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AN OBSTRUCTION TO FINDING A FIXED POINT
FREE MAP ON A MANIFOLD

MAX K. AGOSTON

The problem of whether a manifold M admits a fixed
point free map is an old one. One well known result is that
if the Euler characteristic χ(M) = 0, then M has such a map.
In the case where M i s a closed differentiate manifold this
follows easily from the fact that χ(M) = 0 if and only if the
tangent bundle of M admits a nonzero cross-section (see Hopf
[4]). But χ(S2n) = 2, and S2n certainly admits a fixed point
free map, namely, the antipodal map. Therefore, the vanishing
of the Euler characteristic of a manifold is only a sufficient,
though hardly a necessary, condition for the manifold to have
a fixed point free map. In the search for other invariants
it is natural to generalize somewhat and state the problem in
terms finding coincidence free maps.

The object of this paper is to give an elementary proof
of the fact that, given a continuous map /: (Wn, δWn) -» (Mn,
dMn) between oriented C°°-manifolds, there is a well defind
obstruction o(f) to finding a special sort of map F:M.-*M
with the property that F(x) Φ f(x) for all xeW. This is the
content of Theorem 1 in §2. F will not necessarily be homo-
topic to /, but then this is something that should not be
required in view of the fact that the antipodal map on S2n

is not homotopic to the identity map either. In Theorem 2
we prove that o(identity) behaves naturally with respect to
tangential maps.

The author would like to thank the referee for bringing the work
of F B Fuller ([2] and [3]) and E Fadell ([1]) to his attention. In
§ 3 we discuss the relationship between this paper and their work and
how Theorem 1 might be generalized to the case / : Kn —> Λf*, where
K is an ^-complex and M is a 1-connected closed manifold. One of
the main differences between our approach and that of Fuller, Fadell,
and others who have worked on the question of coincidences of maps
is that they have allowed themselves to make changes only by a
homotopy. They obtain fairly complete results with that restriction in
terms of Lefschetz numbers (see [1]). On the other hand, we partially
free ourselves from this requirement (in the sense that our maps,
will be homotopic only on the (n — l)-skeleton in general), so that
there are more possibilities for F

Finally, we have restricted ourselves to differentiable manifolds-
because all the constructions and proofs, which are quite simple from
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a geometric point of view, follow from a few elementary facts about
C°°-manifolds. In particular, it is because we have an exponential
map from the tangent bundle of these manifolds to the manifold that
allows us to use a nonzero vector field over the (n — l)-skeleton (which
always exists) to homotope any given map to another which is
coincidence free with the first on the (n — l)-skeleton. Thus, the
whole problem reduces to being able to make maps on a disk coincidence
free in a certain way, which also is not hard. Most probably, the
results themselves are true for topological manifolds, but the proofs
would be more technical.

1* The definition of o(/, g9 σ). Throughout this paper all man-
ifolds will be compact, connected, oriented and C°°. If M is a manifold,
then TMX will denote the tangent space of M at x and exp^: TMm —*
M will be the standard exponential map. (NOTE, exp^ will not be
defined everywhere if M has a boundary.) We assume that a base
point p has been chosen in the interior of M, int (M). Set Mo ~
M — p. Furthermore, the metric on M will be induced from a suitable
Riemannian metric on its tangent bundle. A good reference for most
of the facts we need to know about vector fields is Milnor [8].

Consider a continuous map / : (Wn, dWn) —• (Mn, dMn), n^l.
Let A be the closed w-disk in int (M) centered at p and of

radius δ > 0. Choose a differentiate map g: (W, dW) —> {M, dM) which
is an ε-approximation to / for some ε > 0, i.e., dist (f(x), g(x)) < s
for all x e W. Just how small δ and ε have to be will be determined
as we go along. That we are able to make the desired choices will
be justified by the fact that we can always change the Riemannian
metric on M. First of all, δ and e must satisfy

( I ) e < dist (x, expβ(v)) < <5/3 for each xeM and each ve TMX

in the domain of exp^ with \\v\\ = 1.
By choosing a small enough δ, we may assume that g is transverse

regular on dD19 and that if Bu , Bk are the components of flΓ^A)
then Bi is an w-disk in int (W) and g \ Bι is a diffeomorphism of 2?<
onto A Let D be the closed w-disk centered at p and of radius ε/2.
Set Ci = g~\D) Π B< and N = W- int (Cx U ••• U Ck). Figure 1 below
should help in keeping track of the various definitions.

Next, let σ be a nondegenerate vector field on M which points
inward at all boundary points of M and such that the isolated zeros
of σ all lie in int (D). Fix distinct vt e TMP, 1 ^ i ^ 2(k - 1), with
|| vt || = 1 and let Sf< = {expp(ίt;4) | ε/2 ^ t ^ δ}. We require further that
σ(x) is transverse to the tangent vector of S< at every x e S{ and
"pointing away from p.9' Define h: N—+M by

h(x) = exp9{xM9(x))/\\σ(g(x))\\) .
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f,9

FIGURE 1

With the right Riemannian metric on M, h will be well defined since
σ points inward on dM. Clearly, h is homotopic to f\N. It also
follows from the definition of σ on the St and (I) that

( I I ) h(x)Φf(x), for xeN, and h((dN - dW) U g-\Sύ U ••• U

flr-1(Sa(*-i))) £ M- int (D); in fact, h(dN-dW) S A - int (D).
Case 1. Assume that n ̂  3. Then we can connect the C« with small

tubes. Let ?v [0, 1] —> JV be disjoint imbeddings which meet 3iV trans-
versally and such t h a t ?><(0) e dCi9 <P<{1) e dCi+1, g(<Pi([0,1]) n B{) = Sit-ι9

and gfadO, 1]) ΓΊ Bi+1) = S2ί Set L4 - ^([0, 1]) and let T* be a tubular
neighborhood of Li in JV. We may suppose that Tt Π T5 — 0 — flfίϊ7*) Π
^(T, ), for i ^ j . Define 5 - ^ ( D ) u 2\ (J U T M and Γ = dB U
Γi U U TVi JB is a closed w-disk. (I) and (II) imply that if we
choose the Tt small enough, then

(III) h(Y)SM- int(D) .

Assume that this is done. Therefore, the problem of extending h to
a map F: W~+M with F(x) Φ f(x) for all xe W reduces to finding
an extension h0: B—+M— int (D) of h\dB with hQ(x) Φ f(x) for xeB.

Let qedD and let G — πn^(M09 q). The orientation of W induces an
orientation on dd; and therefore, in the notation of Hu [5] we get well
defined obstructions 7< = T{h \ dd) e Hn(Ci, dd\ G) with the property
that Ίi — 0 if and only if h\dCi extends to a map A<: C<—*ilf — int {D),

since M — int (D) is a deformation retract of MQ.
Next, let Wo = W — z, where 0(3) = p, and let Q, = J5 — int C*.

Consider
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Hn(W,dW;G)

is I

H»(Ci,dCi;G)

Hn(Cv dCλ;G)® . ®Hn{Ck, dCk;G)

where j*, i = 0, 1, , 5, are induced from the natural inclusion maps.
Define X^H^W, dW; G) by the equation

DEFINITION. o(f, g, σ) = λx + - + λ* e Hn(W, dW; G).

Let di 6 TΓxίΛfo, g) be the elements determined by g(Li). Recall that
TΓ̂ MQ, q) acts on G. This action induces an action of πΊ(Λf0, g) on
ZP(I?, 3B; G). Then it is easy to check from the definitions that the
obstruction T(h\dB) e Hn(B, dB; G) satisfies T{h\dB) = ifOΌ*-^*)) +
α ^ tftfo*-1^*-!)) + ••• + arJΐϋr^vdh It follows that 3tθt~ι{o{f, g,

σ)) = τ{h\dB) if the α< act trivially on £ΓW(J5, 3J5; G).

DEFINITION. / is said to satisfy (*) if the above construction
can be performed in such a way that arjίiόo

LEMMA 1. Let n ^ 3. / will satisfy (*) in any one of the follow-
ing situations:

(a) Mo is (n — l)-simple; in particular, if M is 1-connected.
(b) /#: π^W, z)—+πί{M, p) is onto, or the α̂  above are zero.
(c) For some g, k = 1 above. For example, this is so if f =

identity.

Proof. If M is 1-connected, then MQ is 1-connected because n ^
3. Therefore, (a) is obvious, (c) and the second part of (b) are also
obvious. The first part of (b) follows from the fact that in that case
we can always choose our paths Li so that α* = 0. We need n ^ 3
here in order to be able to realize homotopy classes of paths by
imbeddings.

Let us summarize our discussion in a lemma.
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LEMMA 2. Let n J> 3. Suppose f satisfies (*) and we have
performed the constructions above with respect to a vector field σ and
approximation g. Then there is a well defined obstruction o(f, g, σ) e
Hn{ W, d W; G) with the property that o(f, g, σ) = 0 if and only if there
exists a map h^.W—^M such that

(a) h.lW- int (JS) = h, and
(b) h^B) a M - int (D).

By construction hx will also have the property that hγ{x) Φ f(x)
for x ί Tx U U 2VL. We would like to have ht differ from / on
the Ti also, but we can arrange this if we are a little more careful
about how we define h and hx. (NOTE. The ht we get may not
agree with h on Ti - (dB Π Ti).)

Since n^S, we may assume that g\Li are disjoint imbeddings.
Furthermore, we can also require that σ(x) is transverse to the tangent
vector of g(Li) for every x e g{L^) and "pointing away from p." Then
by changing the Riemannian metric on M and making the Ti still
smaller, if necessary, we can assume that h(Ti)f]f(Tj) = 0 for all i
and j . Therefore, htfTi) Γ) f{Tά) = 0 . Now homotope h^Ti) into a
neighborhood of ^(55) using hx{B) and keeping AJSB fixed. This
can be done simultaneously for all i. In effect, we push h^Tu^ Π 5Cfc)
through ht{B — Ck) towards ht(dB — dCk) We can do this in such
a way so that now ht{x) Φ f(x) for xeTx\J U TA -I But then
Λi(α) Φ f(x) for α? e W, since we have not disturbed anything on M —
int (B).

We have therefore proved the following:

LEMMA 3. Let n^3 and suppose f satisfies (*). Let σ be
a vector field on M and g a differentiate approximation to f as
described above* Then there is a well defined obstruction o(f, g, σ) e
Hn{ W, d W; 7Γ%_1(M0, q)) with the property that o(f, g, σ) — 0 if and
only if there exists a map F:W—+M such that

(a) F(x) Φ f(x) for all xeW, and
(b) F(x) = h{x) for x outside some open n-disk in W, where h

is obtained from σ and g as above.

NOTE, o(f, g, σ) actually depends also on p, q, and the orienta-
tions, but the vanishing of o(/, g, σ) is independent of this data.
Also, since Hn(W, dW; π^^Mo, q)) ̂  πn^(M09 q), we can think of o(f,
g, σ) as bing an element of 7Γw_1(ikΓ0, q).

DEFINITION. Any map F which satisfies the conclusion of Lemma
3 with respect to some a will be called a σ-map for / to indicate its
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intimate relation to σ, namely (b).

Case 2. Assume that n ^ 2. In certain cases we can still define
an obstruction o(f, g, σ) e Hn(W, dW; πn^x{Mΰ9 q)) having the properties
described in Lemma 3. πn^{M09 q) may not be abelian when n = 2.
In that case we identify that cohomology group with πn^(MOf q).
Nevertheless one can manipulate the group formally just like other
cohomology groups.

(a) Suppose M2 is arbitrary and / is the identity map. If we
work directly with πt(M0, q) rather than cohomology groups, then
o(identity, identity, σ) can be defined just like in Case 1, because the
only difficulties that were encountered there were due to the fact
that k could be larger than 1. (k was the number of components of
g~ι{D) for some w-disk D.)

(b) Suppose / is arbitrary and M = Sn or Dn. If M = Sn, then
Mo is contractible and it is easy to show that there is no obstruction
at all to getting a σ-map F:W-+Sn with F(x) Φ f(x) for all xeW
and all vector fields σ. If M — Dn, then there is again no difficulty
in using the procedure of Case 1 to define an obstruction o(f, g, σ) e
πn-i(Dn — p) & Z or Z2 with the desired properties.

DEFINITION. / is said to satisfy (**) if one of the following holds:
(a) n ^ 3 and / satisfies (*).
(b) n — 2 and / is the identity.
(c) M* = Sn or Dn.

2* The obstruction o(/) Suppose we are given a continuous
map / : (Wn, dWn) -+(ikP, dMn) so that / satisfies (**). Then we
defined in § 1 an obstruction o(f, g, σ) e Hn(W, dW; π^Mo, q)) to finding
a σ-map F:W-+M with F(x) Φ f(x) for all xe W. Now we would
like to show that in fact o(/, g, σ) does not depend on σ or g. We
retain the notation developed in §1.

Assume that n ^ 2. Observe that Hn(Wy dW; πn^1{D1 - p, q)) **
^n-i(A — P, Q) = Z Let η = degree {h\dCx) + + degree (h\dCk) e
Hn(W, d W\ π^{Di - P, ?))• (NOTE, degree (h\dd) - T{h\dCύ, which
is the obstruction to extending h\dd to a map from C* —> D1 — int (D).)
It follows from the definitions that if

a: H%W, dW;Z) = Hn(W, dW; πn^{Dx - p, q))

-+H*(W,dW;πn_1(M0,q))

is induced by the coefficient homomorphism πn_1(D1 — p, q) —> πn^{Mΰr

q), then a{η) — o(f, g, σ). Let χ(M) denote the Euler characteristic
of M and set d = degree (/) = degree (f\B: (B, dB) -> (M, Mo)). Then
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it is known that Ύ] — d (index of σ) = d χ(M), where the index of σ
is the sum of the indices at the zeros of σ. (See Milnor [8]; in par-
ticular, the Poincare-Hopf theorem.) This shows that η, and hence
o(/, g, σ), is independent of σ and g.

If n — 1, then M = S1 or D1 and it is trivial to see that o(/, g, σ)
is again independent of σ and g.

DEFINITION- O(/) = o(f, g, σ) for some σ and g. Let o(M) =
o(identity: M-+M).

We can now state the first theorem of this paper.

THEOREM 1. Suppose that f: (Wn, d W1) —> (Mn, dMn) is a continuous
map and that f satisfies (**). Then there is a well defined obstruction
o(f) 6 Hn( W, d W\ π%_i(Mo, q)) with the following properties:

(a) o(f) — 0 if and only if there is a vector field σ on M and
a σ-map F: W—>M with F(x) Φ f(x) for all xe W.

(b) a(degree (f) χ(M)) = o(f).

Proof. Theorem 1 is a consequence of Lemma 3 and the remarks
made at the beginning of this section.

Observe that although F\W0 is homotopic to f\W0, F need not
be homotopic to / . For example, if W = M = Sn and / = identity,
then F is homotopic to the antipodal map and therefore has degree

COROLLARY 1. Let f: (W, dW) -> (M, BM). Then there is a map
F:W~+M such that F{x) Φ f(x) for xe W if any one of the following
conditions is satisfied:

(a) χ(Λf) = 0.
(b) πn^(MQ9 q) = 0.
(c) degree (/) = 0.

In particular, every homotopy sphere admits a fixed point free map.

Proof. If / satisfies (**), then the corollary follows from
Theorem 1. If / does not satisfy (**), then one has to go back and
look at the various constructions in the proof of Theorem 1 to see
that the corollary is still true.

NOTE, (a) and (c) in the corollary follow also from the work
of [1], and [3] in the case where Mn is closed, 1-connected, and
n ^ 3.

The condition πn^ι(MOf q) = 0 is of course very strong. Unfortun-
ately, the map a above is often one-to-one so that o(M) gives us no
more information than χ(M) in that case. However, the next corollary
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is useful for certain spherical manifolds. (See [6] for a definition of
"spherical.")

COROLLARY 2. Let Mn be a closed 1-connected manifold and f:M-+
M. Suppose that all the nonzero elements of ττ̂ _1(ikf0, q) have order
2. Then there is a map F: M—+ M such that F(x) Φ f{x) for xeM.
In particular, M admits a fixed point free map.

Proof. The conditions on M imply that M is spherical and that
χ{M) = 2 or 0. The case χ(M) = 0 is clear. If χ(M) = 2, then o{f) =
^(degree (/) 2) = 0, and we can apply Theorem 1.

Next, let / : (Mn, dMn) ->(Wn, 3Wn) be a continuous map which
preserves the tangent bundles. It is well known that the Euler
characteristic behaves naturally with respect to such maps, i.e., χ(M) =
degree (f) χ(W). We want to show now that the obstructions defined
in this paper satisfy an analogous formula.

Approximate / by a diίfererentiable map g: (M, dM) —>(W, dW).
If σ is a vector field on W, then g will induce a vector field g*σ on
M. We can also find a closed w-disk D S i n t W so that g~\D) =
C1 U U Ck, where d is a closed %-disk in the interior of M and
g\Ci> Ci~^D is a diffeomorphism. Assume that the zeros of σ are
contained in int (D). Then all the zeros of g*σ will lie in g~ι{D). In
fact, for each zero of σ, there will be k zeros of g*σ with the same
index.

Let p and z be the base points of M and W, respectively, and
let n ^ 2. By connecting the d with little tubes we can find a closed
w-disk JS such that d U U Ck £ B § int M and p e B. If we assume
that Mo and Wo are (n — l)-simple, then we can ignore base points.
Therefore, g, and hence /, induces a well defined homomorphism βf:
πn^M0 —*• πn^ Wo because M — int (B) is deformation retract of MQ.
If we now recall our definitions of o(M) and o(W), then the next
theorem follows easily:

THEOREM 2. Let f: (Mn, dMn)-+(Wn, dWn), n ^ 2, be a continuous
tangential map. Assume that Mo and Wo are (n — l)-simple. Then
βf{o{M)) — degree (/) o(TF), where βf*.πn_1Mo—*πn-iWo is the map
induced by f as above.

Theorem 2 enables us to compute o{W) once we know o(M) and
we have a tangential map of degree 1.

COROLLARY 3. If Mo is (n — l)-simple, then o(M) is an invariant
of the tangential homotopy type of (Λf, dM). {Actually, all we need
is a tangential homotopy equivalence f:M-+W such that f{3M) £ dW
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and deg f = 1.)

3* Relationships to other obstructions* In this section we would
like to discuss the relationship between the obstruction o(f) and the
ones defined in [1] and [3]. We shall indicate how one might extend
Theorem 1 and then make a concluding remark.

Suppose that Mn, n^>Z, is a 1-connected closed manifold and
f:M->M. It follows from [1] and [3] that η = degree (f)-χ(M)e
Hn(M; 7ΓΛ^(A - p, q)) = Hn(M; Z) = Z is the obstruction to finding a
map F: M—+M such that F is homotopic to / and F{x) Φ f(x) for all
x e M. This and Theorem l(b) shows that o(f) is a weaker obstruction
than that in [1] and [3], since the latter maps onto the former under
a. Note that the F in Theorem l(a) will be homotopic to / if and
only if degree (/) χ(Λf) - 0.

Next, if we drop our hypothesis of differentiability and use the
techniques of [1], [2], and [3] instead, it is most probable that the
following extension of Theorem 1 is true:

CONJECTURE. Let Mn, n ^3, be a 1-connected closed topological
manifold. Suppose that K is a finite ^-complex and that f:K-+Mn

is a continuous map. Then there is a well defined obstruction o(f) e
Hn(K; πΛ-1(Λf0, q)) such that o(f) — 0 if and only if there exists a map
F: K->M with F(x) Φ f{x) for all xeK and F homotopic to / on
the (n — l)-skeleton of K.

Finally, this paper suggests that the next step in the program for
determining when a manifold admits a fixed point free map is to allow
maps to have even more freedom and require that they be homotopic
(via a vector field) only over the (n — 2)-skeleton, then only over the
(n— 3)-skeleton, and so on. This process may lead to a nice well defined
sequence of obstructions which might be computable in certain cases.
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