Y be locally convex spaces, X borno-
logic. Let ,5ίΓ be a set of semi-compact operators, compact in
Sfb [X, Y]. Then 3ίΓ is collectively semi-compact.

Proof. Define a map /,: £f [X, Y] -> Y by fx(K) = Kx for
Ke ^f [X, Y] and each x e B, a bounded set in X. Consider the set
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— {fχ: x^B). We prove that ^ is equicontinuous Let V be
a neighbourhood of zero in Y. Then the set W = {K: KB a V) is a
neighbourhood of zero in j5fb[X, Y]. Now,

= {fx(K): fxejη KeW}

= {iΓα;: iΓe W, xeB}

= W(B)cz V.

This proves the equicontinuity of ^ 7 Now, the closure jP^ in the

pointwise topology is also equicontinuous. Also, J^K c ^ K = KB

which is compact by hypothesis on J%ΐ Hence j^~K is relatively

compact in Y, for each Ke ^%7 From this follows the compactness

of ~W \&Λ&, Problem H]. From Lemma2.1 we deduce that ^ ' ^ \ 5 Γ *

is compact. But j r £ = ̂ r c y χ Hence ^TB is relatively

compact. This implies that SίΓ is collectively semi-compact.

COROLLARY. If Y is complete, then every totally bounded set
SίΓ of semi-compact operators in J^?h [X, Y] is collectively semi-
compact.

Proof. In this case J2% [X, Y] is complete. Hence JUT is com-

pact. By the proposition <βΓ is collectively semi-compact. Then so

is

PROPOSITION 2.4. Suppose X, Y are locally convex spaces. Let Y
be reflexive. Then every set Sf of semi-compact operators bounded
in J?fb [X, Y] is collectively weakly semi-compact.

Proof. Since 3ίΓ is bounded in £fh [X, Y], ^ΓB is bounded for
every bounded set B c X. Since Y is reflexive, every closed bounded
set is weakly compact. [10, Th. 36.5]. The conclusion follows.

3* Convergence properties of collectively compact sequences of
operators.

PROPOSITION 3.1. Let X and Y be topological vector spaces, Y
sequentially complete. Let T, Tn e J^f [X, Y] for all n. Then:

(a) Tn—+ T in <2fh [X, Y] if and only if Tn—>T in pointwise
topology and {Tn — T) is totally bounded in Jίfb[X, Y].

(b) If, in addition, X is bornologic and Y locally convex, then
Tn->T in £fb[X, Y] and each Tn - T semi-compact => {Tn - T) is
collectively semi-compact.
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Proof, (a) It is evident that Tn-+T in £fb [X, Y] Tn~+T
pointwise and {Tn ~ T) is relatively compact, and hence, totally
bounded.

For the reverse implication assume that Tn ~ T-+* 0 in J*fb [X, Y\.
This implies that for a given neighbourhood V of zero in Y, and
bounded set B in X, there exists a sequence % such that (Tn. — T){B)
ςt V9 for each i = 1, 2, •••. Since {Tn — T) is totally bounded,
there exists a Cauchy subsequence {Tn.. — T} which must converge
in ^fb[X, Y] by completeness of Y. Because Tn — T—>0 pointwise,
it follows that Tn.. - T-*0 in £fh[Xf Y]. Therefore (Tnij - T){B)
c V, j > N, a positive integer. This is a contradiction.

(b) This follows from the fact that a totally bounded set of
semi-compact operators is collectively semi-compact if Y is a complete
locally convex space and X is bornologic (Cor. Prop. 2.3).

REMARKS. If Tn—>T pointwise and X is of second category, the
Banach-Steinhaus theorem implies that the {Tn} is equicontinuous,
and hence, the pointwise convergence is uniform on the compact sets
of X. On the other hand, as proved in (a) above, {Tn—T} totally
bounded and Tn—*T pointwise imply convergence in Jίfb [X, Y], i.e.
uniform convergence on bounded sets. This leads to the following
propositions.

PROPOSITION 3.2. Suppose Tn-^ T pointwise on X, where X is
bornologic and of second category. Suppose ^>Γ c J^ [X, X] is col-
lectively semi-compact. Then (Tn — T) K—+ 0 in £^h [X, X] uniformly
for Ke J^Γ

PROPOSITION 3.3. Let Tn-*T pointwise and J%Γ a £f [X, X] be
totally bounded in the pointwise topology. Suppose X is complete
and of second category. Then TnK—* TK pointwise uniformly for

Proofs. Similar to Propositions 3.1 and 3.2 in [2].

4* Asymptotic convergence and collectively compact sequences
of operators.

The concept of convergence of operator sequences in the uniform
operator topology in the normed spaces, is generalized in the follow-
ing manner in [5].

DEFINITION 4.1 A linear operator if on a topological vector space
E into itself is said to be the asymptotic limit of a sequence Kn of
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linear operators, if and only if, there exists a neighbourhood V of
zero in E, a sequence an of scalars —> 0 as n —•> ^ and a bounded set
BdE such that (i£ - Kn) F c αΛ 5, for n = 1, 2, . This mode of
convergence will be denoted by Kn -»K, and K will be called the F-
asymptotic limit of iΓn.

DEFINITION 4.2. A linear operator K on i? to itself is said to be
F-totally bounded if and only if F is a neighbourhood of zero and
KV is totally bounded in E.

DEFINITION 4.3. If K is the V-asymptotic limit of Kn and if
each Kn is F-totally bounded, K is said to be asymptotically F-total-
ly bounded.

PROPOSITION 4.1. If K is asymptotically V-totally bounded, then
K is V-totally bounded.

Proof. [5, 4.2-1].

PROPOSITION 4.2. Let T, T n e ^ [X, X] and let T be the V-

asymptotic limit of Tn where each Tn is W-totally bounded. Then
{Tn — T) is collectively totally bounded.

Proof. Tn-» T and each Tn T7-totally bounded implies T is W-
totally bounded (Prop 4.1.). Now, Tn -» T => there exists a sequence
an of scalars —> 0 as n —•> co, a bounded set Ba X such that

(Tn - T)(W)danB for all n .

Let F be any neighbourhood of zero. Choose a balanced neigh-
bourhood V1 of zero such that VΊ + V1 c V. Since B is bounded,
BczaV, for some scalar a. Therefore, (Tn - T)(W)czanaV1. We
can choose N such that | aan | < 1 for n > N. Hence (ΓΛ— Γ)(TΓ) c Vi
for n > N. It follows that

As (Γi — !Γ)(W) is totally bounded for each i, so is their finite
union. Hence, (Jί=i (Ά - T)(W) c Uf=i (^ + VJ for some AT, a
positive integer, and x{ e E. Hence,

U(Tn- T)(W)c:[J(xi+ V) .
n i — l

This proves the proposition.
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COROLLARY 1. Let T, Tne.Sf [X, X] where X is quasi-complete.
Suppose Tn is W-compact i.e. Tn(W) is relatively compact for some
neighbourhood W of zero in X. If Tn-» T, then {Tn — T) is col-
lectively compact.

Proof. Tn^> T and each Tn ΐ^-compact => T is TF-compact be-
cause X is quasi-complete [5, 4.2-1 Cor. 3] From the above pro-
position it follows that \Jn(Tn - T){W) is totally bounded. Hence,
the closure \Jn(Tn — T)(W) is bounded and closed and, therefore,
complete by the quasi-completeness of X. Thus, \Jn(Tn — T){W) is
totally bounded and complete, and therefore compact.

COROLLARY 2. If Tn-*> Ton a neighbourhood W of zero in X, and
each Tn is W-totally bounded, then {Tn — T) is collectively compact
if X is a Montel space.

Proof. From the Proposition 4.2 it follows that {Tn - T) is col-
lectively TF-totally bounded, and, therefore TF-collectively compact,
as X is a Montel space.

PROPOSITION 4.3. Let Tn -» T, where T+, Te^ [X, X]. If
^Γd^f[X,X] is collectively compact, then (Tn-T)K-»0 uni-
formly on J%<

Proof. Since J2Γ is collectively compact, there exists a neigh-

bourhood A of zero in X such that J ^ A is compact in X, and hence
bounded. Now, Γw-» T=> there exists a neighbourhood W of zero
in X, bounded set B a X, and a sequence an of scalar s — 0 such that
(Tn- T){W)aan B for all n. As STA is bounded, /^TAczrW for
some scalar r. Hence, (Tn - T)(STA)ci(Tn - T)(rW)(z(ranB), for
all n. Since an and B are independed of ^Γ, (Tn - T)K-»0, uni-
formly on ST.

5. Collectively compact sets in weak topology* In this section
we consider the inter-relation between a collectively compact set of
operators and its dual family.

PROPOSITION 5.1. Let E be a locally convex topological vector
space and Sf a family of continuous endomorphisms, uniformly
bounded on a neighbourhood V of zero in E. Let 3ίΓ* be the family
of dual operators. Then ^%Γ* considered as the set of mappings
{K*: E?—»E£*} is collectively compact, where E* is the strong dual
and E** the w*-dual of E.
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Proof. By hypothesis, SΓV = B is a bounded set in E. Con-
sider neighbourhood W of zero in E* defined by

W={f: feE*, Sup |<j/, /> | < l}
I yeB )

= {/: / e E*, Sup | <», # * /
xeV

K* e Jf

It then follows that

fe W=> \<x,K*f>\ < 1 for all xe V, and K*eJ?Γ*

= > i f*/e F°, the polar of V in E, for all ίΓ*e

v° .

Now, by the Banach-Alaoglu theorem [8, Th. 17.4], V° is w*-
compact in ϋ7*. Hence «.̂ Γ*W is relatively compact in Jξ/̂ *. This
completes the proof.

PROPOSITION 5.2. Le£ E be a semi-reflexive locally convex space
and 3ίf] a family of continuous endomorphisms on E. If 3ίΓ is
uniformly bounded on a neighbourhood V of zero in E, then 3ίΓ
considered as a family of operators from (Es*)f-+(E*)** is collectively
compact.

Proof. From Proposition 5.1 it follows that the family J£Γ* of
operators from E* —> E£* is collectively compact. Therefore, there
exists a neighbourhood W of zero in E* such that B = J?f* W is
relatively compact in E%+ and, hence, bounded in w*-topology. From
semi-reflexivity and from the fact, that a weakly bounded set is also
bounded in the initial topology [8, Th. 17.5], it follows that B is
bounded in E. From Proposition 5.1, it follows that

is collectively compact. Also x*3ίΓ = Jl^** by the continuity of each
Ke 3T. Hence the result.

COROLLARY. Let K be a continuous linear endomorphism on E,
a locally convex space. Suppose K is bounded on a neighbourhood of
zero in E. If E is reflexive, then K is weakly compact.

PROPOSITION 5.3. Let E be a locally convex, reflexive space, and
,9Γ a family of continuous endomorphisms on E. Let J%Γ* be the
corresponding dual family of endomorphisms on E*. Then ,3^f is
collectively weakly compact if and only if 3ίΓ* as the family of
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operators {K*: E*—>E**} is collectively compact.

Proof. Suppose jyίΓ* is collectively compact as the family of
operators {K*: Es*—+E**}. Then there exists a neighbourhood W of
zero in E*9 such that JVΓ*(W) is relatively w*-compact. This im-
plies, since E is reflexive and, therefore barreled, that J%Γ*(W) is
equicontinuous, [10, Th. 33.2]. Hence, there exists a neighbourhood
V of zero in E, such that J&T*(TF)c V°, the polar of V. [10, Prop.
32.7]. Therefore,

\<K*w,x>\*ζl,

for all xeV, K*e^T*, we W=>3Γ{V)c: W° .

From the reflexivity of E and the Banach-Alaoglu theorem,
is relatively ^-compact. This proves that 3ίf~ is collectively weakly
compact.

The converse follows from Proposition 5.1.

COROLLARY. Let K be a continuous endomorphism on a reflexive
locally convex space E. Then K is weakly compact if and only if
K*: ES*—>E** is compact.

This is a partial generalization of the Theorem 2.13.7 in [7].
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