
PACIFIC JOURNAL OF MATHEMATICS
Vol. 44, No. 1, 1973

LOCALIZING THE SPECTRUM

E. L E E MAY, JR.

It is the purpose of this paper to show that the notion of
spectrum for linear transformations can be extended to non-
linear transformations. The technique used is localization, as
it is applied, for example, to define the local Lipschitz pro-
perty from the global one. A discussion of two attempts to
extend globally the spectral concepts to the nonlinear setting
will serve as a preliminary to the main results.

Denote by H a complex Banach, or normed linear complete, space
whose point-set is S and whose norm is || ||; and denote by T a
transformation, not necessarily linear, from a subset D(T) of S into S.

DEFINITION (R. I. Kacurovskiί [3, p. 1101] and E. H. Zarantonello
[5, 6]). "T has a KZ resolvent set" means that there is a complex
number X with the following properties:

(1) XI - T is 1 - 1,
( 2) XI - T has range S, and
( 3) (XI - T)~ι is Lipschitzean.

In this case the KZ resolvent set of T is the set of all such λ. "T
has a KZ spectrum" means that T has no KZ resolvent set or that
the KZ resolvent set fails to exhaust the plane. In this case the KZ
spectrum of T is either the entire plane or that part of it outside
the KZ resolvent set.

This definition specializes to the linear situation. Furthermore,
every Lipschitzean transformation has a large KZ resolvent set.

THEOREM 1. // T is Lipschitzean, then T has a KZ resolvent
set containing each complex number X with the property that \X\ >

Proof. Let λ be a complex number with |λ| > | Γ | . If each of
x and y is in S, then | | (λJ- T)x~{Xl- T)y\\ = \\X(x-y)-(Tx- Ty)\\ ^
(|λ| - \T\)\\x - y\\. Since |λ | > \T\, the above inequality tells us

that XI — T is 1 — 1 and (XI — T)"1 is Lipschitzean on its domain

with Lipschitz norm not greater than l/(|λ| — | T | ) . What we need

to show now is that the domain of (λJΓ — T)" 1 is S.

Let y be in S. We need to show that there is an x in S such

that Xx — Tx — y, that is, x — (l/X)(Tx + y). Thus what we need to

show is that the transformation A on S, where A — (1/X)(T + y), has

a fixed point. But this is so; for, by the fact that | λ | > \T\, we
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have that A is a contraction mapping on a complete metric space.

Although it is uncertain whether a Lipschitzean transformation has
a KZ spectrum, much of the uncertainly disappears if the local
Lipschitz condition replaces the global one. The identity function
on the plane is a Lipschitzean, hence locally Lipschitzean, transfor-
mation with only the number one in its KZ spectrum. At the other
extreme, the square function on the plane is also locally Lipschitzean
and yet has a KZ spectrum which exhausts the plane. Observing
that each of these examples is differentiable as well as locally
Lipschitzean, we can conclude that the global Lipschitz property con-
trols the size of the KZ spectrum to an extent which neither the
local Lipschitz property nor differentiability can match.

DEFINITION (J. W. Neuberger [4, p. 157]). "Γhas an N resolvent
set" means that there is a complex number λ such that Properties (1)
and (2) hold and such that {XT - T)"1 is (Frechet) differentiable (cf.
[1, p. 149J). In this case the N resolvent set of T is the set of all
such λ. "T has an N spectrum" is defined analogously to the state-
ment, "T has a KZ spectrum."

Originally the satisfaction of the local Lipschitz property by
(λl — T)"1 was required before λ was allowed into the N resolvent
set, but we shall see that that requirement is redundant.

This definition, like the Kacurovskii-Zarantonello one, specializes
to the case in which T is linear. In addition, it insures the existence
of a spectrum when T is nothing more than locally Lipschitzean at
zero (cf. [4]). It cannot, however, guarantee the existence of a bound
on the moduli of the spectral elements of even a Lipschitzean transfor-
mation. For example, the function I* on the plane, which sends each
complex number onto its conjugate, has the property that (λl — J*)""1

exists as a differentiable function for no complex number λ. More-
over, another look at the identity and square functions on the plane
reveals that the Neuberger spectrum of a locally Lipschitzean or dif-
ferentiable function can be as large or small as the Kacurovskii-
Zarantonello spectrum.

One conclusion which can be drawn from these observations of
Kacurovskii-Zarantonello and Neuberger extensions is that their failure
to control the spectrum is not their own fault but perhaps simply
a result of the nonuniformity of nonlinear transformations themselves.
One way to handle a nonuniform transformation is to study it locally.

DEFINITION. "T has a local resolvent set at the point p" means
that p is in D{T) and there are a complex number λ and a positive-
number pair {δ, e) with the following properties:



LOCALIZING THE SPECTRUM 213

( 4 ) XI- T\BpW is 1 - 1 ,

( 5) Rw-T))p(e) S ( λ J - T)(Rp(δ)), and
p p

( 6 ) (XI - T.\Bp{i))~ι is Lipschitzean on R(XI~τ)p(6).
In this case the local resolvent set of T at p, denoted pP(T), is the
set of all such λ. "T has a local spectrum at p" means that p
is in D(T) and T has no local resolvent set at p or that pp(T) fails
to exhaust the plane. In this case local spctrum of T at p is either
the plane or that part of it outside pp(T).

THEOREM 2. If T is continuously differentiable on an open set
D containing the point p (that is, T is differentiable on D and T" is
continuous on D), then pp(T) contains the (linear) resolvent set p(T'(p))
of T'(p) (by definition, V(p) is a continuous linear transformation).
Moreover, if H is finite-dimensional, then pp(T) = p(T'(p)).

Proof. We shall use in this proof a result which is important in
its own right L. A Harris [2, pp. 16, 17] has shown that a func-
tion which is (Frechet) differentiable on an open set containing zero is
locally Lipschitzean at zero, and a slight modification of his argument
yields a more general result.

LEMMA 1. Suppose δ > 0, / is a differentiable function with
bounded range from the ball Rp(δ) into S, and 0 < δ' < δ. Then there
is a number M such that \f'(x)\ ^ M for each x in Rp(δ')9 and f
is Lipschitzean on Rv(δr).

(This is the result which permits us to omit the local Lipschitz
property from the definition of N resolvent set.)

Turning to the proof of Theorem 2, let us denote by λ a member
of p(T(p)). To show that there is a positive-number pair (δ, ε) such
that Properties (4)-(6) are satisfied, we shall first establish that
XI — T, p, and D satisfy the hypothesis of an inverse function theo-
rem (cf. [1, p. 273]). D is an open set containing p and on which
T, hence XI — T, is continuously differentiable; and, since λ is in
ρ(T(p)), we know that (Xl-TY(p), which is XI- T'(p), is an invertible
continuous linear transformation, or homeomorphism, from H onto H.
Thus, by the conclusion of the theorem cited, let Df be an open set
containing p and contained in D, with the following properties:
XI- T\D, is 1-1, (XI- T)(Df) is open, and (XI- T\D)~ι is differentiable.
We shall choose our δ and ε from Df and (XI - T)(D').

Since (XI — J Γ ^ ) " 1 is differentiable on the open set (XI — T)(D'),
which contains (XI — T)p, it is also continuous, hence locally bounded,
at (λJ — T)p. Therefore, let (ε', B) be a number-pair such that
Rai-τ)v(ε') £ (λl~ T)(D') and such that, if y is in Sand \\y-(Xl- T)p\\<
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e', then | | ( λ J - T\D)"y\\ ^ B. Thus ε', ε'/2, H, (XI- T)p, (XI- T\D)~\
and the ball Rai-τ)P(ε') satisfy the hypothesis of Lemma 1; so
(XI — T^,)" 1 is Lipschitzean on Rai_τ)p(e'/2). Denote by M a positive
Lipschitz constant for (XI — T\D,)~ι on Rai_τ)p(εfj2). Denote by δ a
positive number such that Rp(d) S D', and let ε = min {e'/2, δ/M}. We
need to show that (δ, ε) is a pair of the type we desire.

Since XI - T\D, is 1 - 1 and Rp(δ) S D' we know that XI - T\Bp(δ)
is also 1 — 1. Additionally, since (XI — T\D,)~ι is Lipschitzean on
Rw-τ)p(ε'β) a n d ε ̂  s'/2, we know that (XI — ϊ 7 !^^,)"" 1, which is a restric-
tion of (λl — Tip')""1' is Lipschitzean on (XI — T)(Rp(δ)), its domain.

To show that Rai^τ)p(e)ξΞ:(Xl—T)(Rp(δ)), let us suppose that y is
in Rw-τ)P(ε). Thus 2/ is in (XI- T)(D'), so let a? = (XI- T\D,)~ly. Then

II« - pII - II(XI - T\D)~'y - (XI - T\D)~\Xl - T)p\\

- (XI- T)p\\<M.ε^M-£-
M

so x is in Rp(δ). Thus y is in (XI - T)(Rp(δ)), and X is in ρp(T).
Assume now that H is finite-dimensional. A second lemma will

reverse the containment.

LEMMA 2. Suppose that f is a function from a subset of S con-
taining p into S with the following properties:

(7) there is a positive-number pair (r, K) such that, if each of
x and y is in S and max {|| x — p ||, || y — p ||} < r, then \\f(x) — f(y) \\ ^
K\\x — y\\; and

(8 ) f is differentiate at p.
Then f'(p) is 1 - 1.

Proof. Since / is differentiate at p, there is a positive number
bf with the property that, if x is in S and 0 < \\x — p\\ < 6', then
11/0*0 - /(p) - (/'(P))(* - P) I I/Ik - P I K £/2. Let 6' be such a number,
and let 6 = min {6', r}. We want to show that, if x is in the ball
Rp(b) and (ff(p))x = (f'(p))p, then a? = p. Since /'(p) is linear, we
shall then have that f'(p) is 1 — 1.

Suppose that x is a point of Rp(b) different from p but for which

{f'{p))% — {f'{v))V Thus the following inequality holds.

= \\f(x)-f(v) + (/'(P))(s ~ P) ~ (/(a?) -

> -KΊ|a? — p | | - ( £ / 2 ) | | a ? - p | | s i n c e 0 < \\x - p\\ < b ̂  b'

= (K/2)\\x - p\\.
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This means that, since K/2 > 0, the quantity \\x — p\\ < 0. This con-
tradiction implies that our assumption is false, and the lemma stands.

Returning to the proof of the theorem, let us assume that X is
in pP(T). Suppose that (ru c) is a positive-number pair of the type
which the definition of local resolvent set says must exist for X at
p. Since XI — T is continuous at p by the fact that T is differentiable
there, let r2 be a positive number with the property that, if \\x — p\\ <
r2, then | | (λ l - T)x - (XI - T)p\\ < c. Denote by r the min {ru r2}.
We shall show that XI — T\Rp{r) satisfies the hypothesis of Lemma 2.

Since (XI — T]^^)"1 is Lipschitzean on R{λi-τ)p(c)> let if be a posi-
tive number with property that, if each of x and y is in R{U~T)P(C)> then

\\(Xl - T\Λtlrύ)-*x - (XI - T\Bp,rir
ιv\\ £ K\\x - y\\ ,

that is,

\\x - y\\ Ξ> (lASΓ)H(λJ - T\Bp{rύΓx - (XI - Γ U ^ Γ V I I .
Thus, if each of u and v is in Rp(r), then each of (XI — T)u and
(XI — T)v is in Rai_τ)p(c), and

| |(XI- T\Rpir))u-(Xl- T\Rp(r))v\\

= | | (λ l - Γ|Λp(r i ))w - (λJ - ΓUp ( r i ))ι; | | since r^r,

^ (i/κ)\\(xi - π^^j-w - τ\w)u
-(XI- T\Rp{ri))~ι(^I - T\Rp{rΰ)v\\

= (l/K)\\u-v\\.

Finally, since T is differentiable at p, XI — T\Rpir) is also. Thus
XI — T\Rp{r) satisfies the hypothesis of Lemma 2, so (XI — T\Rp{r))'(p)
is 1 — 1. But, since H is finite-dimensional, this means that
(Xl—T\R (r)Y(p) is regular (that is, its inverse exists as a continuous
linear transformation on H). Since (XI— T\Rp{r)Y(p) — Xl—(T\Rp{r))

r(p) =
XI — Tf(p), this means that λJ — T'(p) is regular, or that λ is in
p(T(p)).

Theorem 2 reveals a strong connection between the local spectra
of a continuously differentiable function and the spectra of its Frechet
derivatives. Theorem 3 will give us an analog to the resolvent-set-
existence theorem for a continuous linear transformation, an example
of which can be obtained from Theorem 1 by making T continuous
and linear.

THEOREM 3. / / T is locally Lipschitzean at the point p, then
there is a number B with the property that pp(T) contains each complex
number X such that | λ | ^ B.
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Proof. Denote by (r, M) a positive-number pair with the property
that, if each of x and y is in S and max{||x — p\\, \\y — p\\} < r, then
each of x and y is in D{T) and \\Tx- Ty\\^M\\x-y\\. Denote by δ a
positive number less than min {r, 1}, and let 5 — 2M/d. Suppose that X
is a complex number with | λ | ^ J3. We want to show that X qualifies as
a member of pp(T), with (r, δ |λ|/2) as a number-pair of the desired type.

If each of x and y is in Rp(r), then

|| - \\X(x - y) - (Tx - Ty)\\

| x - 3/H - M\\x- y\\

Since |λ | ^ £ = 2M/δ and S < 1, we have that |λ | - M > 0; so the
above inequality tells us that XI — T\Bp{r) is 1 — 1 and (XI — T\Rp{r))~ι

is Lipschitzean on its domain. It remains to show that Raΐ_τ)p(δ\X\/2)S=
(XI - T)(R,(r)).

Suppose that q is in i?u /_Γ ) p(δ|λ|/2). We need to show that there
is an x in RP(r) such that λ»; — Tx = q, that is, a; = (l/λ)(Γx + g).
We shall find such a point by the technique of successive approxima-
tion, denning a sequence x0, xu x2, in the following way.

Denote by x0 the point p, and let xί = (l/X)(Tx0 + q). Thus

ίci - 2>ιι =

- (l/λ)(λJ - T)p + (l/λ)(λZ

- (XI - T)p] + p - (l/X)Tp - p\\

= (lJ\X\)\\q - (XI -

so *,. is in Rp(δ/2), hence, since δ/2 < δ < r, in -D(Γ). Denote by x2

the point (l/λ)(Tx1 + g). Now

- xΛ\ = IKl/λXΓ^ + g) - (l/λ)(Γί»0

^ - Γ θ 5 o | |

< (M/\X\)(δ!2) .

Since \X\^2Mβ, it follows that δ/2^M/\X\; so \\x2 - xn | | < (o/2)2, and
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For the inductive step, suppose that n is an integer not less than
2 and that x0, xu , xn is a sequence with the following properties:

(9) if k is an integer in [0, n], then

2

(10) if k is an integer in [1, n], then

and
(11) x0 = p, and xk — (l/X^Tx^ + q) for each integer k in [1, % ] .

Since ||α?n - p\\ ^ Σ?=i ( < W and <5 < 1, we have \\xn - p\\< d. Thus
#„ is in D(T), so denote by xn+1 t h e point (l/λ)(Γa?Λ + q). Now

Txn - Txn^\\

< (M/\X\)(δ/2y by (10)

< (dJ2)n+ί since | λ | ^ 2ikί/δ .

Thus ||α?n+1 - p | | ^ \\x%+ί - α?J| + ||a?Λ - p\\ < ΣJΆ (3/2)' by (9). This
completes t h e inductive step and yields a sequence x0, xl9 xi9 wi th
the following properties:

(12) if n is a nonnegative integer, then

(13) if n is a positive integer, then

\\x* - Xn-Λl < (δ/2)*

and
(14) ί̂o = p9 and a?n = (l/X)(Txn^ + q) for each positive integer n.
Since picking 8 < 1 yields the fact that Σ~=i (δ/2)u converges, we

have that xQ, xlf x2, is Cauchy. Thus, since H is complete, denote
by x the point of S which is the sequential limit of #0, #i, ^2, •• By
(12) we know that \\x — p\\ £ d < r, so a? is in ^ ( r ) . And, since Γ
is Lipschitzean, hence continuous, on Rp(r), we have that

(l/X)(Tx + q) = (l/λ)(lim Txn + lim q)

= lim (l/λ XΓa;.-! + g)
7l->oo

— lim x« — x .
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Therefore Xx - Tx = q; so Rar_Γ)p(δ\X\/2) S (λl - Γ X ^ r ) ) , and ft,
exists and contains λ.

Theorems 2 and 3 provoke several questions. Can the finite dimen-
sionality be removed from Theorem 2 without destroying the equality
of ρp(T) and |O(T'(p))? Does the existence of pp(T) imply that T is
locally Lipschitzean at pΊ Finally, does the existence of a continuous
linear transformation A such that pp(T) — p(A) imply that T'(p) = A?
At present I have no strong feelings about an answer to any of these
questions.
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