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APPROXIMATION BY HOLOMORPHIC FUNCTIONS
ON CERTAIN PRODUCT SETS IN C*

BARNET M WEINSTOCK

In this paper we prove several theorems concerning appro-
ximation by holomorphic functions on product sets in Cn where
each factor is either a compact plane set or the closure of a
strongly pseudoconvex domain. In particular we show that
every continuous function which is locally approximable by
holomorphic functions on such a set is globally approximable.
Our results depend on a generalization of a theorem of
Andreotti and Stoll on bounded solutions of the inhomogeneous
Cauchy-Riemann equations on certain product domains.

1* Statement of results* If i f is a compact set in Cn let C(K)
denote the Banach space of continuous complex-valued functions on
K with the uniform norm, and let H(K) denote the closure in C(K)
of the space of functions which are holomorphic in some neighborhood
of K. When n = 1, each function in H{K) is the uniform limit of a
sequence of rational functions which are finite on K and the spaces
H(K) (usually denoted R{K) in this instance) have been extensively-
studied. In particular, the following properties of H(K) are well-
known in the case n = 1 (cf. Chapter 3 of [2]):

(1) If U is a neighborhood of K, feC\U), and df/dz = 0 on
K, then f\KeH(K).

(2) If f e C(K) and if for each x e K there is a neighborhood
Ux of x in C such that f e H(K f] ϋβ), then feH(K).

(3) If μ is a complex Borel measure on K, then μ = dμ/dz where

β(z) = —
π

is locally integrable on C. A measure μ is an annihilating measure

for H(K)(i.e., \fdμ = 0 for all f e H(K)J if and only if μ is sup-

ported on K.

Properties (l)-(3) are not valid for arbitrary compact sets of C*9

even if one restricts one's attention to holomorphically convex, or
even polynomially convex sets. A celebrated example of Kallin [6]
shows that (2) fails in general for polynomially convex compact sets.
Also, Chirka [3], by modifying her example, has shown that for each
positive integer s there is a compact holomorphically convex set K8

in C3 and a function / , e C°°{K8) such that / . $ H(KS) although dfs
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vanishes on Ks to order s.1

In this paper we consider compact sets K c Cn of the form K =
KL x x Kr where each K{ is either a compact set in C or the
closure of a strongly pseudo-convex domain in Cni. For such K we
prove the following theorems:

THEOREM 1.1. If U is a neighborhood of K, feCr+ί(U), and
daf/dza = 0 on Kfor all a = {au , O with Σ a* ^ r, then f e H{K).

THEOREM 1.2. If f e C(K) and if for each xe K there is a neigh-
borhood Ux such that f e H(K Π Ux), then feH(K).

THEOREM 1.3. A measure μ on K is an annihilating measure
for H(K) if and only if there exist distributions Xl9 , Xn of order
<^ r — 1 with support in K such that μ = Σ dXj/dz3 .

It is possible that Theorem 1.1 remains valid if / is merely
required to satisfy df/dzj = 0 on K, 1 ̂  j ^ n. We know of no counter-
example.

Theorem 1.2 implies an approximation theorem of the Keldysh-
Mergelyan type if, in addition to the above hypotheses, K has the
"segment property", i.e., if there is an open cover {Z7J of dK and
corresponding vectors {wj such that for 0 < t < 1 z + twζ lies in the
interior of K whenever z e K Π [/<. In this case every function which
is continuous on K and holomorphic in the interior of K satisfies the
hypotheses of Theorem 1.2 so lies in H(K). In particular, if K is a
product of smoothly bounded domains, then K has the segment
property. The case r = 1 when K is the closure of a strongly pseudo-
convex domain in Cn has been treated by Lieb [8] and Kerzman [7].
We use their method to prove Theorem 1.2.

If we consider Theorem 1.3 in the case r = 1 we conclude that
each annihilating measure for H(K) where K is the closure of a
strongly pseudo-convex domain is the ^-divergence of an w-tuple of
measures supported on K (distributions of order 0). This implies the
following localization theorem for annihilating measures which is well-
known in case n — 1 [2, Lemma 3.2.11] and which is a sort of dual
version of Theorem 1.2, which it clearly implies.

THEOREM 1.4. Let K be the closure of a strongly pseudoconvex
domain in Cn. Let μ be an annihilating measure for H(K). If

is a finite open covering of K there exist annihilating measures
1 The referee has pointed out that Kallin, in an unpublished remark and without

knowledge of Chirka's paper, observed that her counterexample could be made to yield
this additional property.
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fo for H(K Π Ui) (in particular each μt is supported in Ϊ7f) such that

All of our results are derived from an estimate (Theorem 2.2
below) for Cauchy-Riemann operator in certain product domains. This
theorem is a generalization of a theorem of Andreotti and Stoll [1] for
the case of a polycylinder. Our proof, like theirs, follows the induction
procedure used in the proof of the familiar Dolbeaut-Grothendieck
lemma, but we make essential use of the representation theorem of
Grauert and Lieb [5] for bounded solutions of the Cauchy-Riemann
equations in strongly pseudo-convex domains.

2* The basic estimate*

DEFINITION 2.1. An open set G in Cn is called admissible if (a)
n = 1 and G is a bounded open set or (b) n > 1 and G is a strongly
pseudo-convex domain with C°° boundary.

The following theorem is due to Grauert and Lieb [5] in the case
n > 1, and is simply a restatement of known properties of the Cauchy
kernel when n — 1.

THEOREM 2.1. Let G be an admissible open set in Cn. Then
there exists a differential form Ω(ζ, z) of type (n, n — 1) in ζ, of type
(0, 0) in z, defined in a neighborhood of G x G such that

( i ) Ω is of class C°° off the diagonal of G x G:
(ii) there is a neighborhood of dG x G in G x G in which dzΩ —

0;
(iii) if g is a bounded (0, 1) form of class C°° such that dg = 0

on G, and if

f{z) = - f g(ζ) A Ω(ζ, z)
JG

then f e C^iG) and df = g in G;
(iv) there is a constant A(G), independent of z such that

JG n

where α(ζ, z) is any coefficient of Ω and dm is Lebesgue measure on
G;

(v) G has a sequence {(?„} of admissible neighborhoods whose
intersection is G such that {Δ(GV)} is a constant sequence.

Also, G is the union of an increasing sequence of admissible open
sets {Gv} for which {Δ(GV)} is a constant sequence.
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If G is an open set in Cn we denote by BC~(G) the space of func-
tions on G whose derivatives of all orders are bounded and continuous
on G. We will need the following corollary of Theorem 2.1.

COROLLARY. Let G be an admissible open set in C%. Let Uk be
open in C%k, k = 1, 2. Suppose that

g,(z, x,w), , gn(z, x, w) e BC°°(G x U, x U2)

and that g — Σ gjdZj satisfies dzg — 0 in G x Uι x U2. Then there
exists f e BC°°(G x V1 x U2) such that

( i ) dj = g in G x Ê  x ί72;
(ii) H/il^ J ^ m a x ^ J I ^ H;
(iii) if D is a differential operator on C%1 x C 2 with constant

coefficients, then

\\Df\\£J(G)m&x\\Dgj\\.
j

(In particular, if each gό is holomorphic in U2 for fixed (z, x) 6
G x U1} then f has the same property.)

Here | . | / | | = s u p σ x c Γ l X E 7 2 1 / | .

Proof. Let f(z, x, w) = — \ g(ζ, x, w) A Ω(ζ, z), where Ω is as in
JG

Theorem 2.1. Since all the derivatives of g are bounded we may
differentiate under the integral sign as often as we wish. The corol-
lary then follows immediately from Theorem 2.1.

Let G — 6?! x x Gr be an open set in Cn where each G{ is an
open set in Cnκ If / is a function on G and g — Σ QAZJ is a (0, 1)
form on G we will use the following notation:

r » = max \\d«fldz«\\ΰ
a e A k , t

(where a = (au •••, an) is an ^-tuple of nonnegative integers, \a\

d"f/dz° = d^

and

Akft = {a — (al9 , an): \a\ ^ k and ^ = 0

if j > nx + + wj)

\\g\W = \\g\\(ok'r)
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We can now state our basic result.

THEOREM 2.2. Let G — Gx x x Gr be an open set in Cn where
each Gι is an admissible open set in Cnκ Let g be a C°° (0, 1) form
in G such that dg — 0 in G and \\g\\{G~ι) < °° Then there exists f e
C°°(G) such that

(i) df = g in G

(ϋ) WfWσ^iWWgWZ-"-
Here A is any number ^ 1 such that A ̂  A(Gi) as defined in Theorem
2.1.

Proof. We first prove the theorem in the case when each coeffi-
cient of g is in BC°°(G).

If g is a (0,1) form on G, then g — ̂ gl where each gι is a (0,1)
form on Gι with coefficients depending only on the other variables as
parameters. For each k, 1 ̂  k ^ r we consider the following Asser-
tion k:

Let G = G1 x x Gr be as above. Let g be a (0,1) form on G
whose coefficients lie in BC°°(G) and such that dg — 0 in G. Suppose
that

where each gι is a (0,1) form on Gi9 (with coefficients depending also
on the other variables). Then there exists f e BC°°(G) such that

(i) df = g
(ii) 11/11, :g (34*||firr-ι *-1J.
We shall prove Assertion 1 and then show that for k = 1, 2, ,

r — 1, Assertion k implies Assertion k + 1. (Of course Assertion r
implies Theorem 2.2 in the case g is of class BC°°.)

If g satisfies the hypotheses of Assertion 1, then g is a 5-closed
(0,1) form in Gx whose coefficients are holomorphic functions in G2 x
• x Gr for fixed z in Gx. Assertion 1 thus follows directly from the
Corollary to Theorem 2.1.

Suppose now that Assertion k is true and that g satisfies the
hypotheses of Assertion (k + 1). Then

Notice that dg = 0 implies dk+1g
k+1 = 0 (where dk+ι differentiates only

with respect to the variables from Gk+1) and that the coefficients of
g are holomorphic in Gk+2 x x G>. Applying the corollary to Theo-
rem 2.1 we conclude the existence of u e BC°°(G) such that dk+ίu = gk+ι

and such that u is holomorphic in Gk+2 x x Gr. Let s = g — du.
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Then 3s = dg — 0 and s is clearly a sum of (0, l)-forms involving only
differentials in the variables from Gu •••, Gk. By Assertion k there
exists t e BC°°(G) such that dt = s.

Let / = u + t. Then 9/ = g. Also,

But

I k \\(k~l,k~D

Σ/|

max

Hence

This concludes the proof in the case when g is of class BC°°.
Suppose now that g satisfies the hypotheses of Theorem 2.2. By

Theorem 2.1 and what has been proved so far, we can find a sequence
of open sets {Gv} and a constant C independent of v such that

( i ) Gu c Gu+1 c G

(ii) G= UGV

(iii) there exists /„ e J5C°°(G,)
such that dfu = # on Gy and

For each /̂  let Sμ — {fv\Gμ:v ^ μ). Since Λ — fμ is holomorphic
on Gμ for each v, and {/„ — fμ \ Gμ} is uniformly bounded, Sμ is rela-
tively compact by MonteΓs theorem. Thus we may choose, for each
μ, a subsequence {fv,μ} of Sμ which converges uniformly on Gμ, such
that {fv,μ+1} is a subsequence of {fv,μ}. Then the diagonal sequence
{fμ,μ} converges uniformly on each Gμ to a continuous function /
defined on all of G. But / is in fact in C°°(G) since, if v > μ9 fvv — fμμ

is holomorphic on Gμ and /„„ — fμμ—>f — fμμ on G^. Thus f — fμμ is
holomorphic, hence in C^iGμ) so / e C~{Gμ) for each μ. This also
shows that df = g on G. Finally, if z e G then there exists μ such
that ze Gv for v ^> μ. This means that
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but f(z) = \\mfμμ{z) so

3* Proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. We may suppose that / has compact

support in U. Choose φ e C°°(Cn) such that φ ^ 0, U = 1 and φ - 0

outside the closed unit ball. For each d > 0 define fδ by

Λ(s) = \ /(« — Sw)φ(w)dw .

Then fδeC°°(Cn),fδ->f uniformly as <5->0 and for each a,

(dafδ/dza)(z) - ί(3α/δ/3^)(^ - δw)φ(w)dw

so if G is an open set in Cn,

w h e r e G 5 = {z — dw: zeG,\w\^l).

For each ί, 1 ^ i ^ r we can find a sequence {&£} of admissible
neighborhoods such that Kt — Π G< and such that {Δ{Gt)\ is a constant
sequence. Let us denote the constant by Δi9 Choose A ^ 1 such that
A ^ At for 1 ^ i ^ r.

Let ε > 0 be given. Choose δ0 such that | | / - fδ\\κ < ε/2 if δ <
δ0. Choose v such that if G = Gί x x G>, then

Then there exists d < §0 such that

By Theorem 2.2 we can choose u e C°°(G) such that du = 3/δ and

Then h = fδ — u is holomorphic in a neighborhood of i£ and

l l / - Λ | | i C ^ | | / - / , | U + H Λ - A I U

< e / 2 + | | « | U

<e/2+(3/f)' | |Λ| |5

<s/2

< ε .
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Proof of Theorem 1.2. (Here we follow Lieb [8].) Since K is
compact we can choose finitely many neighborhoods UXl, , UXm which
cover K. Let U = UXί U U UXm. Choose sequences {G-} of admis-
sible neighborhoods of Ki9 1 ^ i ^ r as in the proof of Theorem 1.1
and let Δ be as above.

Let ε > 0 be given. Choose v such that Gv = (?ί x x Gv

r lies
in Z7, and such that there exist holomorphic functions h3- on Ux. Π Gv

with | | / - Λyll^.n* < e. Notice that \ht - hs\ ^\f - ht\ + \f -%\ <
2ε on Ux. Γ\UX. Γ\ K. By choosing v larger if necessary we may suppose
t h a t \hi%- hj\< 4ε on UH Π ^ Π G\

Choose a C°° partition of unity φl9 , φm subordinate to the cover
{Ux.}. Letg^ΣjiΦiih-hi). Notice that ||flrfc||^fcnJ5:<_2e. A l s o ^ - ^ -
hs - hk and dg, - dgk = 0 on UXj Π ϊ7βA; Π G\ Thus {3̂ -} defines a (0, 1)
form g on Gv which satisfies dg — 0 so by Theorem 2.2 we can find
u e C°°(GV) that du = # on Gv and

But

and

3^ f c/3^ - Σ (d'Φi/S^KK - hi) .
i

Hence \\g\\{G»~ι) ^ 4εC where C is a constant depending only on the
partition of unity {^}.

Let bj = #j — M. Then 3&y = 0 on UXj Π Gv and δy — bk = gά — gk —
hj — hk. Thus {^ — bj} defines a holomorphic function h on Gv and

- h\\κ rg max ( | | / - hό\\κ + | | ^ |U) + \\u\

^ ε + 2ε

where C and J are independent of ε. Since ε was arbitrary, this
completes the proof.

4* Annihilating Measures for H(K). If G is an open set in Cn

we denote by A(0>1)(G) the space of differential forms of type (0,1) on
G of class C°°. We topologize A(0>1)(G) as the direct sum of n copies
of the Frechet space C°°(G) with the topology of uniform convergence
on compact subsets of G of derivatives of all orders. The dual space
of C°°(G) is the space of distributions on Cn whose support is a compact
subset of G. We will identify the dual space of A{0Λ](G) with the
space of distributions with compact support in G.
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LEMMA 4.1. Let G be a domain of holomorphy in Cn, K a compact
subset of G, and μ an annihilating measure for H(K). Then there
exist distributions \, , λΛ with compact support in G such that
μ = —Y.dXjjdZj.

Proof. C°°{G) and A(0A)(G) are Frechet spaces. Since G is a
domain of holomorphy, 3 maps C°°(G) onto the closed subspace of (0,1)
forms g satisfying dg = 0. The measure μ, considered as a continuous
linear functional on C~(G), annihilates the kernel of 3, so by a theorem
of Dieudonne and Schwartz [4], μ is in the image of the adjoint,
9*, of 3. But if λ = (λi, •••, λn) is an w-tuple of distributions with
compact support in G and / e C°°(G), then

(3*λ)(/) = λ(3/) = Σ M3//32,)

Thus for some λ^ •••, λΛ we have μ = — Σ δλ̂  /δ^ .
We will also consider, for a bounded open set G in Cw, the Banach

space Cr(G) of continuous functions on G whose derivatives of order
^ r are bounded and continuous on G, with the norm

| | / | | S = max

where a is a 2w-tuple of non-negative integers and

Da =

A continuous linear functional on Cr(G) is easily seen to define a
distribution on <7% with support in G. In addition, we will denote
by B{

r°>
])(G) the space of (0,1) forms on G with coefficients in Cr(G),

topologized as the direct sum of n copies of Cr(G) with the norm

If G x c G 2 are two bounded open sets in Cn let R: B{

r°>
ι)(G2) -»

B{ryl){G^ be the operator which restricts forms in G2 to G1# Then JB*
is a norm-decreasing embedding of the dual space of B{?Λ)(GΪ) into
B?>ι){G2)* since, if λ e B^iG,)*, and 0 = Σ Λ is in B{

r°>
ι)(G2),

\(R*\)(g)\

so | |Λ*λ||
With these preliminaries we can proceed to the proof of Theorem

1.3.

Proof of Theorem 1.3. Let {Gv} be a sequence of bounded open
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neighborhoods of K such that
( i ) G . c G U
(ϋ) ϊ=nft
(iii) there exists a constant C independent of v such that if g e

A{0'ί)(G1)ydg_= 0 in Gv, and \\g\\&~ι) < «,, then there exists feC°°(Gv)

such that df — g and

If μ is an annihilating measure for H(K) we can apply Lemma
4.1 to obtain, for each v, an w-tuple λ* = (λ£, •••, λ£) of distributions
with compact support in Gu such that μ = — ̂ dXj/dzj. Let TΓV be
the subspace of Cr~1(G^) consisting of restrictions to Gv of C°° func-
tions on C*. If f e Wv we can find h e C°°(GV) such that / — h is
holomorphic on (?„ and |[Λ||βv ^ C\\df\\{J~ι) where C is the constant in
(iii) above. Thus

|λ>(5/)| -

where \\μ\\ is the total variation of μ. This means that Xv defines a
continuous linear functional on the subspace dWv of B^KGJ) of norm
^C\\μ\\. By the Hahn-Banach theorem there is an %-tuple, which
we will continue to denote by λ% of continuous linear functionals on
Cr~\Gv) such that

(a) λ*(3/) = \fdμ for all / e C~(Cn)

(b) \\X*\\ ^ C| |μ| | .
Now, by composing with the adjoint of the appropriate restric-

tion operator we may consider each λv so obtained as a continuous
linear functional on B^-KGi). Then the sequence {λv} constitutes a
bounded sequence of elements in the dual space of a separable Banach
space. Consequently, there is a subsequence {λv'} and an π-tuple λ —
(X, , λw) of continuous linear functionals on Cr~ί(Gι) such that
λ"'—>λ in the weak star topology. Since each X)' is supported, as a
distribution, on Gv, and since K = Γ\GU, it follows that the support of
each λy, as a distribution, lies in K. Moreover, if / is a C°° function
on Cn then

λ(3/) = \imXy(df) =

i.e., μ= —'ΣidXj/dZj. Finally, it is clear that each X3 is of order
< r — 1.

Conversely, suppose μ is a measure on K, and μ — Σ dXj/dz, where
λx, , Xn are distributions with compact support on K. If / is holo-
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morphic in a neighborhood of K, then df/dzj, 1 :g j ^ n, are identi-
cally 0 in a neighborhood of K so

\fdμ = Σ (dXj

since the λ, are supported on K.

Proof of Theorem 1.4. Let {φ{} be a C°° partition of unity sub-
ordinate to the open covering {?7J, i.e., suppose ΦieC°°(Ui), φi has
compact support, 0 ^ φt ^ 1, and Σ ^ = l on a neighborhood of JBΓ.
1/ μ is an annihilating measure for H(K), then by Theorem 1.3
there exist measures λ1? , Xn on K such that

μ - - Σ 3λ,Λ = - Σ

- ~ Σ Σ ΦiidXsfdzj) - Σ Σ

= Σ {̂ i" - Σ

where each JM4 is a measure compactly supported on Ut Γi K. If h is
holomorphic on E7i Π if> then

for 1 ^ i ^ ^. Thus
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