DIFFERENTIAL SIMPLICITY AND EXTENSIONS

 OF A DERIVATIONYves Lequain

Abstract

Let R be an integral domain containing the rational numbers, K its quotient field and Ω an algebraic closure of K; let D be a derivation on R such that R is D-simple. The valuation rings V such that $R \subseteq V \subseteq \Omega$ on which D is regular are determined.

Introduction. Let R^{\prime} be the complete integral closure of R in K. Seidenberg has shown that D is regular on R^{\prime} [3]. We want here to continue his work and determine all the valuation rings V such that $R \subseteq V \subseteq \Omega$ on which D is regular.

First we determine in paragraph 2 the valuation rings of K that have property, and we show that they are in 1-1 correspondence with the proper prime ideals of R.

Then, in paragraph 4 we show that if V is a valuation ring such that $R \subseteq V \subseteq \Omega$, then D is regular on V if and only if V is unramified over K and D is regular on $V \cap K$. To do that, we have to show first in paragraph 3 that if B is a valuation ring of Ω such that $B \cap$ K is rank- 1 discrete and contains the rational numbers, then its inertia field over K can be obtained as the intersection of a formal power series field with Ω.

1. Preliminaries. Let R be a commutative ring with identity. A derivation D of R is a map from R into R such that $D(a+b)=$ $D(a)+D(b)$ and $D(a b)=a D(b)+b D(a)$ for all $a, b \in R$. An ideal I of R is a D-ideal if $D(I) \subseteq I ; R$ is D-simple if it has no D-ideal other than (0) and (1). If R is a D-simple ring of characteristic $p \neq 0, R$ is a primary ring [2, Theorem 1.4], hence is equal to its total quotient ring; this case will not be of interest in our considerations.

Thus, let R be a D-simple ring of characteristic 0 , which is then a domain containing the rational numbers [2, Corollary 1.5]; let K be its quotient field and Ω an algebraic closure of K. The derivation D can be uniquely extended to a derivation of Ω, which we also call D, and if N is any field between K and Ω, we have $D(N) \subseteq N$ [6, Corollary 2 ', p. 125]. If S is a ring with quotient field N such that $D(S) \subseteq$ S, we shall say that D is regular on S, or that (N, S) is D-regular, or that D can be extended to S.

We note that if D is regular on a ring S and if M is a multiplicative system of S, then D is regular on S_{M}. We note also that if R is D-simple, and if S is a ring such that $R \subseteq S \subseteq \Omega$, then to say that
D is regular on S is equivalent to saying that S is D-simple, indeed:
Proposition 1.1. Let R be a D-simple ring with quotient field K; let Ω be an algebraic closure of K, and S a ring such that $R \subseteq$ $S \subseteq \Omega$. If D is regular on S, then S is D-simple.

Proof. It will be enough to show that if I is a nonzero ideal of S, then $I \cap R$ is a nonzero ideal of R. Let $0 \neq x \in I$, and let $X^{n}+$ $k_{1} X^{n-1}+\cdots+k_{n} \in K[X]$ be its minimal polynomial over K where we note that $k_{n} \neq 0$; then, from the equality $x^{n}+k_{1} x^{n-1}+\cdots+k_{n}=0$, we can get $r_{0} x^{n}+r_{1} x^{n-1}+\cdots+r_{n}=0$ with $r_{i} \in R \subseteq S$ for $i=0,1, \cdots, n$, and $r_{n} \neq 0$, so that we have $0 \neq-r_{n}=r_{0} x^{n}+r_{1} x^{n-1}+\cdots+r_{n-1} x \in I \cap R$.

Let L be a field, N an algebraic extension of L, and V a valuation ring of N. We shall denote the inertia degree of V over L by $f(V \mid L)$, and the ramification index of V over L by $e(V \mid L)$. If A is a valuation ring of L, following Endler's terminology in [1], we shall say that A is indecomposed in N if there is only one valuation ring of N lying over A, and, when N is a finite extension of L, we shall say that A is defectless in N if $[N: L]=\sum_{i=1}^{m} e\left(V_{i} \mid L\right) f\left(V_{i} \mid L\right)$ where $\left\{V_{1}, \cdots, V_{m}\right\}$ is the set of valuation rings of N lying over A.

An ideal I of a ring S will be said to be proper if it is different from S. We shall use $D^{(0)}(x)$ to denote x, and for $n \geqq 1, D^{(n)}(x)$ to denote $D\left(D^{(n-1)}(x)\right)$, i.e., the nth derivative of x.
2. Extensions of the derivation in the quotient field.

Lemma 2.1. Let R be a ring, D a derivation on R, P a prime ideal of R containing no D-ideal other than (0). Define $v: R \backslash\{0\} \rightarrow$ $\{$ nonnegative integers $\}$ by $v(x)=n$ if $D^{(i)}(x) \in P$ for $i=0, \cdots, n-1$ and $D^{(n)}(x) \notin P$. Then,
(i) R is a domain.
(ii) v is the trivial valuation if $P=(0)$, and is a rank-1 discrete valuation if $P \neq(0)$.
(iii) The valuation ring R_{v} of v contains R, and its maximal ideal \mathfrak{M}_{v} lies over P.

Proof. See [2, Theorem 3.1]. Note that for $x \in R \backslash\{0\}$ we indeed have $v(x)<\infty$ for otherwise the ideal generated by $\bigcup_{i=0}^{\infty} D^{(i)}(x)$ would be a nonzero D-ideal contained in P, which cannot be. Note also that the property for P to contain no D-ideal other than (0) is equivalent to R_{P} being D-simple.

Lemma 2.2. Let $R, D, P, v, R_{v}, \mathfrak{M}_{v}$ be as in 2.1. Let K be the
quotient field of R. Let S be a ring between R and K such that D is regular on S. Then, the following statements are equivalent:
(i) $S \subseteq R_{v}$.
(ii) There is a prime ideal Q of S lying over P.

In this case, Q is the only prime ideal of S lying over P and is equal to $\mathfrak{M}_{v} \cap S$.

Proof. If $S \subseteq R_{v}$, take $Q=\mathfrak{M}_{v} \cap S$. Conversely, suppose there exists a prime ideal Q of S such that $Q \cap R=P$. Being regular on S, D is also regular on S_{Q}; furthermore, $S_{Q} \supseteq R_{P}$, and R_{P} is D-simple, thus by $1.1 S_{Q}$ is D-simple. Then, by 2.1 , we can define a valuation $w: S \backslash\{0\} \rightarrow$ \{nonnegative integers $\}$ by $w(y)=m$ if $D^{(j)}(y) \in Q$ for $j=$ $0, \cdots, m-1$ and $D^{(m)}(y) \notin Q$; calling S_{w} the valuation ring of w, we have $S \subseteq S_{w}$. At the same time, we will have the valuation v defined with the prime ideal P of R, and for an element $x \in R \backslash\{0\}$ we have $D^{(i)}(x) \in P$ if and only if $D^{(i)}(x) \in Q$ since $P=Q \cap R$; thus, $v=w$ on R, hence also $v=w$ on K, and $S \subseteq S_{w}=R_{v}$. Furthermore, by 2.1, we have $Q=\mathfrak{M}_{w} \cap S$, hence also $Q=\mathfrak{M}_{v} \cap S$, so that $\mathfrak{M}_{v} \cap S$ is the unique prime ideal of S lying over P.

Lemma 2.3. Let A be a D-simple valuation ring. Then, A is a field or is a rank-1 discrete valuation ring.

Proof. If A is not a field, and $\mathfrak{X} \neq(1)$ is any ideal of A, then $\bigcap_{n=0}^{\infty} \mathfrak{U}^{n} \neq(1)$ is a D-ideal; thus, A being D-simple, we have $\bigcap_{n=0}^{\infty} \mathfrak{Y}^{n}=$ (0) and S is a rank-1 discrete valuation ring.

Theorem 2.4. Let R be a D-simple ring with quotient field K. Let $\mathscr{P}=\{$ proper prime ideals of $R\}$, and $\mathscr{V}=\{$ valuation rings of K containing R to which D can be extended\}. Define $\varphi: \mathscr{P} \rightarrow \mathscr{Y}$ by $\varphi(P)=R_{v}$ where v is the valuation associated to P by 2.1. Then, φ is a bijection.

Proof. Let us show first that D is regular on R_{v}. Let $a b^{-1}$ be any element of R_{v} with $a, b \in R, b \neq 0, v(a) \geqq v(b)$; then $D\left(a b^{-1}\right)=$ $[b D(a)-a D(b)] b^{-2}$. If $v(a)>v(b)$, then $v(D(a))=v(a)-1 \geqq v(b)$ and $v(D(b)) \geqq v(b)-1$, so that $v(b D(a)-a D(b)) \geqq \inf \{v(b)+v(D(a)), v(a)+$ $v(D(b))\} \geqq 2 v(b)$ and $D\left(a b^{-1}\right) \in R_{v}$. If $v(a)=v(b)=0$, then $v(b D(a)-$ $a D(b)) \geqq 0=2 v(b)$ and $D\left(a b^{-1}\right) \in R_{v}$. If $v(a)=v(b)=n>0$, then $v(b D(a))=$ $v(a D(b))=2 n-1$ so that $v(b D(a)-a D(b)) \geqq 2 n-1$; furthermore we have $D^{(2 n-1)}(b D(a))=\sum_{i=0}^{2 n-1} C_{2 n-1}^{i} D^{(i)}(b) D^{(2 n-i)}(a)=\alpha_{1}+C_{2 n-1}^{n} D^{(n)}(b) D^{(n)}(a)$ with $\alpha_{1} \in P$, and similarly $D^{(2 n-1)}(a D(b))=\alpha_{2}+C_{2 n-1}^{n} D^{(n)}(a) D^{(n)}(b)$ with $\alpha_{2} \in P$, so that $D^{(2 n-1)}(b D(a)-a D(b))=\alpha_{1}-\alpha_{2} \in P$; hence $v(b D(a)-$
$a D(b)) \geqq 2 n$ and $D\left(a b^{-1}\right) \in R_{v}$. Thus, D is regular on R_{v}.
If \mathfrak{M}_{v} is the maximal ideal of R_{v}, we have $P=\mathfrak{M}_{v} \cap R$ by 2.1, thus φ is injective.

Now, let A be a valuation ring of K containing R to which D can be extended. If $A=K$, we clearly have $A=\varphi((0))$. If $A \neq K$, let Q be its maximal ideal. Let $P=Q \cap R$, let v be the valuation associated to P by 2.1, and let R_{v} be the valuation ring of v. Since P is different from (0), R_{v} is different from K; by 2.2 , we have $A \subseteq$ R_{r}; by $1.1 A$ is D-simple, and hence has rank-1 by 2.3 . Thus $A=$ $R_{v}, A=\varphi(Q \cap R)$, and φ is surjective.

Corollary 2.5. Let R be a D-simple ring with quotient field K. Let A be a valuation ring of K which contains R, Q its maximal ideal, P its center over R, and v the valuation associated to P by 2.1. Then, the following statements are equivalent:
(i) D can be extended to A.
(ii) For any $a, b \in P$ such that $v(a) \geqq v(b)$, then $a b^{-1} \in A$.
(iii) For any $x \in A$, there exists $a, b \in R$, such that $x=a / b$ and $v(a) \geqq v(b)$.
Remember that for an element a of $R, v(a)$ is the number of successive applications of the derivation D necessary to get a out of the center P.

Proof. The condition (ii) is equivalent to $R_{v} \subseteq A$; the condition (iii) is equivalent to $A \cong R_{v}$. But in both cases A and R_{v} have the same center on R; thus, both conditions (ii) and (iii) are equivalent to $A=R_{v}$, i.e., equivalent to (i).
3. On the inertia field. Let N be a normal algebraic extension of K (possibly infinite), and G its Galois group. Let B be a valuation ring of N, \mathfrak{M}_{B} its maximal ideal; let π be a place of N corresponding to B and μ its residue field; let v be a valuation of N corresponding to B and Δ its value group. Let $A=B \cap K, \Lambda$ its residue field and Γ its value group; μ is a normal algebraic extension of $\Lambda[1,(14.5)]$. The inertia group of B over K is $G^{T}(B \mid K)=$ $\left\{\sigma \in G / \sigma x-x \in \mathfrak{M}_{B} \forall x \in B\right\}=\{\sigma \in G / \pi \circ \sigma=\pi\}$; it is a closed subgroup of $G[1,(19.2)]$; its fixed field $K^{T}(B \mid K)=\left\{y \in N / \sigma y=y \forall \sigma \in G^{T}(B / K)\right.$ is the inertia field of B over K.

In this section, we shall only be concerned with the case of $A=$ $B \cap K$ being a rank-1 discrete valuation ring which contains the rational numbers. Note that B has to be of rank-1 too [1, (13.14)]. We have:

Proposition 3.1. $K^{T}(B / K)$ is the smallest field L between K and N such that $B \cap L$ is indecomposed in N and such that μ is purely inseparable over the residue field Λ^{L} of $B \cap L$.

Proof. See [1, (19.11)].
Proposition 3.2. $K^{T}(B \mid K)$ is the unique field L between K and N such that $B \cap L$ is indecomposed in $N, f(B \mid L)=1$ and $e(B \cap L \mid K)=$ 1.

Proof. Since A contains the rational numbers, Λ has characteristic zero, μ is a separable extension of Λ, and, by $3.1, K^{T}(B \mid K)$ is the smallest field L between K and N such that $B \cap L$ is indecomposed in N and $f(B \mid L)=1$. Now, N is also separable over K so that $\Gamma^{T}=\Gamma$, and $B \cap K^{T}(B \mid K)$ is a rank-1 discrete valution ring; then $B \cap K^{T}(B \mid K)$ is defectless in all the finite extensions of $K^{T}(B \mid K)$ contained in N [6, Corollary, p. 287], and $K^{T}(B \mid K)$ is maximal among the fields L that have the property $f(B \mid L)=1$ and $e(B \cap L \mid K)=1$.

Proposition 3.3. $K^{T}(B \mid K)$ is the biggest field L between K and N such that $e(B \cap L \mid K)=1$.

Proof. Let L be a field between K and N such that $e(B \cap L \mid K)=$ 1. Let $L^{T}(B \mid L)$ be the inertia field of B over L; by $3.2, B \cap L^{T}(B / L)$ is indecomposed in $N, f\left(B \mid L^{T}(B \mid L)\right)=1$ and $e\left(B \cap L^{T}(B \mid L) \mid L\right)=1$, hence also $e\left(B \cap L^{T}(B \mid L) \mid K\right)=1$ since $e(B \cap L \mid K)=1$. Thus, by 3.2, $L^{T}(B \mid L)=K^{T}(B \mid K)$ and $L \cong K^{T}(B \mid K)$.

Corollary 3.4. Let V be a valuation ring contained in N lying over A. Then, the following statements are equivalent:
(i) $e(V / K)=1$.
(ii) There exists a valuation ring E of N lying over V such that $V \sqsubseteq K^{T}(E / K)$ 。
(iii) For every valuationring E of N lying over $V, V \subseteq K^{T}(E / K)$.

Now, let $\left(N^{*}, B^{*}\right)$ be a completion of (N, B); by this, we mean that N^{*} is a B-completion of $N\left[5,(1-7-1)\right.$, p. 27], and B^{*} the topological closure of B in N^{*}; let (K^{*}, A^{*}) be the completion of (K, A) contained in $\left(N^{*}, B^{*}\right)$. A being a rank-1 discrete valuation ring, we let t be a generator of the maximal ideal of A. Let σ^{\prime} be an algebraic closure of N^{*}, and \tilde{O} the algebraic closure of K^{*} contained in \tilde{O}^{\prime}. Let C be a field of representatives of A^{*} and \bar{C} the algebraic closure of C contained in $\tilde{\sigma}$; by [7, Theorem 27, p. 304], we have $A^{*}=C[[t]]$ and $K^{*}=C((t))$. Let F be the unique valuation ring of O which lies over $A^{*}[5,(2-1-3)$, p. 44]. The situation can be resumed by the fol-
lowing diagram:

Proposition 3.5. $\quad K^{T}(B / K)=\bar{C}((t)) \cap N$ and $B \cap K^{T}(B / K)=\bar{C}[[t]] \cap$ N.

Proof. We shall do it in several steps.
Step 1. $\bar{C}((t)) \cap \tilde{\sigma}$ is the inertia field of F over K^{*} and $\bar{C}[[t]] \cap$ $\tilde{O}=F \cap(\bar{C}((t)) \cap \bar{O})$.

Proof. $\bar{C}[[t]] \cap \tilde{O}$ is a valuation ring of $\bar{C}((t)) \cap \tilde{O}$ which lies over $A^{*}=C[[t]]$; thus it is indecomposed in \tilde{O} and is equal to $F \cap(\bar{C}((t)) \cap \tilde{O})$. Let ξ (respectively w-) be a place (respectively a valuation) of \tilde{O} corresponding to the valuation ring F; since $\bar{C} \cong \tilde{O}$, we have $\xi(C)=$ $\xi(C[[t]]) \cong \xi(\bar{C}) \cong \xi(\bar{C}[[t]] \cap \widetilde{O}) \subseteq \xi(F)$; furthermore $\xi(F)$ is algebraic over $\xi(C[[t]])$ by [1, (14.5)], and $\xi(\bar{C}) \cong \bar{C}$ is algebraically closed; thus $\xi(\bar{C}[[t]] \cap \tilde{\sigma})=\tilde{\xi}(F)$. On the other hand we have clearly $w(C[[t]])=$ $w\left(\bar{C}[[t]] \cap O^{*}\right)$. Thus by 3.2, $\bar{C}((t)) \cap \bar{O}$ is the inertia field of F over K^{*}.

Step 2. Let N_{α} be a finite normal extension of K contained in N. Let N_{α}^{*} be the completion of N_{α} contained in N^{*}. Then $\bar{C}((t)) \cap$ N_{α}^{*} is the inertia field of $B^{*} \cap N_{\alpha}^{*}$ over K^{*} and $\bar{C}[[t]] \cap N_{\alpha}^{*}=\left(B^{*} \cap N_{\alpha}^{*}\right) \cap$ $\left(\bar{C}((t)) \cap N_{\alpha}^{*}\right)$.

Proof. N_{α}^{*} is a finite normal extension of K^{*} [4, Corollary 4, p. 41]; hence $N_{\alpha}^{*} \cong \overparen{O} . \quad B^{*} \cap N_{\alpha}^{*}$ is a valuation ring of N_{α}^{*} which lies over A^{*}; hence it has to be equal to $F \cap N_{\alpha}^{*}$. Now, the inertia field of $F \cap N_{\alpha}^{*}$ over K^{*} is equal to the intersection of the inertia field of F over K^{*} with $N_{\alpha}^{*}[1,(19.10)]$, i.e., is equal to $(\bar{C}((t)) \cap \widetilde{O}) \cap N_{\alpha}^{*}=$
$\bar{C}((t)) \cap N_{\alpha}^{*}$. Finally, $\bar{C}[[t]] \cap N_{\alpha}^{*}$ is a valuation ring of $\bar{C}((t)) \cap N_{\alpha}^{*}$ which lies over A^{*}, thus it has to lie under $B^{*} \cap N_{\alpha}^{*}$, i.e., we need to have $\left.\bar{C}[[t]] \cap N_{\alpha}^{*}=\left(B^{*} \cap N_{\alpha}^{*}\right) \cap \bar{C}((t)) \cap N_{\alpha}^{*}\right)$.

Step 3. $\bar{C}((t)) \cap N_{\alpha}$ is the inertia field of $B \cap N_{\alpha}$ over K and $\bar{C}[[t]] \cap N_{\alpha}=\left(B \cap N_{\alpha}\right) \cap\left(\bar{C}((t)) \cap N_{\alpha}\right)$.

Proof. $\quad B \cap N_{\alpha} \cap \bar{C}((t)) \cong B^{*} \cap N_{\alpha}^{*} \cap \bar{C}((t))=\bar{C}[[t]] \cap N_{\alpha}^{*}$ by Step 2; then, being contained in $\bar{C}((t)) \cap N_{\alpha}, B \cap N_{\alpha} \cap \bar{C}((t))$ has also to be contained in $\bar{C}[[t]] \cap N_{\alpha}$; being a rank-1 valuation ring, $B \cap N_{\alpha} \cap \bar{C}((t))$ has to be equal to $\bar{C}[[t]] \cap N_{\alpha}$.

Now, if we still call w the valuation of \tilde{O} corresponding to F, we have $w(K) \subseteq w\left(\bar{C}((t)) \cap N_{\alpha}\right) \subseteq w\left(\bar{C}((t)) \cap N_{\alpha}^{*}\right)$; but $w\left(K^{*}\right)=w(\bar{C}((t)) \cap$ N_{α}^{*}) by Step 2, and $w(K)=w\left(K^{*}\right)$ because, by [5, (1-7-5), p. 31], the completion is an immediate extension; hence $w(K)=w\left(\bar{C}((t)) \cap N_{\alpha}\right)$, and $\bar{C}((t)) \cap N_{\alpha} \subseteq K^{T}\left(B \cap N_{\alpha} / K\right)$ by 3.3. Then, $\bar{C}((t)) \cap N_{\alpha}=K^{T}\left(B \cap N_{\alpha} / K\right)$, because if not, the completion L of $K^{T}\left(B \cap N_{\alpha} / K\right)$ contained in N_{α}^{*} would be such that $L \nsubseteq C((t)) \cap N_{\alpha}^{*}$ and $e\left(B^{*} \cap L / K^{*}\right)=1$, which is impossible by 3.3 , since $\bar{C}((t)) \cap N_{\alpha}^{*}$ is the inertia field of $B^{*} \cap N_{\alpha}^{*}$ over K^{*} by Step 2.

Step 4. $\bar{C}((t)) \cap N$ is the inertia field of B over K and $\bar{C}[[t]] \cap N=$ $B \cap(\bar{C}((t)) \cap N)$.

Proof. Let $\left\{N_{\alpha} ; \alpha \in J\right\}$ be the set of all the finite normal subextensions of N over K. Let us show that $K^{T}(B \mid K)=\bigcup_{\alpha \in J} K^{T}\left(B \cap N_{\alpha} \mid K\right)$. For any $\alpha \in J$, the homomorphism $\theta_{\alpha}^{T}: G^{T}(B \mid K) \rightarrow G^{T}\left(B \cap N_{\alpha} \mid K\right)$ defined by $\theta_{\alpha}^{T}(\rho)=\left.\rho\right|_{N_{\alpha}}=$ the restriction of ρ to N_{α}, is surjective [1, (19.7]]. Let $x \in K^{T}(B \mid K), N_{\alpha}$ a finite normal extension of K containing x and $\sigma \in G^{T}\left(B \cap N_{\alpha} \mid K\right)$; since θ_{α}^{T} is surjective, there exists $\rho \in G^{T}(B \mid K)$ such that $\left.\rho\right|_{N_{\alpha}}=\sigma$, so that $\sigma(x)=\rho(x)=x$ and $x \in K^{T}\left(B \cap N_{\alpha} \mid K\right)$. Conversely, let $\alpha \in J$, and $x \in K^{T}\left(B \cap N_{\alpha} \mid K\right)$; for any $\rho \in G^{T}(B \mid K)$ we have $\left.\rho\right|_{N_{\alpha}} \in G^{T}\left(B \cap N_{\alpha} \mid K\right)$, so that $\rho(x)=\left.\rho\right|_{N_{\alpha}}(x)=x$ and $x \in K^{T}(B \mid K)$. Hence, $K^{T}(B \mid K)=\bigcup_{\alpha \in J} K^{T}\left(B \cap N_{\alpha} \mid K\right)=\bigcup_{\alpha \in J}\left(\bar{C}((t)) \cap N_{\alpha}\right)=\bar{C}((t)) \cap\left(\bigcup_{\alpha \in J} N_{\alpha}\right)=$ $\bar{C}((t)) \cap N$, and $B \cap K^{T}(B \mid K)=B \cap\left(\bigcup_{\alpha \in J} K^{T}\left(B \cap N_{\alpha} \mid K\right)\right)=\bigcup_{\alpha \in J}(B \cap$ $\left.K^{T}\left(B \cap N_{\alpha} \mid K\right)\right)=\bigcup_{\alpha \in J}\left(\bar{C}[[t]] \cap N_{\alpha}\right)=\bar{C}[[t]] \cap N$.
4. Extensions of the derivation in the algebraic closure of the quotient field.

Lemma 4.1. Let A be a ring, I a finitely generated ideal of A such that $\bigcap_{n=0}^{\infty} I^{n}=(0), A^{*}$ the I-adic completion of A. Let $D: A \rightarrow$ A^{*} be a map such that $D(x+y)=D(x)+D(y)$ and $D(x y)=x D(y)+$ $y D(x)$. Then,
(i) D can be extended to a derivation D^{\prime} on A^{*} by $D^{\prime}\left(\lim _{n} x_{n}\right)=$ $\lim _{n} D\left(x_{n}\right)$, where $\left\{x_{n}\right\}_{n \geqq 0}$ is a Cauchy sequence in A.
(ii) D^{\prime} is the only derivation of A^{*} that extends D.

Proof. (i) Let $\left\{x_{n}\right\}_{n \geqq 0}$ be a Cauchy sequence in A; for any positive integer m, there exists q such that $r, s>q \Rightarrow x_{r}-x_{s} \in I^{m} ; x_{r}-x_{s} \in$ $I^{m} \Rightarrow x_{r}-x_{s}=\sum_{i} u_{i 1} \cdots u_{i m}$ with $u_{i j} \in I$, hence $D x_{r}-D x_{s}=D\left(x_{r}-x_{s}\right)=$ $\sum_{i} \sum_{j=1}^{m} u_{i j} \cdots u_{i(j-1)} D\left(u_{i 1}\right) u_{i(j+1)} \cdots u_{i m} \in\left(I A^{*}\right)^{m-1}$; then as I is finitely generated, the topology of A^{*} is the $\left(I A^{*}\right)$-adic topology [7, Corollary 1, p. 257], and $\left\{D x_{n}\right\}_{n \geqq 0}$ is a Cauchy sequence in A^{*}; set $D^{\prime}\left(\lim _{n} x_{n}\right)=$ $\lim _{n} D\left(x_{n}\right)$. Defined that way, D^{\prime} is a function of A^{*} for if $\left\{z_{n}\right\}_{n \geqq 0}$ is another Cauchy sequence such that $\lim _{n} x_{n}=\lim _{n} z_{n}$, then for any positive integer m, there exists q such that $n>q \Rightarrow\left(x_{n}-z_{n}\right) \in I^{m}$, so that $D\left(x_{n}\right)-D\left(z_{n}\right)=D\left(x_{n}-z_{n}\right) \in\left(I A^{*}\right)^{m-1}$, and $\lim _{n} D\left(x_{n}\right)=\lim _{n} D\left(z_{n}\right)$. Furthermore, D^{\prime} is a derivation of A^{*} for if $\left\{x_{n}\right\}_{n \geqq 0}$ and $\left\{z_{n}\right\}_{n \geqq 0}$ are two Cauchy sequences of A, then $\lim _{n} \mathrm{D}\left(x_{n}+z_{n}\right)=\lim _{n} D\left(x_{n}\right)+\lim _{n} D\left(z_{n}\right)$ and $\lim _{n} D\left(x_{n} \cdot z_{n}\right)=\lim _{n} x_{n} \cdot \lim _{n} D\left(z_{n}\right)+\lim _{n} D\left(x_{n}\right) \cdot \lim _{n} z_{n}$ since, for every n, we have $D\left(x_{n}+z_{n}\right)=D\left(x_{n}\right)+D\left(z_{n}\right)$ and $D\left(x_{n} \cdot z_{n}\right)=x_{n} \cdot D\left(z_{n}\right)+$ $D\left(x_{n}\right) \cdot z_{n}$. Finally, for any $y \in A$, we clearly have $D^{\prime}(y)=D(y)$.
(ii) Let $D^{\prime \prime}$ be a derivation of A^{*} which extends D. Let y be any element of A^{*}, and $\left\{x_{n}\right\}_{n \geq 0}$ a Cauchy sequence in A such that $y=\lim _{n} x_{n}$; then, for any positive integer m, there exists q such that $n>q \Rightarrow y-y_{n} \in\left(I A^{*}\right)^{m}$, so that $D^{\prime \prime}(y)-D\left(y_{n}\right)=D^{\prime \prime}(y)-D^{\prime \prime}\left(y_{n}\right)=$ $D^{\prime \prime}\left(y-y_{n}\right) \in\left(I A^{*}\right)^{m-1}$, and $D^{\prime \prime}(y)=\lim _{n} D\left(y_{n}\right)=D^{\prime}(y)$.

Remark. In the case of D being a derivation of A, the procedure used in the preceding lemma allows to extend D to a derivation D^{\prime} of A^{*} even if I is not finitely generated. To get the uniqueness property however, we again need I to be finitely generated.

Theorem 4.2. Let A be a rank-1 discrete valuation ring containing the rational numbers with quotient field K; let Ω be an algebraic closure of K and D a derivation of A. Let B be a valuation ring of Ω lying over A; let V be a valuation ring contained in Ω, lying over A and unramified over K. Then,
(i) $\quad\left(K^{T}(B \mid K), B \cap K^{T}(B \mid K)\right)$ is a D-regular extension of (K, A) contained in (Ω, B).
(ii) $(N, B \cap N)$ is D-regular for any field N between K and $K^{T}(B \mid K)$.
(iii) D is regular on V.

Proof. (i) Let $\left(\Omega^{*}, B^{*}\right)$ be a completion of (Ω, B) and $\left(K^{*}, A^{*}\right)$
the completion of (K, A) contained in $\left(\Omega^{*}, B^{*}\right)$; let $\sigma^{\prime \prime}$ be an algebraic closure of Ω^{*} and $\tilde{\delta}$ the algebraic closure of K^{*} contained in $\tilde{\sigma}^{\prime \prime}$. Let t be a generator of the maximal ideal of A; let C be a field of representatives of A^{*}, and \bar{C} the algebraic closure of C in $\bar{\sigma}$; of course we have $A^{*}=C[[t]]$ and $K^{*}=C((t))$ [7, Corollary, p. 307]. By 4.1, let D^{\prime} be the unique derivation of A^{*} which is an extension of D, and, as usual, call again D^{\prime} its extension to $\bar{\sigma}$. For an element y of \bar{C}, we have $D^{\prime}(y) \in \bar{C}[[t]]$; indeed, if $X^{n}+c_{1} X^{n-1}+\cdots+c_{n} \in C[X]$ is the minimal polynomial of y over C, differentiating the equation $y^{n}+c_{1} y^{n-1}+\cdots+c_{n}=$ 0 , we get $\left(n y^{n-1}+c_{1}(n-1) y^{n-2}+\cdots+c_{n-1}\right) D^{\prime}(y)+\left(D\left(c_{1}\right) y^{n-1}+\cdots+\right.$ $\left.D\left(c_{n}\right)\right)=0$; the first factor of the first term is an element of \bar{C}, different from zero since y is separable over C; the second term is an element of $\bar{C}[[t]]$; thus $D^{\prime}(y) \in \bar{C}[[t]]$. We also have $D^{\prime}(t) \in \bar{C}[[t]]$, so that the restriction $D^{\prime \prime}$ of D^{\prime} to $\bar{C}[t]$ is a function with values in $\bar{C}[[t]]$ which satisfies the properties $D^{\prime \prime}(x+z)=D^{\prime \prime}(x)+D^{\prime \prime}(z)$ and $D^{\prime \prime}(x z)=x D^{\prime \prime}(z)+z D^{\prime \prime}(x)$; furthermore, $\bar{C}[[t]]$ is the (t)-adic completion of $\bar{C}[t]$; thus, by $4.1, D^{\prime \prime}$ can be extended to a derivation of $\bar{C}[[t]]$, which we call $D^{\prime \prime}$ again, by $D^{\prime \prime}\left(\sum_{i=0}^{\infty} d_{i} t^{i}\right)=\sum_{i=0}^{\infty} D^{\prime \prime}\left(d_{i} t^{i}\right)=$ $\sum_{i=0}^{\infty} D^{\prime}\left(d_{i} t^{i}\right)$. As $C[[t]]$ is the completion of $C[t]$ for the (t)-adic topology, by 4.1 also, we know that for an element $\sum_{i=0}^{\infty} c_{i} t^{i}$ of $C[[t]]$ we must have $D^{\prime}\left(\sum_{i=0}^{\infty} c_{i} t^{i}\right)=\sum_{i=0}^{\infty} D^{\prime}\left(c_{i} t^{i}\right)$, so that $D^{\prime}=D^{\prime \prime}$ on $A^{*}=$ $C[[t]]$; thus $D=D^{\prime \prime}$ on A, hence also on K. But we can even see that $D=D^{\prime \prime}$ on $\bar{C}((t)) \cap \Omega$; indeed, if $X^{m}+k_{1} X^{m-1}+\cdots+k_{m} \in K[X]$ is the minimal polynomial over K of an element z of $\bar{C}((t)) \cap \Omega$, we have $z^{m}+k_{1} z^{m-1}+\cdots k_{m}=0$, thus $D(z)=\left[D\left(k_{1}\right) z^{m-1}+\cdots+D\left(k_{m}\right)\right] \times$ $\left[m z^{m-1}+\cdots+k_{m-1}\right]^{-1}=\left[D^{\prime \prime}\left(k_{1}\right) z^{m-1}+\cdots+D^{\prime \prime}\left(k_{m}\right)\right]\left[m z^{m-1}+\cdots+k_{m-1}\right]^{-1}=$ $D^{\prime \prime}(z)$. Then, since D is regular on Ω, since $D^{\prime \prime}$ is regular on $\bar{C}[[t]]$, and since $D=D^{\prime \prime}$ on $\bar{C}((t)) \cap \Omega$, we get that $(\bar{C}((t)) \cap \Omega, \bar{C}[[t]] \cap \Omega)$ is D-regular; but by 3.5 we know that $\bar{C}((t)) \cap \Omega=K^{T}(B \mid K)$ and $\bar{C}[[t]] \cap$ $\Omega=B \cap K^{T}(B \mid K)$; thus ($K^{T}(B \mid K), B \cap K^{T}(B \mid K)$) is D-regular.
(ii) Let N be any field between K and $K^{T}(B \mid K) . \quad D$ is regular on N and is regular on $B \cap K^{T}(B \mid K)$; thus D is regular on ($B \cap$ $\left.K^{T}(B \mid K)\right) \cap N=B \cap N$.
(iii) Let B^{\prime} be a valuation ring of Ω lying over V; by 3.4 we have $V \subseteq K^{T}\left(B^{\prime} \mid K\right)$, so that D is regular on V.

Theorem 4.3. Let A be a D-simple valuation ring with quotient field K; let Ω be an algebraic closure of K, and B a valuation ring of Ω lying over A. Then, $\left(K^{T}(B \mid K), B \cap K^{T}(B \mid K)\right)$ is the biggest D regular extension of (K, A) contained in (Ω, B).

Proof. Being D-simple, A contains the rational numbers; thus, by 4.2 , we know that ($K^{T}(B \mid K), B \cap K^{T}(B \mid K)$) is D-regular. Now let (L, E) be a D-regular extension of (K, A) contained in (Ω, B); of
course E is rank-1, and thus B lies over E; also E is D-simple by 1.1. If t is a generator of the maximal ideal of A, then t is also a generator of the maximal ideal \mathfrak{M}_{E} of E; indeed, otherwise we would have $t \in \mathfrak{M}_{E}^{2}$, hence also $D(t) \in \mathfrak{M}_{E}$ which cannot be since $D(t)$ is a unit in A. Thus, the index of ramification of E over K is equal to 1, and by $3.3(L, E) \subseteq\left(K^{T}(B \mid K), B \cap K^{T}(B \mid K)\right)$.

Corollary 4.4. Let R be a D-simple ring with quotient field K; let Ω be an algebraic closure of K. Let V be a valuation ring which contains R and is contained in Ω; let $e(V \mid K)$ be its ramification index over K. Then, the following statements are equivalent:
(i) D is regular on V.
(ii) $e(V \mid K)=1$ and D is regular on $V \cap K$.

Proof. If D is regular on V, then D is regular on $V \cap K$ since D is also regular on K. Furthermore, $V \cap K$ contains R which is D-simple; thus, by 1.1, $V \cap K$ is D-simple and, as already noticed in the proof of 4.3 , this implies that $e(V \mid K)=1$. Conversely, if D is regular on $V \cap K$ and if $e(V \mid K)=1$ we know that D is regular on V by 4.2 .

References

1. O. Endler, Valuation Theory, Hochschultexte, Springer Verlag, Berlin-HeidelbergNew York, 1972.
2. Y. Lequain, Differential simplicity and complete integral closure, Pacific J. Math., 36 (1971), 741-751.
3. A. Seidenberg, Derivations and integral closure, Pacific J. Math., 16 (1966), 167173.
4. J. P. Serre, Corps Locaux, Hermann, Paris, 1962.
5. E. Weiss, Algebraic Number Theory, McGraw-Hill Book Co., New York, 1963.
6. O. Zariski and P. Samuel, Commutative Algebra, v. 1, Van Nostrand Co., 1958.
7. - Commutative Algebra, v. 2, Van Nostrand Co., 1960.

Received December 7, 1971.
Instituto de Matematica Pura e Aplicada
Rua Luis de Lamōes 68
Rio de Janeiro

