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DIFFERENTIAL SIMPLICITY AND EXTENSIONS
OF A DERIVATION

YvEs LEQUAIN

Let R be an integral domain containing the rational
numbers, K its quotient field and 2 an algebraic closure of
K; let D be a derivation on R such that R is D-simple. The
valuation rings V such that RS VS 2 on which D is
regular are determined.

Introduction. Let R’ be the complete integral closure of R in
K. Seidenberg has shown that D is regular on R’ [3]. We want
here to continue his work and determine all the valuation rings V
such that RS V < 2 on which D is regular.

First we determine in paragraph 2 the valuation rings of K that
have property, and we show that they are in 1-1 correspondence with
the proper prime ideals of R.

Then, in paragraph 4 we show that if V is a valuation ring such
that RS V< 2, then D is regular on V if and only if V is unramified
over K and D is regular on VN K. To do that, we have to show
first in paragraph 3 that if B is a valuation ring of 2 such that BN
K is rank-1 discrete and contains the rational numbers, then its inertia
field over K can be obtained as the intersection of a formal power
series field with Q.

1. Preliminaries. Let R be a commutative ring with identity.
A derivation D of R is a map from R into R such that D(a + b) =
D(a) + D(b) and D(ab) = aD(b) + bD(a) for all a,bc B. An ideal I
of R is a D-ideal if D(I) < I; R is D-simple if it has no D-ideal other
than (0) and (1). If R is a D-simple ring of characteristic » = 0, R
is a primary ring [2, Theorem 1.4], hence is equal to its total quotient
ring; this case will not be of interest in our considerations.

Thus, let R be a D-simple ring of characteristic 0, which is then
a domain containing the rational numbers [2, Corollary 1.5]; let K be
its quotient field and 2 an algebraic closure of K. The derivation D
can be uniquely extended to a derivation of 2, which we also call D,
and if N is any field between K and 2, we have D(N) S N [6, Corol-
lary 2/, p. 125]. If Sis a ring with quotient field N such that D(S) =
S, we shall say that D is regular on S, or that (N, S) is D-regular,
or that D can be extended to S.

We note that if D is regular on a ring S and if M is a multiplica-
tive system of S, then D is regular on S,,. We note also that if R
is D-simple, and if S is a ring such that R = S < 2, then to say that
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D is regular on S is equivalent to saying that S is D-simple, indeed:

ProprosITION 1.1. Let R be a D-simple ring with quotient field
K; let 2 be an algebraic closure of K, and S a ring such that RS
S&S Q. If D is regular on S, then S is D-simple.

Proof. It will be enough to show that if I is a nonzero ideal of
S, then I N R is a nonzero ideal of R. Let 0 %« ze I, and let X* +
X"+ oo + k,e K[X] be its minimal polynomial over K where we
note that k, = 0; then, from the equality =™ + ka** + «.. + k, =0,
we can get r@x"+7ra" '+ oo +r, =0withr,e R&ESfor7=0,1, .--, n,
and r,+# 0, so that we have 0% —r, =72 +r2" +eee -9 _axeclN R.

Let L be a field, N an algebraic extension of L, and V a valua-
tion ring of N. We shall denote the inertia degree of V over L by
f(V|L), and the ramification index of V over L by e(V|L). If Ais
a valuation ring of L, following Endler’s terminology in [1], we shall
say that A is indecomposed in N if there is only one valuation ring
of N lying over A, and, when N is a finite extension of L, we shall
say that A is defectless in N if [N:L]=>",e(V;|L) f(V;|L) where
{V,, +++, V,} is the set of valuation rings of N lying over A.

An ideal I of a ring S will be said to be proper if it is different
from S. We shall use D'”(x) to denote x, and for » =1, D™(x) to
denote D(D""(x)), i.e., the nth derivative of =.

2. Extensions of the derivation in the quotient field.

LEMMA 2.1. Let R be a ring, D a derivation on R, P a prime
ideal of R containing mo D-ideal other than (0). Define v: R\{0} —
{nonnegative integers} by v{x) =n if D (x)eP for i =0, --,n —1
and D'"™(x)¢ P. Then,

(i) R s a domain.

(ii) o s the trivial valuation if P = (0), and is a rank-1 discrete
valuation if P = (0).

(ili) The valuation ring R, of v contains R, and its maximal
ideal M, lies over P.

Proof. See [2, Theorem 3.1]. Note that for x< R\{0} we indeed
have v(x) < o for otherwise the ideal generated by U, D (x) would
be a nonzero D-ideal contained in P, which cannot be. Note also
that the property for P to contain no D-ideal other than (0) is equiva-
lent to R, being D-simple.

LEMMA 2.2. Let R, D, P, v, R,, I, be as in 2.1. Let K be the
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quotient field of R. Let S be a ring between R and K such that D
18 regular on S. Then, the following statements are equivalent:

(i) S&R.

(ii) There is a prime ideal Q of S lying over P.

In this case, @ is the only prime ideal of S lying over P and is
equal to M, N S.

Proof. If SS R, take @ = M, N S. Conversely, suppose there
exists a prime ideal @ of S such that @ N B = P. Being regular on
S, D is also regular on S,; furthermore, S, 2 R,, and R, is D-simple,
thus by 1.1 S, is D-simple. Then, by 2.1, we can define a valuation
w: S\{0} — {nonnegative integers} by w(y) = m if D?(y)eQ for j =
0,---,m — 1 and D'™(y) ¢ Q; calling S, the valuation ring of w, we
have S&S,. At the same time, we will have the valuation v defined
with the prime ideal P of R, and for an element xe R\{0} we have
D?(xye P if and only if D®(z)e Q since P = QN R; thus, v = w on
R, hence also v = w on K, and S& S, = R,. Furthermore, by 2.1,
we have @ = I, N S, hence also Q@ = M, NS, so that M, N S is the
unique prime ideal of S lying over P.

LEMMA 2.3. Let A be a D-stmple valuation ring. Then, A isa
field or is a rank-1 discrete valuation ring.

Pyroof. If A is not a field, and U = (1) is any ideal of A, then
N A" = (1) is a D-ideal; thus, A being D-simple, we have -, A" =
(0) and S is a rank-1 discrete valuation ring.

THEOREM 2.4. Let R be a D-simple ring with quotient field K.
Let &7 = {proper prime ideals of R}, and 7~ = {valuation rings of K
containing R to which D can be extended}. Define ®: P — 7" by
®@(P) = R, where v is the valuation associated to P by 2.1. Then, @
18 a bijection.

Proof. Let us show first that D is regular on R,. Let ab™ be
any element of R, with a,be R, b= 0, v(a) = v(b); then D(adb™) =
[6D{a) — aD{b)]b % If v(a) > v(b), then v(D(a)) = v(a) — 1 = v(b) and
v{D(b)) = v(b)—1, so that v(bD{(a) — aD(b)) = inf {v(d) + v(D(a)), v(a) +
v(D(b))} = 2v(b) and D(ab™')e R,. If v(a) = v(b) =0, then v(bD(a) —
aD(b))=0=2v(b) and D(@b™) € R,. If v(a)=v(b)=n>0, then v(bD{a))=
v{aD(b)) = 2n — 1 so that v(bD{a) — aD(b)) = 2n — 1; furthermore we
have D*(bD(a)) = 33i25* Ci,_.D¥(b)D**?(a) = a, + C;,—.D™(b)D"(a)
with «, € P, and similarly D®**"(aD(b)) = &, + C7,_.D™(a)D'(b) with
a,€ P, so that D®*(bD(a) — aD(b)) = &, — a,€ P; hence v(bD(a) —
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aD(b)) = 2n and D(ab™')e R,. Thus, D is regular on R,.

If M, is the maximal ideal of R,, we have P =M, N R by 2.1,
thus @ is injective.

Now, let A be a valuation ring of K containing R to which D
can be extended. If A = K, we clearly have 4 = #((0)). If 4 # K,
let @ be its maximal ideal. Let P= QN R, let v be the valuation
associated to P by 2.1, and let R, be the valuation ring of v. Since
P is different from (0), R, is different from K; by 2.2, we have A S
R,; by 1.1 A is D-simple, and hence has rank-1 by 2.3. Thus A =
R, A =9@QnN R), and @ is surjective.

COROLLARY 2.5. Let R be a D-simple ring with quotient field K.
Let A be a valuation ring of K which contains R, Q its maximal
ideal, P its center over R, and v the valuation associated to P by 2.1.
Then, the following statements are equivalent:

(i) D can be extended to A.

(ii) For any a,be P such that v(a) = v(b), then ad™'e A.

(ili)y For any xc A, there exists a,be R, such that x = a/b and
v(a) = v(b).

Remember that for an element a of R, v(a) is the number of succes-
stwe applications of the derivation D mecessary to get a out of the
center P.

Proof. The condition (ii) is equivalent to R, < A; the condition
(iii) is equivalent to A & R,. But in both cases A and R, have the
same center on R; thus, both conditions (ii) and (iii) are equivalent
to A = R,, i.e., equivalent to (i).

3. On the inertia field. Let N be a normal algebraic exten-
sion of K (possibly infinite), and G its Galois group. Let B be a
valuation ring of N, IR, its maximal ideal; let = be a place of N
corresponding to B and g its residue field; let v be a valuation of
N corresponding to B and 4 its value group. Let A = BN K, 4 its
residue field and 7" its value group; ¢ is a normal algebraic exten-
sion of 4 [1, (14.5)]. The inertia group of B over K is G’(B|K) =
{oeGlox — xe Myvawe B} = {oe G/mroo = 7}; it is a closed subgroup
of G [1, (19.2)]; its fixed field K*(B|K) = {y€ N/oy = y~vo € G'(B/K)
is the inertia field of B over K.

In this section, we shall only be concerned with the case of A =
BN K being a rank-1 discrete valuation ring which contains the
rational numbers. Note that B has to be of rank-1 too [1, (13.14)].
We have:
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PROPOSITION 8.1. K7(B/K) is the smallest field L between K and
N such that BN L is indecomposed in N and such that p is purely
inseparable over the residue field A* of BN L.

Proof. See [1, (19.11)].

PROPOSITION 3.2. K7?(B|K) is the unique field L between K and
N such that BN L is indecomposed in N, f(B|L) =1 and e(BN L|K) =
1.

Proof. Since A contains the rational numbers, 4 has characteris-
tic zero, ¢ is a separable extension of 4, and, by 3.1, K”(B|K) is the
smallest field L between K and N such that BN L is indecomposed
in N and f(B|L) =1. Now, N is also separable over K so that
I'"=T, and BN K7(B|K) is a rank-1 discrete valution ring; then
BN K*(B|K) is defectless in all the finite extensions of K7(B|K)
contained in N [6, Corollary, p. 287], and K7(B|K) is maximal among
the fields L that have the property f(B|L) =1 and ¢(BN L|K) = 1.

PROPOSITION 3.3. K7(B|K) is the biggest field L between K and
N such that e(BN L|K) = 1.

Proof. Let L be a field between K and N such that ¢(BN L|K) =
1. Let L*(B|L) be the inertia field of B over L; by 3.2, BN L*(B/L)
is indecomposed in N, f(B|L*(B|L)) =1 and e¢(BN L*(B|L)|L) =1,
hence also e(BN L*(B|L)|K) = 1 since e(BN L|K) = 1. Thus, by 3.2,
L’(B|L) = K(B|K) and L < K'(B|K).

COROLLARY 3.4. Let V be a valuation ring contained in N lying
over A. Then, the following statements are equivalent:

(i) e(V/K) =1.

(ii) There exists a valuation ring E of N lying over V such that
V< K'(EIK).

(iiiy For every valuationring E of N lying over V,VZ K*(E/K).

Now, let (N*, B*) be a completion of (N, B); by this, we mean that
N* is a B-completion of N [5, (1-7-1), p. 27], and B* the topologi-
cal closure of B in N*; let (K*, A*) be the completion of (K, A) con-
tained in (N*, B*). A being a rank-1 discrete valuation ring, we let
t be a generator of the maximal ideal of A. Let 0’ be an algebraic
closure of N*, and 0 the algebraic closure of K* contained in 0’. Let
C be a field of representatives of A* and C the algebraic closure of C
contained in J; by [7, Theorem 27, p. 304], we have A* = C[[¢{]] and
K* = C((t)). Let F be the unique valuation ring of & which lies
over A* [5, (2-1-3), p. 44]. The situation can be resumed by the fol-
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lowing diagram:

B*

K/“\
- /;'('(t))\ / F

|\

PROPOSITION 3.5. K7(B/K)= C((t)) N and BN K"(B/K) = C[[t]]N
N.

Proof. We shall do it in several steps.

Step 1. C((t)) N T is the inertia field of F' over K* and C[[¢]]N
0 = Fn(C(®)Nn0o).

Proof. C[[t]] N T is a valuation ring of C((£)) N & which lies over
A* = C[[t]]; thus it is indecomposed in & and is equal to F' N (C((t)) N ).
Let & (respectively w-) be a place (respectively a valuation) of J
corresponding to the valuation ring F; since C S &, we have &(C) =
E(CIIH) € &(C) € (CIIENI N 0) S &(F); furthermore &(F) is algebraic
over £(C[[t]]) by [1, (14.5)], and &(C) = C is algebraically closed; thus
E(CIt]l N T) = &(F). On the other hand we have clearly w(C[[¢]]) =
w(C[[t]] N T). Thus by 3.2, C((¢)) N ¥ is the inertia field of F over K*.

Step 2. Let N, be a finite normal extension of K contained in
N. Let N7 be the completion of N, contained in N*. Then C((t)) N
N7 is the inertia field of B* N N over K* and C[[t]]Nn N =(B*N NN
(C((®) N NJ).

Proof. NZF is a finite normal extension of K* [4, Corollary 4,
p. 41]; hence N,* = J. B*N NJ is a valuation ring of N} which lies
over A*; hence it has to be equal to FF N N}. Now, the inertia field of
F N Nf over K* is equal to the intersection of the inertia field of F
over K* with N [1, (19.10)], i.e., is equal to (C(({)) NT) N Nx =
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C((®)) N Nr. Finally, C[[¢t]] N NF is a valuation ring of C((t)) N N
which lie§ over A*, thus it has to lie under B* N N}, i.e., we need
to have C[[t]] N N = (B* N NX) n C((t)) N N).

_ Step 3. C((t)) N N, is the inertia field of BN N, over K and
Cllit]l n N, = (BN N, N (C((t)) N N,).

Proof. BN N,.n C((t) < B*N N n C((t) = C[[t]] N N by Step 2;
then, being contained in C((t)) N N., BN N, N C((t)) has also to be con-
tained in C[[t]] N N,; being a rank-1 valuation ring, BN N, N C((t)) has
to be equal to C[[t]] N N..

Now, if we still call w the valuation of U corresponding to F,
we have w(K) S w(C((t)) N N.) S w(C((t)) N N5); but w(K*) = w(C((®) N
N} by Step 2, and w(K) = w(K*) because, by [5, (1-7-5), p. 31],
the completion is an immediate extension; hence w(K) = w(C((t)) N N.,),
and C((¥)) N N, K"(BN N,/K) by 8.8. Then, C((t)) N,=K"(BN N,/K),
because if not, the completion L of K7(BN N,/K) contained in N}
would be such that L & C((¢)) N N} and e(B*N L/K*) =1, which is
impossible by 8.3, since C((t)) N N7 is the inertia field of B* N N
over K* by Step 2.

Step 4. C((t)) N N is the inertia field of B over K and C[[t]]N N =
BN (C((t) N N).

Proof. Let {N,; acJ} be the set of all the finite normal subexten-
sions of N over K. Let us show that K"(B|K) = Ua.; K*(BN N, | K).
For any a € J, the homomorphism 8%: G'(B|K) — G"(BN N,|K) defined
by 6%(0) = ply, = the restriction of o to N,, is surjective [1, (19.7]].
Let x€ K”(B|K), N, a finite normal extension of K containing x and
o€ G"(BN N,|K); since 6% is surjective, there exists pe G"(B|K) such
that oly, = o, so that o(x) = p(x) =2 and ¢ K"(BN N,|K). Con-
versely, let e J, and e K7(BN N,|K); for any pe G'(B|K) we have
0y, € G'(BN N, K), so that p(x)=p|y (v)=2 and v € K"(B|K). Hence,
K"(B|K) = Uaes K"(BN N K) = Uaes (C(() N N)=C(£)) N (Uaes No) =
C(®) NN, and BN K" (B|K) = BN (Uaes K'(BN N K)) = Uees (BN
K"(BN N/ K)) = Uses (CIIE N N = C[[E]] N N.

4. Extensions of the derivation in the algebraic closure of the
quotient field.

LEMMA 4.1. Let A be a ring, I a finitely generated ideal of A
such that Ny I™ = (0), A* the I-adic completion of A. Let D: A—
A* be a map such that D(x + y) = D(x) + D(y) and D(zy) = xD(y) +
yD(x). Then,
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(i) D can be extended to a derivation D’ on A* by D’(lim, x,) =
lim, D(z,), where {x,},5, ©s @ Cauchy sequence in A.
(i) D’ is the only derivation of A* that extends D.

Proof. (i) Let {z,}.s be a Cauchy sequence in A; for any positive
integer m, there exists ¢ such that r,s >¢g—=2, —2,€I™; ©, — 2, €
I™ =2, —x, = % **+ U;, with u;; € I, hence Dz, — Dx, = D(x, — x,) =
S S Uiy v Uiy D)Wy jyny oo Ui € (TA*)™'; then as I is finitely
generated, the topology of A* is the (IA*)—adic topology [7, Corollary
1, p. 257], and {Dx,}.s, is a2 Cauchy sequence in 4*; set D'(lim, x,) =
lim, D(z,). Defined that way, D’ is a function of A* for if {z,}.z, is
another Cauchy sequence such that lim,x, = lim, z,, then for any
positive integer m, there exists ¢ such that n > ¢=(z, — 2,)e ™,
so that D(z,) — D(z,) = D(x,—#,) € {A*)™"", and lim, D(z,) = lim, D(z,).
Furthermore, D’ is a derivation of A* for if {x,},2, and {2,}.s, are two
Cauchy sequences of A, then lim, D(x, + 2,) = lim, D(x,) + lim, D(z,)
and lim, D(z, - 2,) = lim, %, - lim, D(z,) + lim, D(z,) - lim, 2, since, for
every n, we have D(z, + z,) = D(z,) + D(z,) and D(%, - 2,) = %, - D(z,) +
D(x,) - 2,. Finally, for any ye€ A, we clearly have D'(y) = D(y).

(ii) Let D" be a derivation of A* which extends D. Let y be
any element of A*, and {z,}.., a Cauchy sequence in A such that
y = lim, z,; then, for any positive integer m, there exists ¢ such that
n>q=y—y,€([lA*)", so that D"(y) — D(y.) = D"(y) — D"(y.) =
D"y — ya) e (IA*)"™, and D"(y) = lim, D(y,) = D'(y).

REMARK. In the case of D being a derivation of A, the procedure
used in the preceding lemma allows to extend D to a derivation D’
of A* even if I is not finitely generated. To get the uniqueness
property however, we again need I to be finitely generated.

THEOREM 4.2. Let A be a rank-1 discrete valuation ring con-
tarning the rational numbers with quotient field K; let 2 be an algebraic
closure of K and D a derivation of A. Let B be a valuation ring of
Q lying over A; let V be a valuation ring contained in 2, lying over
A and unramified over K. Then,

(i) (K"(B|K), BN K*(B|K)) ts a D-regular extension of (K, A)
contarned tn (2, B).

(ii) (N, BN N) is D-regular for any field N between K and
K"(B|K).

(i) D s regular on V.

Proof. (i) Let (2%, B*) be a completion of (2, B) and (K*, A*)
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the completion of (K, A) contained in (2*, B*); let U’ be an algebraic
closure of 2* and U the algebraic closure of K* contained in J’. Let ¢
be a generator of the maximal ideal of A; let C be a field of representa-
tives of A*, and C the algebraic closure of C in J; of course we have
A* = CI[[t]] and K* = C((¢)) [7, Corollary, p. 307]. By 4.1, let D’ be
the unique derivation of A* which is an extension of D, and, as usual,
call again D’ its extension to . For an element y of C, we have
D'(y) € C[[t]]; indeed, if X"+¢, X"+ .. +¢, e C[X] is the minimal poly-
nomial of y over C, differentiating the equation y*+cy* ™+ +++ +e¢, =
0, we get (ny" " +e(n—1)y" 7+ +-+ +¢,_)D'(y) + (D(c)y™™ + -+ +
D(c,)) = 0; the first factor of the first term is an element of C,
different from zero since y is separable over C; the second term is
an element of C[[t]]; thus D'(y)e C[[t]]. We also have D'(t)e C[[t]],
so that the restriction D” of D’ to C[t] is a function with values in
C[[t]] which satisfies the properties D"(x + 2) = D”(x) + D"(2) and
D"(xz) = xD"(2) + 2D"(x); furthermore, C[[t]] is the (¢)—adic com-
pletion of C[t]; thus, by 4.1, D” can be extended to a derivation of
C[[t]], which we ecall D” again, by D"(3z,dit) = 3.2, D"(d;t)) =

2, D'(d;t). As C[[t]] is the completion of C[t] for the (¢{)—adic
topology, by 4.1 also, we know that for an element >3, ¢t of C[[t]]
we must have D'(C 2, ¢t’) = 32, D'(c;t?), so that D' = D" on A* =
C[It]]; thus D = D” on A, hence alsoc on K. But we can even see
that D = D” on C((t)) N 2; indeed, if X™ + kX" 4+ «++ + ke K[X]
is the minimal polynomial over K of an element z of C((t)) N 2, we
have z™ + k2" 4+ +-+ k, = 0, thus D(z) = [D(k)z™ " + +++ + D(k,)] X
[mem= oo +k, |7 =[D"(k)z™ "+« o + D" (k)| [mz™ "+« oo + k]t =
D’(z). Then, since D is regular on 2, since D” is regular on C[[t]],
and since D = D” on C((t)) N 2, we get that (C((t)) N 2, C[[t]] N Q) is
D-regular; but by 8.5 we know that C((¢)) N 2 = K7(B|K) and C[[t]] N
Q2 = BN K"(B|K); thus (K*(B|K), BN K"(B|K)) is D-regular.

(ii) Let N be any field between K and K”(B|K). D is regular
on N and is regular on BN K?(B|K); thus D is regular on (BN
K"(B|K))NN= BN N.

(iii) Let B’ be a valuation ring of Q lying over V; by 3.4 we
have VE K*(B'|K), so that D is regular on V.

THEOREM 4.3. Let A be a D-stmple valuation ring with quotient
field K; let Q be an algebraic closure of K, and B a valuation ring
of 2 lying over A. Then, (K"(B|K), BN K"(B|K)) is the biggest D-
regular extension of (K, A) contained in (2, B).

Proof. Being D-simple, A contains the rational numbers; thus,
by 4.2, we know that (K7(B|K), BN K”(B|K)) is D-regular. Now
let (L, E) be a D-regular extension of (K, A) contained in (2, B); of
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course E is rank-1, and thus B lies over E; also E is D-simple by
1.1. If ¢ is a generator of the maximal ideal of A, then ¢ is also a
generator of the maximal ideal M, of E; indeed, otherwise we would
have te IM%, hence also D(t) € M; which cannot be since D(t) is a
unit in A. Thus, the index of ramification of F over K is equal to
1, and by 3.3 (L, E) & (K*(B|K), BN K"(B|K)).

COROLLARY 4.4. Let R be a D-stmple ring with quotient field K;
let Q be an algebraic closwre of K. Let V be a valuation ring which
contains R and s contained in 2; let e(V|K) be its ramification index
over K. Then, the following statements are equivalent:

(i) D s regular on V.

(i) e(VIK) =1 and D is regular on V N K.

Proof. If D is regular on V, then D is regular on V N K since
D is also regular on K. Furthermore, V N K contains R which is
D-simple; thus, by 1.1, VN K is D-simple and, as already noticed in
the proof of 4.3, this implies that ¢(V|K) = 1. Conversely, if D is
regular on VN K and if ¢(V|K) =1 we know that D is regular on
V by 4.2.
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