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LOCALIZING THE SPECTRUM
E. LEe MAy, Jr.

It is the purpose of this paper to show that the notion of
spectrum for linear transformations can be extended to non-
linear transformations. The technique used is localization, as
it is applied, for example, to define the local Lipschitz pro-
perty from the global one. A discussion of two attempts to
extend globally the spectral concepts to the nonlinear setting
will serve as a preliminary to the main results.

Denote by H a complex Banach, or normed linear complete, space
whose point-set is S and whose norm is ||-||; and denote by T a
transformation, not necessarily linear, from a subset D(T) of S into S.

DeriniTION (R. 1. Kadéurovskil [3, p. 1101] and E. H. Zarantonello
[5, 6]). “T has a KZ resolvent set” means that there is a complex
number )\ with the following properties:

(1) M—-Tis1-1,

(2) X — T has range S, and

(3) (M — T)* is Lipschitzean.
In this case the KZ resolvent set of T is the set of all such ». “T
has a KZ spectrum” means that T has no KZ resolvent set or that
the KZ resolvent set fails to exhaust the plane. In this case the KZ
spectrum of T is either the entire plane or that part of it outside
the KZ resolvent set.

This definition specializes to the linear situation. Furthermore,
every Lipschitzean transformation has a large KZ resolvent set.

THEOREM 1. If T ¢s Lipschitzean, then T has a KZ resolvent
set containing each complexr number N with the property that |\| >
| T

Proof. Let A be a complex number with |x| > |T|. If each of
2 and y is in S, then [[AM—T)x—QOI—T)y||=|IMz—y)—(Tz—Ty)|| =
(N — |TDl|@ — y||. Since x| > |T|, the above inequality tells us
that M — T is 1 — 1 and (A — T)™* is Lipschitzean on its domain
with Lipschitz norm not greater than 1/(|x| — |T|). What we need
to show now is that the domain of (\] — T)™* is S.

Let y be in S. We need to show that there is an 2 in S such
that xx — Tx = y, that is, x = (A/M)(T% + y). Thus what we need to
show is that the transformation A on S, where 4 = (1/A\)(T + ), has
a fixed point. But this is so; for, by the fact that |x| > |T|, we
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have that A is a contraction mapping on a complete metric space.

Although it is uncertain whether a Lipschitzean transformation has
a K7 spectrum, much of the uncertainly disappears if the local
Lipschitz condition replaces the global one. The identity function
on the plane is a Lipschitzean, hence locally Lipschitzean, transfor-
mation with only the number one in its KZ spectrum. At the other
extreme, the square function on the plane is also locally Lipschitzean
and yet has a KZ spectrum which exhausts the plane. Observing
that each of these examples is differentiable as well as locally
Lipschitzean, we can conclude that the global Lipschitz property con-
trols the size of the KZ spectrum to an extent which neither the
local Lipschitz property nor differentiability can match.

DEerFiNITION (J. W. Neuberger [4, p. 157]). “T has an N resolvent
set” means that there is a complex number )\ such that Properties (1)
and (2) hold and such that (\T — T)7! is (Fréchet) differentiable (cf.
[1, p. 149]). In this case the N resolvent set of T is the set of all
such A. “T has an N spectrum” is defined analogously to the state-
ment, “7T has a KZ spectrum.”

Originally the satisfaction of the local Lipschitz property by
(M — T)™* was required before » was allowed into the N resolvent
set, but we shall see that that requirement is redundant.

This definition, like the Kadurovskii-Zarantonello one, specializes
to the case in which T is linear. In addition, it insures the existence
of a spectrum when T is nothing more than locally Lipschitzean at
zero (cf. [4]). It cannot, however, guarantee the existence of a bound
on the moduli of the spectral elements of even a Lipschitzean transfor-
mation. For example, the function I'* on the plane, which sends each
complex number onto its conjugate, has the property that (\I — I*)™
exists as a differentiable function for no complex number \. More-
over, another look at the identity and square functions on the plane
reveals that the Neuberger spectrum of a locally Lipschitzean or dif-
ferentiable function can be as large or small as the Kadurovskii-
Zarantonello spectrum.

One conclusion which can be drawn from these observations of
Kaéurovskii-Zarantonello and Neuberger extensions is that their failure
to control the spectrum is not their own fault but perhaps simply
a result of the nonuniformity of nonlinear transformations themselves.
One way to handle a nonuniform transformation is to study it locally.

DEFINITION. “T has a local resolvent set at the point »” means
that p is in D(T) and there are a complex number )\ and a positive-
number pair (9, ) with the following properties:
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(4) M — Tlgym is 1 -1,

(5) Rur-m,(6) & (M — T)R (5)), and

(6) (M — Tlg,»)™" is Lipschitzean on R, ,(e).
In this case the local resolvent set of T at p, denoted p,(T), is the
set of all such A. “T has a local spectrum at p»” means that p
is in D(T) and T has no local resolvent set at p or that o,(7T) fails
to exhaust the plane. In this case local spctrum of T at p is either
the plane or that part of it outside o, (T).

THEOREM 2. If T is continuously differentiable on an open set
D containing the point p (that is, T is differentiable on D and T’ is
continuous on D), then 0,(T) contains the (linear) resolvent set o(T"(p))
of T'(p) (by definition, T'(p) is a continuous linear transformation).
Moreover, if H is finite-dimensional, then 0,(T) = o(T'(0)).

Proof. We shall use in this proof a result which is important in
its own right. L. A. Harris [2, pp. 16, 17] has shown that a funec-
tion which is (Fréchet) differentiable on an open set containing zero is
locally Lipschitzean at zero, and a slight modification of his argument
yields a more general result.

LEMMA 1. Suppose 6 >0, f is a differentiable function with
bounded range from the ball R,(0) into S, and 0 < ¢’ < 6. Then there
is a number M such that |f'(x)| < M for each x in R, (d'), and f
1s Lipschitzean on R,(d’).

(This is the result which permits us to omit the local Lipschitz
property from the definition of N resolvent set.)

Turning to the proof of Theorem 2, let us denote by A a member
of o(T'(p)). To show that there is a positive-number pair (J, ¢) such
that Properties (4)-(6) are satisfied, we shall first establish that
M — T, p, and D satisfy the hypothesis of an inverse function theo-
rem (cf. [1, p. 273]). D is an open set containing p and on which
T, hence NI — T, is continuously differentiable; and, since A is in
o(T'(p)), we know that (\I — T')(p), which is xI — T"(p), is an invertible
continuous linear transformation, or homeomorphism, from H onto H.
Thus, by the conclusion of the theorem cited, let D’ be an open set
containing » and contained in D, with the following properties:
M —T|,is1—1, W — T)(D’) is open, and (AL — T'|,)~* is differentiable.
We shall choose our § and ¢ from D’ and (I — T)(D’).

Since (M — T|,)™" is differentiable on the open set (A [ — T)(D’),
which contains (] — T)p, it is also continuous, hence locally bounded,
at (AW — T)p. Therefore, let (¢/, B) be a number-pair such that
Rur—mp(€) S (W[ — T)(D’) and such that, if yisin Sand ||[y—OI—T)pl| <
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¢/, then ||(M — T|,) || £ B. Thus¢,¢/2, H WM — T)p, N — T|,)7,
and the ball R;;_;,() satisfy the hypothesis of Lemma 1; so
(I — T|,)™* is Lipschitzean on R, ,(¢’/2). Denote by M a positive
Lipschitz constant for (\I — T'|,)™ on R ;_r,(€/2). Denote by o a
positive number such that R,(0) S D', and let ¢ = min {¢'/2, 6/M}. We
need to show that (9, €) is a pair of the type we desire.

Since M — Ty is 1 — 1 and R,(6) = D’ we know that A — T'[, (9)
is also 1 — 1. Additionally, since (\I — T'|,,)™* is Lipschitzean on
R1-n»(€'/2) and e < €’/2, we know that (M — Tz, ;) ™', which is a restric-
tion of (A — T|,)™", is Lipschitzean on (Al — T)(R,(9)), its domain.

To show that R () S W\ —T)(R,(0)), let us suppose that y is
in R;;_py(€). Thus yisin W — T)(D’), solet s = (I — T|,)'y. Then

e — pll = 1M = Tlp)"y — (L — T1p) (I — T)p||
= My~ - T)p|| < M-e < M-,
= 5 B

so ¢ is in R,(6). Thus y is in (A — T)(R,(9)), and \ is in p,(T).
Assume now that H is finite-dimensional. A second lemma will
reverse the containment.

LEMMA 2. Suppose that f is a function from a subset of S con-
taining p into S with the following properties:

(7) there is a positive-number pair (r, K) such that, if each of
xand y is in S and max{[|z — pll, [|[y — pll} < 7, then |[f(x) — f(¥) ]| =
K|z — y||; and

(8) f 1is differentiable at p.

Then f'(p) s 1 — 1.

Proof. Since f is differentiable at p, there is a positive number
b with the property that, if # is in S and 0 < ||z — p|| < ¥/, then
[1f(@) — f(p) — (f' ()@ —p)|l/llc — p|| < K/2. Let b’ be such a number,
and let b = min {¢’, r}. We want to show that, if x is in the ball
R,(b) and (f'(p))x = (f'(p))p, then = p. Since f'(p) is linear, we
shall then have that f’(p) is 1 — 1.

Suppose that x is a point of R,(b) different from p but for which
(f"(p)x = (f'(p))p. Thus the following inequality holds.

0 =[(f"(p)(= — )|
= [|lf(@) — f(») + (f'@)( — p) — (f(&) — F()]|
= || f@) — f() || — 1 /@) — f(p) — (f'(2)(@ — p)||
> K|z — pll — (K/2)||lx — p|| since 0< [lx —p|[<b=V
= (K/2) ||z — pl].
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This means that, since K/2 > 0, the quantity ||« — p|| < 0. This con-
tradiction implies that our assumption is false, and the lemma stands.

Returning to the proof of the theorem, let us assume that A is
in p,(T). Suppose that (r, ¢) is a positive-number pair of the type
which the definition of local resolvent set says must exist for A\ at
p. Since A — T is continuous at p by the fact that T is differentiable
there, let 7, be a positive number with the property that, if ||z — p|| <
7y then ||(M — T)x — M — T)p|| < ¢. Denote by r the min {r, 7,}.
We shall show that A\] — Tz, satisfies the hypothesis of Lemma 2.

Since (M — Tz, )" is Lipschitzean on R ;;_r),(c), let K be a posi-
tive number with property that, if each of « and y is in R;_s,(¢), then

O = Tlryep)™@ — M — Tlpyep) "yl = K|z — yll
that is,

le —yll =2 WE)OT = Tleyop)™® — A = Tlg,ep) Yl -
Thus, if each of w and v is in R (r), then each of (\ — T)u and
(A — T)v is in R;;-p,(c), and

T — TIR,,(r))u' - (M — T(R,,(r))'“”
= [[(M = Tlgyep)tt — M — Tlg,ep)vll since r =7
= (YK)||(M — TIR,,(TI))_I()"I - T[Rp(rl))u
— (M — TIR,,(r1>)_1()‘J - T’Rp(rl))vll
= 1/K)||w — v]| .

Finally, since T is differentiable at p, M — Tz, is also. Thus
M — T|g,. satisfies the hypothesis of Lemma 2, so (M — T[z,»)' (D)
is 1—1. But, since H is finite-dimensional, this means that
(M —T|z,m)'(p) is regular (that is, its inverse exists as a continuous
linear transformation on H). Since M — T'|z,) (D) =M —(T|z,) (p) =
A — T'(p), this means that NI — T'(p) is regular, or that X\ is in

o(T'(p))-

Theorem 2 reveals a strong connection between the local spectra
of a continuously differentiable function and the spectra of its Fréchet
derivatives. Theorem 3 will give us an analog to the resolvent-set-
existence theorem for a continuous linear transformation, an example
of which can be obtained from Theorem 1 by making 7T continuous
and linear.

THEOREM 3. If T s locally Lipschitzean at the point p, then
there s a number B with the property that 0,(T) contains each complex
number N such that |\| = B.
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Proof. Denote by (r, M) a positive-number pair with the property
that, if each of # and y is in S and max {||z — p|, ||y — »||} < 7, then
each of x and y is in D(T) and || Tw — Ty|| < M||x — y||. Denote by é a
positive number less than min {r, 1}, and let B = 2M/o. Suppose that A
is a complex number with |A| = B. We want to show that A qualifies as
a member of p,(T), with (r,6|\]/2) as a number-pair of the desired type.

If each of # and y is in R,(r), then

N = The — M = Tyl = [IMz — ) — (Te — Ty) ||
= [M-le — yll = M|z — g
= (M = M)z —yil -

Since |M| = B = 2M/o and ¢ < 1, we have that || — M > 0; so the
above inequality tells us that M — T, is 1 — 1 and (A — Tp, )™
is Lipschitzean on its domain. It remains to show that R, ,,(0|\]/2)S
(M — THRy(r))-

Suppose that ¢ is in R;;_»,(0|0V]/2). We need to show that there
is an ¢ in R,(r) such that \z — Tx = q, that is, x = (1I/\)(Tx + q).
We shall find such a point by the technique of successive approxima-
tion, defining a sequence x,, x, @,, --- in the following way.

Denote by z, the point p, and let 2, = (1/\)(Tx, + q). Thus

e, — pll = [[A/M(T2, + q) — pl|
= 1A/ T, + A/Ng — AN = T)p + AN L — Thp — pl
=1 ANTp + A/l — W — T)pl + p — A/MTpP — pl|
= @/IADllg = O — T)pl|
< (/IMD@INI/2)
=0/2,

so x, is in R,(6/2), hence, since /2 < 6 < r, in D(T). Denote by =z,
the point (1/\)(Tx, + q). Now

o, — ol = (AT, + @) — AN (T, + )]
= /M) T, — T, |
= (M/IMD ey — @l = (M) l2 — pl|
< (M]IND(0/2)

Since |\|=2M/, it follows that 6/2 = M/|\|; so ||&, — 2, || < (6/2)%, and

2, — Il =l — @]l + llo, — pl| < (_)2 +(4)
=

. 2 2
(3) -

0 0

7
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For the inductive step, suppose that % is an integer not less than
2 and that «, x, .-+, %, is a sequence with the following properties:
(9) if k is an integer in [0, n], then
k 5 1
_ < gy .
(10) if %k is an integer in [1, %], then
@, — @ || < (6/2)% 5
and
(11) w, = p, and x, = (1/A)(T%,_, + ¢q) for each integer £ in [1, n].

Since ||z, — p|] < >, (6/2)* and 0 < 1, we have ||z, — p|| < 6. Thus
x, is in D(T), so denote by «,., the point (1/\)(T%, + ¢). Now

[@ner — @all = A/IND ]| T2 — Tl
< (M/IND @0 — Zps |
< (M/In)@6/2)" by (10)
< (6/2)~* since |A| = 2M/o .

Thus ||%ns — Pl = [T — @all + [[@, — 2| < 2225 (6/2)° by (9). This
completes the inductive step and yields a sequence =z, %,, &,, --- with
the following properties:

(12) if n is a nonnegative integer, then

low =2l s 5 (2)' s

(18) if » is a positive integer, then

I, — @il < (8/2)"

and
14) =z, = p, and %, = (1/A\)(Tx,_, + q) for each positive integer n.
Since picking ¢ < 1 yields the fact that 3.7, (6/2)" converges, we
have that =z, x,, ,, --- is Cauchy. Thus, since H is complete, denote
by @ the point of S which is the sequential limit of #,, #,, ,, +--. By
(12) we know that ||z — p|| <0< 7, so x is in R,(r). And, since T
is Lipschitzean, hence continuous, on R,(r), we have that

ATz + g) = /M) (lim T, + lim g)
= (/M) lim (Te,, + q)
= lim A/\)(T%,-, + q)

n-—oo

=limx, =2.

n—oo
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Therefore Mo — Tx = q; 80 Ruy—np(0|0]/2) S (W — T)(R,(r)), and p,(T)
exists and contains \.

Theorems 2 and 3 provoke several questions. Can the finite dimen-
sionality be removed from Theorem 2 without destroying the equality
of 0,(T) and o(T"(p))? Does the existence of 0,(T) imply that T is
locally Lipschitzean at p? Finally, does the existence of a continuous
linear transformation A such that p,(T) = p(A) imply that 7"(p) = A?
At present I have no strong feelings about an answer to any of these
questions.
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