PROXIMITY CONVERGENCE STRUCTURES

ELLEN E. REED

In this paper the notion of proximity convergence structures is introduced. These constitute a layer between Cauchy structures and uniform convergence structures (in the sense of Cook and Fischer [1]). They are a natural generalization of proximity structures. A study of the relations among these various structures constitutes §§ 2 and 3. In § 4, compact extensions for a special class of proximity convergence spaces are constructed, and a characterization of these is obtained. They satisfy a mapping property with respect to compact T_2 proximity convergence spaces which satisfy a strong regularity condition. One problem left open is the obtaining of a more reasonable definition of regularity for these spaces.

1. Proximity convergence structures. A proximity convergence structure is the natural analogue, in the context of convergence spaces, of a proximity structure. Here convergence space is used in the sense of Fischer [3], and proximity in the sense of Efremovič and Smirnov. A proximity convergence structure is a filter of proximity-like orders on a set X, and satisfies a composition property. If the filter is principal then it corresponds to an ordinary proximity.

The notation used is largely that in Cook and Fischer [1]. By $\mathcal{O}(X)$ is meant the set of all symmetric topogenous orders on X.

So a relation < on the subsets of X is in $\mathcal{O}(X)$ iff it satisfies the following:

- (ST 1) $\phi < A < X$ for $A \subseteq X$;
- (ST 2) $A < B \Rightarrow A \subseteq B$;
- (ST 3) if $A' \subseteq A < B \subseteq B'$ then A' < B';
- (ST 4) if A < C and B < C then $A \cup B < C$; also if C < A and C < B then $C < A \cap B$;
 - (ST 5) A < B then $X \setminus B < X \setminus A$.

DEFINITION 1. A proximity convergence structure on a set X is a family $\mathscr{S} \subseteq \mathscr{O}(X)$ satisfying

- (P1) if $<_1, <_2 \in \mathscr{P}$ then $<_1 \cap <_2 \in \mathscr{P}$;
- (P2) if $\langle \in \mathscr{P} \text{ then } \langle \circ \langle \in \mathscr{P} \rangle$
- (P3) if $\langle \in \mathscr{P} \text{ and } \langle \subseteq \langle' \in \mathscr{O}(X) \text{ then } \langle' \in \mathscr{P}.$

We will call (X, \mathcal{S}) a proximity convergence space. Both concepts will be abbreviated by p.c.s.

REMARK AND DEFINITION 2. We say one p.c.s. on X is less than

another if it *contains* it. Under this ordering the set of all p.c.s.'s on X is a complete lattice. The largest member is $\{\subseteq\}$ and corresponds to the discrete topology on X. The smallest is $\mathcal{O}(X)$, which yields the indiscrete topology. (See Definition 30.) The intersection of any family of p.c.s.'s on X is also a p.c.s., so that suprema are easily described.

DEFINITION 3. If \mathscr{G} is a nonempty subset of $\mathscr{O}(X)$ then clearly there is a smallest p.c.s. $[\mathscr{G}]$ containing G. We will call \mathscr{G} a base, provided $[\mathscr{G}]$ consists of refinements of orders in \mathscr{G} . In case $[\mathscr{G}]$ consists of refinements of finite intersections of orders in \mathscr{G} , we call \mathscr{G} a subbase for $[\mathscr{G}]$.

As in the uniform case, ordinary proximity relations on X correspond to "principal" p.c.s's.; i.e., those which have a single element as base.

THEOREM 4. Let $\ll \in \mathcal{O}(X)$. Then \ll is a proximity on X iff $\{\ll\}$ is a base for a p.c.s. on X.

Proof. Let $\mathscr S$ denote the set of refinements (in $\mathscr S(X)$) of $\mathscr K$. If $\mathscr K$ is a proximity relation then $\mathscr K=\mathscr K$ and hence $\mathscr S$ satisfies (P2). The other properties are clearly satisfied. Conversely, if $\mathscr S$ is a p.c.s. then $\mathscr K \circ \mathscr K \in \mathscr S$ and so $\mathscr K$ is dense. Clearly then $\mathscr K$ is a proximity relation.

DEFINITION 5. If $\subset\subset$ is a proximity on X we will call $[\subset\subset]$ a proximity structure.

2. Relation with uniform convergence structure. As with ordinary proximities, each uniform convergence structure (abbreviated u.c.s.) gives rise to a p.c.s. This allows us to divide the uniform convergence structures into proximity classes. Each class contains a smallest member, which is strongly bounded. This last is a condition stronger than total boundedness, and more satisfying in that every proximity class contains a unique strongly bounded member. (A class can contain more than one totally bounded member.) Moreover if the p.c.s. is a proximity structure than the strongly bounded member in its class is a uniform structure; the other totally bounded uniform convergence structures in the class will not be uniform structures.

DEFINITION 6. A standard filter on $X \times X$ is a symmetric filter $\Phi \subseteq [A]$, the filter generated by the diagonal on X. For Φ a standard filter we define

$$A <_{\varphi} B$$
 iff $H(A) \subseteq B$ for some $H \in \Phi$.

This imitates the usual way a proximity is obtained from a uniformity. Notice that if Φ is standard, $<_{\Phi} \in \mathcal{O}(X)$.

If \mathcal{J} is a uniform convergence structure (abbreviated u.c.s.) we define

$$\mathcal{B}_{\mathscr{I}} = \{ <_{\mathfrak{o}} : \Phi \text{ is a standard filter in } \mathscr{J} \}$$
.

It turns out that $\mathscr{G}_{\mathcal{I}}$ is a base for a p.c.s. $\mathscr{G}_{\mathcal{I}}$ on X.

LEMMA 7. Let Φ and Ψ be standard filters on $X \times X$.

- (i) If $\theta = \Phi \cap \Psi$ then $<_{\theta} = <_{\phi} \cap <_{\Psi}$
- (ii) If $\mathscr{X} = \Phi \circ \Phi$ then $<_{\mathscr{X}} = <_{\Phi} \circ <_{\Phi}$.

Proof. Straightforward.

THEOREM 8. If \mathcal{J} is a u.c.s. on X then $\mathscr{B}_{\mathcal{F}}$ is a base for a p.c.s. $\mathscr{P}_{\mathcal{F}}$ on X. If \mathcal{J} is generated by a uniformity \mathscr{Z} then $\mathscr{P}_{\mathcal{F}}$ is a proximity structure generated by $<_{\mathscr{Z}}$.

Proof. From the preceding lemma it is clear that $\mathscr{G}_{\mathscr{F}}$ is a base for a p.c.s. on X. Suppose \mathscr{E} is a uniformity which generates \mathscr{F} . Then for $\langle \in \mathscr{G}_{\mathscr{F}} \rangle$ we have $\langle \mathscr{F}_{\mathscr{F}} \rangle \subset \mathscr{F}$. Hence $\{\langle \mathscr{F}_{\mathscr{F}} \rangle \in \mathscr{F}_{\mathscr{F}} \rangle \subset \mathscr{F}_{\mathscr{F}}$.

DEFINITION 9. If \mathscr{C} is a cover of X we define $H_{\mathscr{C}} = \bigcup \{C \times C : C \in \mathscr{C}\}$. If \mathscr{C} is finite then any entourage which contains $H_{\mathscr{C}}$ is said to be strongly bounded. A filter Φ on $X \times X$ is strongly bounded iff it consists of strongly bounded entourages. A u.c.s. is strongly bounded iff it has a base of strongly bounded filters.

REMARK 10. Notice that for uniform structures strongly bounded is equivalent to totally bounded. However, in the case of a u.c.s. total-boundedness is a weaker condition.

THEOREM 11. Every strongly bounded u.c.s. is totally bounded.

Proof. Let \mathscr{J} be a strongly bounded u.c.s. on X, and let \mathscr{U} be an ultrafilter on X. Let Φ be any strongly bounded filter in \mathscr{J} . We claim that $\Phi \subseteq \mathscr{U} \times \mathscr{U}$.

Let $H \in \Phi$, and let $\mathscr C$ be a finite cover of X such that $H_{\mathscr C} \subseteq H$. Since $\mathscr U$ is an ultrafilter, $\mathscr U \cap \mathscr C \neq \varnothing$. But if $C \in \mathscr U \cap \mathscr C$ then $H \supseteq C \times C \in \mathscr U \times \mathscr U$.

THEOREM 12. Let J be a u.c.s. on X. The following conditions

are equivalent:

- (i) I is strongly bounded;
- (ii) I has at least one strongly bounded member;
- (iii) The filter $[\Delta]^*$ of all strongly bounded entourages is in \mathcal{J} .

Proof. Since $\mathscr{J}\neq\varnothing$, clearly (i) \Rightarrow (ii). Now suppose (ii) holds. Note $[\Delta]^*$ is a filter. If Φ is any strongly bounded filter in \mathscr{J} then $\Phi\subseteq [\Delta]^*$.

Finally, assume $[\Delta]^* \in \mathcal{J}$. If $\Phi \in \mathcal{J}$ then $\Phi \cap [\Delta]^*$ is a strongly bounded filter in \mathcal{J} , and is contained in Φ .

LEMMA 13. A strongly bounded u.c.s. is the smallest member of its proximity class.

Proof. Let \mathscr{J} and \mathscr{K} be u.c.s.'s on X and suppose \mathscr{J} is strongly bounded, with $\mathscr{P}_{\mathscr{J}} = \mathscr{P}_{\mathscr{K}}$. We wish to show $\mathscr{K} \subseteq \mathscr{J}$. Let $\Phi \in \mathscr{K}$ and let $\Psi = \Phi \cap \Phi^{-1} \cap [\Delta]$. Then $<_{\Psi} \in \mathscr{P}_{\mathscr{K}} = \mathscr{P}_{\mathscr{J}}$, so we can choose $\theta \in \mathscr{J}$ so that $<_{\theta} \subseteq <_{\Psi}$. Let $\theta^* = \theta \cap [\Delta]^*$. We claim that $\theta^* \circ \theta^* \subseteq \Phi$.

Let $H \in \theta^*$, and let $\mathscr C$ be a finite cover of X with $H_{\mathscr C} \subseteq H$. Then for $C \in \mathscr C$ we have $C <_{\theta} H(C)$. Let $K_{\mathcal C} \in \mathscr V$ such that $K_{\mathcal C}(C) \subseteq H(C)$, and define K to be the intersection of the $K_{\mathcal C}$'s. Then $K \in \Phi$. We claim $K \subseteq H \circ H$.

Let $(x, y) \in K$. Choose $C \in \mathscr{C}$ so $x \in C$. Then $y \in K_c(C) \subseteq H(C)$. Set $c \in C$ with $(c, y) \in H$. Then $(x, c) \in C \times C \subseteq H$. Hence $(x, y) \in H \circ H$.

THEOREM 14. Let \mathscr{S} be a p.c.s. on X, and define

$$\mathscr{B}_{\mathscr{D}} = \{ \Phi : \Phi \text{ is standard and } <_{\Phi} \in \mathscr{P} \}$$
.

Then $\mathscr{B}_{\mathscr{P}}$ is a base for a strongly bounded u.c.s. $\mathscr{J}_{\mathscr{P}}$ in the proximity class of \mathscr{P} .

Proof. If $\Phi = [\Delta]$ then $<_{\phi} = \subseteq$, so $[\Delta] \in \mathscr{B}_{\mathscr{T}}$. From Lemma 7 it is clear that $\mathscr{B}_{\mathscr{T}}$ is a base for a u.c.s. $\mathscr{J}_{\mathscr{T}}$.

(1) Jo is strongly bounded.

Let $\theta = [\Delta]^*$. We will show $<_{\theta} = \subseteq$, so that $\theta \in \mathscr{B}_{\mathscr{D}}$. Let $A \subseteq B$, and define $\mathscr{C} = \{B, X \setminus A\}$. Then $H_{\mathscr{C}} \in [\Delta]^*$ and $H_{\mathscr{C}}(A) \subseteq B$. Thus $A <_{\theta} B$.

(2) Is in the proximity class of I.

Clearly the p.c.s. determined by $\mathcal{J}_{\mathscr{P}}$ is contained in \mathscr{P} . Now let $< \in \mathscr{P}$. We define

$$\mathscr{A} = \{ H \subseteq X \times X : A < H(A) \text{ if } A \subseteq X \}$$

$$\mathscr{B} = \{ H_{\mathscr{C}} : \exists A, B \subseteq X \text{ with } A <^{2} B \text{ and } \mathscr{C} = \{ B, X \backslash A \} .$$

Notice $\mathscr{A} \subseteq [A]$, so \mathscr{A} is a subbase for a proper filter Φ on $X \times X$. Since each member of \mathscr{A} is symmetric, clearly Φ is symmetric; hence Φ is standard. We will show $<^2 \subseteq <_{\Phi} \subseteq <$. If this holds, then $\Phi \in \mathscr{J}_{\mathscr{A}}$ and hence < is in the p.c.s. induced by $\mathscr{J}_{\mathscr{A}}$.

If $A <^2 B$ we define $\mathscr{C} = \{B, X \setminus A\}$. Then $H_{\mathscr{C}} \in \Phi$, and $H_{\mathscr{C}}(A) \subseteq B$. Thus $<^2 \subseteq <_{\mathfrak{F}}$. To show that $<_{\mathfrak{F}} \subseteq <$ it is sufficient to establish that $\Phi \subseteq A$.

Let $H_i \in \mathscr{B}$ for $1 \leq i \leq n$ and suppose $\bigcap_i H_i \subseteq H$. For each i, let $A_i <^2 B_i$ such that $H_i = H_{\mathscr{C}_i}$, where $\mathscr{C}_i = \{B_i, X \setminus A_i\}$. Choose D_i so $A_i < D_i < B_i$, and define $\mathscr{D}_i = \{D_i, X \setminus D_i\}$. Set $\mathscr{K} = \prod_i \mathscr{D}_i$, and for $k \in \mathscr{K}$ let $C_k = \bigcap_i k(i)$. Note the C_k 's cover X.

Now let $E \subseteq X$. We must show E < H(E). This holds, provided $E \cap C_k < H(E)$ for $k \in \mathscr{K}$. we will actually show that if $E \cap C_k \neq \emptyset$ then $C_k < H(E)$.

Let $k \in \mathcal{K}$, with $E \cap C_k \neq \emptyset$. Define h(i) to be B_i if $k(i) = D_i$, and $X \setminus A_i$ otherwise. Then k(i) < h(i) for $1 \le i \le n$, and so $C_k < \bigcap_i h(i)$. We claim $\bigcap_i h(i) \subseteq H(E)$.

Let $x \in \bigcap_i h(i)$, and pick $x_0 \in E \cap C_k$. We will show $(x_0, x) \in H$. Choose i, and suppose $k(i) = D_i$. Then $h(i) = B_i$, and so $(x_0, x) \in D_i \times B_i \subseteq H_i$. Similarly if $k(i) = X \setminus D_i$ then x_0 and x are both in $X \setminus A_i$, and hence $(x_0, x) \in H$.

Theorem 15. If $\mathscr S$ is a proximity structure then $\mathscr J_{\mathscr S}$ is a uniform structure.

Proof. Suppose \ll generates \mathscr{P} . Let $\Phi \in \mathscr{J}_{\circ}$ so $<_{\circ} \subseteq \ll$ and Φ is strongly bounded. We claim Φ^2 generates \mathscr{J}_{\circ} .

Let $\Psi \in \mathscr{J}_{\mathscr{I}}$ and assume Ψ is standard. Then $<_{\mathscr{T}} \in \mathscr{T}$, so $<_{\mathscr{D}} \subseteq <_{\mathscr{T}}$. Let $H \in \mathscr{D}$. Then we can choose \mathscr{C} a finite cover of X such that $H_{\mathscr{C}} \subseteq H$. For $C \in \mathscr{C}$ we have $C <_{\mathscr{T}} H(C)$. Pick $K \in \mathscr{V}$ so $K(C) \subseteq H(C)$ for all C in \mathscr{C} . Then $K \subseteq H^2$, so $H^2 \in \mathscr{V}$. This establishes that $\mathscr{D}^2 \subseteq \mathscr{V}$.

EXAMPLE 16. We conclude this section with an example to show that a totally bounded u.c.s. need not be strongly bounded. Let τ be a compact T_2 convergence structure on a set X, and suppose that every finite intersection of convergent filters has a member with an infinite complement. For example, we would let τ be the usual topology on the closed unit interval. Let \mathcal{F} be the u.c.s. generated by $\{\mathcal{F} \times \mathcal{F}: \mathcal{F} \text{ is convergent}\}$. Clearly \mathcal{F} is totally bounded. We claim it is not strongly bounded.

Let $\Phi \in \mathcal{J}$. We will exhibit a member of Φ which is not strongly bounded. Let $\mathcal{F}_1, \dots, \mathcal{F}_n$ be convergent filters with $(\bigcap_i \mathcal{F}_i \times \mathcal{F}_i) \cap [\Delta] \subseteq \Phi$. Pick $F \in \bigcap_i \mathcal{F}_i$ so that X. F is infinite. Define $H = (F \times F)$

 $F) \cup \Delta$. Note $H \in \Phi$.

Now let $\mathscr C$ be any cover X with $H_{\mathscr C} \subseteq H$. For $x \in X \setminus F$ let $C_x \in \mathscr C$ such that $x \in C_x$. Since $C_x \times C_x \subseteq H$, clearly $C_x = \{x\}$ for $x \notin F$. Thus $\mathscr C$ is infinite, and H is not strongly bounded.

3. Relation with Cauchy structures. In contrast to the classical case, a totally bounded Cauchy structure \mathscr{C} can be induced by several different p.c.s.'s. However there always exist a smallest and a largest p.c.s. which induce \mathscr{C} . If \mathscr{C} is uniform, the smallest p.c.s. associated with it is a proximity structure, but the largest need not be. We call the smallest p.c.s. yielding \mathscr{C} a saturated p.c.s.

DEFINITION 17. A Cauchy structure on X is a family $\mathscr C$ of proper filters on X such that

- (C1) if $x \in X$ then $\dot{x} \in \mathscr{C}$;
- (C2) if ${\mathscr F}$ is a proper filter which contains a member of ${\mathscr C}$ then ${\mathscr F}\in{\mathscr C}$;
 - (C3) if $\mathcal{F}, \mathcal{G} \in \mathcal{C}$ with $\mathcal{F} \vee \mathcal{G} \neq [\emptyset]$ then $\mathcal{F} \cap \mathcal{G} \in \mathcal{C}$.

Keller [4] has shown that $\mathscr C$ is a Cauchy structure on X iff it is the set of Cauchy filters for some u.c.s. on X. If $\mathscr C$ is induced by a *uniformity* we call $\mathscr C$ a *uniform* Cauchy structure. We say $\mathscr C$ is totally bounded iff every ultrafilter on X is in $\mathscr C$.

DEFINITION 18. For \mathscr{F} a filter on X we define a relation $<_{\mathscr{F}}$ on X by $A<_{\mathscr{F}}B$ iff $A\subseteq B$ and B or $X\backslash A$ is in \mathscr{F} .

Remark 19. Notice that $<_{\mathscr{F}}$ is in $\mathscr{O}(X)$. Also if $\Phi=(\mathscr{F}\times\mathscr{F})\cap[\varDelta]$ then $<_{\emptyset}=<_{\mathscr{F}}$.

THEOREM 20. Let $\mathscr{C}_{\mathscr{T}} = \{\mathscr{F}: <_{\mathscr{F}} \in \mathscr{F}\}$, where \mathscr{F} is a p.c.s. on X. If \mathscr{J} is any totally bounded u.c.s. in the proximity class of \mathscr{F} then $\mathscr{C}_{\mathscr{F}}$ is the set of \mathscr{J} -Cauchy filters.

Proof. Let \mathscr{F} be a filter on X and define $\Phi = (\mathscr{F} \times \mathscr{F}) \cap [\Delta]$. If \mathscr{F} is \mathscr{F} -Cauchy then $\Phi \in \mathscr{F}$, and so $<_{\mathscr{F}} = <_{\emptyset} \in \mathscr{F}$. Hence $\mathscr{F} \in \mathscr{C}_{\mathscr{F}}$.

Conversely, suppose $\mathscr{F} \in \mathscr{C}_{\mathscr{F}}$. Then $<_{\mathfrak{F}} = <_{\mathscr{F}} \in \mathscr{F} = \mathscr{F}_{\mathscr{F}}$ and so we can choose $\mathscr{V} \in \mathscr{F}$ with $<_{\mathscr{V}} \subseteq <_{\mathfrak{F}}$. Let \mathscr{U} be an ultrafilter containing \mathscr{F} . Then \mathscr{U} is \mathscr{F} -Cauchy, and therefore $\mathscr{V}(\mathscr{U})$ is also \mathscr{F} -Cauchy. (By $\mathscr{V}(\mathscr{U})$ is meant the filter generated by all sets of the form H(U), where $H \in \mathscr{V}$ and $U \in \mathscr{U}$. It is easy to check that $[\mathscr{V} \cap (\mathscr{U} \times \mathscr{U})]^3 \subseteq \mathscr{V}(\mathscr{U}) \times \mathscr{V}(\mathscr{U})$.)

We claim that $\Psi(\mathcal{U}) \subseteq \mathcal{F}$. Let $H \in \Psi$ and $U \in \mathcal{U}$. Then $U <_{\Psi} H(U)$,

and since $<_{\mathbb{F}} \subseteq <_{\emptyset}$ we can choose $K \in \mathcal{O}$ with $K(U) \subseteq H(U)$. Now pick $F \in \mathscr{F}$ so $F \times F \subseteq K$. Then since $\mathscr{F} \subseteq \mathscr{U}$ we have $F \cap U \neq \emptyset$, and so $F \subseteq K(U)$. This establishes that $H(U) \in \mathscr{F}$, as desired.

REMARK 21. This theorem tells us that the totally bounded u.c.s.'s in the same proximity class all induce the same Cauchy structure.

DEFINITION 22. A p.c.s. $\mathscr G$ is compatible with a totally bounded Cauchy structure $\mathscr C$ iff $\mathscr C=\mathscr C_{\mathscr S}$.

NOTATION 23. Let \mathscr{F} be a filter on X and let $< \varepsilon \mathscr{O}(X)$. Then

$$r_{<}(\mathcal{F}) = \{A: F < A \text{ for some } F \in \mathcal{F}\}$$
.

Notice $r_{<}(\mathcal{F})$ is a filter contained in \mathcal{F} .

DEFINITION 24. Let $\mathscr C$ be a totally bounded Cauchy structure on C.

- $(1) \quad \mathcal{P}_{L}(\mathcal{C}) = [\{<_{\mathcal{F}} \colon \mathcal{F} \in \mathcal{C}\}];$
- $(2) \quad \mathscr{S}_{\mathcal{S}}(\mathscr{C}) = \{ \langle \in \mathscr{O}(X) \colon \mathscr{F} \in \mathscr{C} \Longrightarrow r_{\langle}(\mathscr{F}) \in \mathscr{C} \}.$

THEOREM 25. If \mathscr{C} is a totally bounded Cauchy structure on X then $\mathscr{S}_{L}(\mathscr{C})$ is the largest p.c.s on X compatible with \mathscr{C} , and $\mathscr{S}_{S}(\mathscr{C})$ is the smallest. Moreover, $\mathscr{S} = \{ <_{\mathscr{F}} : \mathscr{F} \in \mathscr{C} \}$ is a subbase for $\mathscr{S}_{L}(\mathscr{C})$.

Proof.

(1) \mathcal{S} is a subbase for $\mathscr{P}_{L}(\mathscr{C})$.

Let \mathscr{R} be the set of refinements of finite intersections of orders in \mathscr{S} . We need $\mathscr{R} = \mathscr{S}_{L}(\mathscr{C})$. It is sufficient to show that \mathscr{R} is a p.c.s. Clearly \mathscr{R} satisfies (P1) and (P3).

Let \mathscr{F}_i , ..., $\mathscr{F}_n \in \mathscr{C}$ with $<_i = <_{\mathscr{F}_i}$. Suppose $\bigcap_i <_i \subseteq < \in \mathscr{O}(X)$. We wish to show $< \circ < \in \mathscr{B}$. We may assume the \mathscr{F}_i 's are pairwise disjoint; i.e., $\mathscr{F}_i \vee \mathscr{F}_j = [\varnothing]$ for $i \neq j$. This follows by induction from (C 3), since if $\mathscr{F}_i \vee \mathscr{F}_j \neq [\varnothing]$ we replace $<_i \cap <_j$ by $<_{\mathscr{F}_i}$, where $\mathscr{F} = \mathscr{F}_i \cap \mathscr{F}_j$. Choose $F_i \in \mathscr{F}_i$ so that the F_i 's are pairwise disjoint.

Suppose now that $A <_i B$ for $1 \le i \le n$. We will show $A <^2 B$. For each i, define

$$D_i = \begin{cases} F_i \cap B & \text{if } B \in \mathscr{F}_i \\ F_i \backslash A & \text{if } B \notin \mathscr{F}_i \end{cases}$$

Note $D_i \in \mathscr{F}_i$ for all i. Let $H = (\bigcup_i D_i \times D_i) \cup \Delta$. We claim A < H(A) < B.

Clearly $A \subseteq H(A)$. To see that $H(A) \subseteq B$, let $a \in A$ with $(a, x) \in H$. If x = a then $x \in B$. If $x \neq a$ then for some i, a and x are both in D_i . Since $a \notin \mathscr{F}_i \backslash A$, clearly $D_i = F_i \cap B$, and so $x \in B$.

Now fix *i*. We wish to show $A <_i H(A) <_i B$. It is sufficient to show that either H(A) or $X \backslash H(A)$ or $B \backslash A$ is in \mathscr{F}_i . If $D_i = F_i \backslash A$ it is not difficult to prove that $D_i \cap H(A) = \varnothing$, so that $X \backslash H(A) \in \mathscr{F}_i$. (Recall the D_i 's are pairwise disjoint.) If $D_i = F_i \cap B$ and $D_i \cap A = \varnothing$ then clearly $B \backslash A \in \mathscr{F}_i$. If $D_i \cap A \neq \varnothing$ then $D_i \subseteq H(A)$ and so $H(A) \in \mathscr{F}_i$.

(2) $\mathscr{P}_{\mathcal{S}}(C)$ is a p.c.s.

If $<=<_1\cap<_2$ and $\mathscr{F}\in\mathscr{C}$ then $r_<(F)=r_{<_1}(\mathscr{F})\cap r_{<_2}(\mathscr{F})$. Using this and (C 3), we conclude $\mathscr{P}_s(\mathscr{C})$ is closed under finite intersections. Similarly $r_{<^2}(\mathscr{F})=r_<(r_<(\mathscr{F}))$, so $\mathscr{P}_s(\mathscr{C})$ is closed under "squaring". Since $r_<(\mathscr{F})\subseteq r_<(\mathscr{F})$ whenever $<\subseteq<'$ clearly (P3) holds.

(3) $\mathscr{P}_{L}(\mathscr{C}) \subseteq \mathscr{P}_{S}(\mathscr{C})$.

It is sufficient to show that $<_{\mathscr{F}} \in \mathscr{S}_{\mathscr{S}}(\mathscr{C})$ for $\mathscr{F} \in \mathscr{C}$. Let $<=<_{\mathscr{F}}$ and let $\mathscr{G} \in \mathscr{C}$. If $\mathscr{G} \vee \mathscr{F} = [\varnothing]$ then $r_{<}(\mathscr{G}) = \mathscr{G}$; and if $\mathscr{G} \vee \mathscr{F} \neq [\varnothing]$ then $r_{<}(\mathscr{G}) \supseteq \mathscr{F} \cap \mathscr{G}$. Thus in either case $r_{<}(\mathscr{G}) \in \mathscr{C}$.

(4) $\mathscr{T}_s(\mathscr{C})$ and $\mathscr{T}_L(\mathscr{C})$ are both compatible with \mathscr{C} . Let \mathscr{C}_s denote the Cauchy structure induced by $\mathscr{T}_s(\mathscr{C})$; and similarly for \mathscr{C}_L . Suppose $\mathscr{F} \in \mathscr{C}$. Then by definition of $\mathscr{T}_L(\mathscr{C})$ we have $<_{\mathscr{F}} \in \mathscr{T}_L(\mathscr{C})$ and hence $\mathscr{F} \in \mathscr{C}_L$. Therefore $\mathscr{C} \subseteq \mathscr{C}_L \subseteq \mathscr{C}_s$.

Now suppose $\mathscr{G} \in \mathscr{C}_s$. Then $<_{\mathscr{G}} \in \mathscr{T}_s(\mathscr{C})$. Let $<=<_{\mathscr{G}}$ and let \mathscr{U} be an ultrafilter containing \mathscr{G} . Then $\mathscr{U} \in \mathscr{C}$, and so by definition of $\mathscr{T}_s(\mathscr{C})$ we have $r_{<}(\mathscr{U}) \in \mathscr{C}$. But $r_{<}(\mathscr{U}) \subseteq \mathscr{G}$, and so $\mathscr{C}_s \subseteq \mathscr{C}$.

(5) If $\mathscr P$ is a p.c.s. compatible with $\mathscr C$ then $\mathscr P_{\mathcal S}(\mathscr C) \leq \mathscr P \leq \mathscr P_{\mathcal L}(\mathscr C)$.

For $\mathscr{F} \in \mathscr{C} = \mathscr{C}_{\mathscr{F}}$ we have $<_{\mathscr{F}} \in \mathscr{F}$. Thus $\mathscr{P}_{L}(\mathscr{C}) \subseteq \mathscr{F}$. Now let $< \in \mathscr{F}$ and choose $\mathscr{F} \in \mathscr{C}$. Let $\mathscr{G} = r_{<}(\mathscr{F})$. We must show $\mathscr{G} \in \mathscr{C}$; i.e., $<_{\mathscr{F}} \in \mathscr{F}$. It is straightforward to check that $(<_{\mathscr{F}} \cap <)^{3} \subseteq <_{\mathscr{F}}$.

REMARK 26. This theorem tells us that each totally bounded Cauchy structure has a largest and smallest p.c.s. compatible with it. Since an intersection of proximity convergence structures is also a p.c.s., we see that the set of proximity convergence structures compatible with a given totally bounded Cauchy structure is a complete lattice.

THEOREM 27. If $\mathscr C$ is a totally bounded Cauchy structure and $\mathscr T$ is a proximity structure compatible with $\mathscr C$ then $\mathscr F=\mathscr F_s(\mathscr C)$.

Proof. Let $\mathscr P$ be a p.c.s. compatible with $\mathscr C$ and suppose $\{\ll\}$ is a base for $\mathscr P$. We will show $\mathscr P_{\mathscr S}(\mathscr C) \subseteq \mathscr P$.

Let $\langle \in \mathscr{T}_{\mathcal{S}}(\mathscr{C})$ and suppose $A \not \langle B$. We wish to show A < / < B. For this it is sufficient to produce a filter \mathscr{F} in \mathscr{C} with $A \not \langle_{\mathscr{F}} B$. (Recall if $\mathscr{F} \in \mathscr{C}$ then $\langle_{\mathscr{F}} \in \mathscr{S}$ and so $\leqslant \subseteq \langle_{\mathscr{F}} \cdot \rangle$)

Set $\mathscr{S} = \{D: A < D\} \cup \{X \backslash E: E < B\}$. Then since $A \not< B$, \mathscr{S} has the finite intersection property. Let \mathscr{U} be an ultrafilter containing \mathscr{S} . Then $\mathscr{U} \in \mathscr{C}$. Since $\langle \mathscr{E} \mathscr{S}_{\mathscr{S}}(\mathscr{C}) \rangle$ we have $r_{<}(\mathscr{U}) \in \mathscr{C}$. Clearly neither B nor $X \backslash A$ is in $r_{<}(\mathscr{U})$.

REMARK AND DEFINITION 28. From this theorem it follows easily that if \mathscr{C} is uniform (and totally bounded) then $\mathscr{S}_s(\mathscr{C})$ is the unique proximity structure compatible with \mathscr{C} . We will call $\mathscr{S}_s(\mathscr{C})$ a saturated p.c.s. (whether or nor \mathscr{C} is uniform). Obviously then every proximity structure is saturated.

EXAMPLE 29. Even if $\mathscr C$ is uniform, $\mathscr P_L(\mathscr C)$ need not be a proximity structure. For example let $\mathscr X$ be a totally bounded uniformity with Cauchy family $\mathscr C$. Assume that no finite intersection of Cauchy filters equals $\{X\}$. This is the case as long as $\mathscr X \neq \{X \times X\}$, but the proof is somewhat involved and will not be given. Certainly it is true for the usual uniformity on the closed unit interval. Assume also that if $A <_{\mathscr X} A$ then $A = \varnothing$ or X. This is true if the associated topology is connected, for example.

Suppose $<_{\mathscr{Z}} \in \mathscr{T}_{L}(\mathscr{C})$. By Theorem 25, there are Cauchy filters $\mathscr{F}_{1}, \dots, \mathscr{F}_{n}$ such that $\bigcap_{i} <_{\mathscr{F}_{i}} \subseteq <_{\mathscr{Z}}$. Therefore if $F \in \bigcap_{i} \mathscr{F}_{i}$ then $F <_{\mathscr{Z}} F$, and so F = X. Hence $\bigcap_{i} \mathscr{F}_{i} = \{X\}$, which is impossible. Therefore $<_{\mathscr{Z}} \notin \mathscr{F}_{L}(\mathscr{C})$, and so $\mathscr{F}_{L}(\mathscr{C}) \neq \mathscr{F}_{S}(\mathscr{C})$. By Theorem 27, $\mathscr{F}_{L}(\mathscr{C})$ is not a proximity structure.

4. The Σ -compactification. A p.c.s. is compact, provided the associated convergence structure is compact. A compactification of p.c.s. is a compact p.c.s. in which the given space can be densely embedded. In general a p.c.s has many compactifications. We will confine ourselves to one, called the Σ -compactification. This works at least for relatively round spaces, and has a nice characterization. Using it we can obtain a generalization of the classical one-to-one correspondence between proximity structures and T_2 compactifications of a given topological space.

Continuous maps to compact T_2 spaces can be extended to this compactification, provided the range spaces satisfy a strong regularity condition. We leave open the problem of obtaining the "right" definition of regularity for a p.c.s.

DEFINITION 30. Let $\mathscr S$ be a p.c.s. on X. For $x\in X$ we define $\tau_{\mathscr S}(x)$ to be the intersection ideal generated by the filters of the form $r_{<}(\dot x)$, where $<\in\mathscr S$.

THEOREM 31. If \mathcal{J} is in the proximity class of \mathscr{T} then $\tau_{\mathscr{J}} = \tau_{\mathscr{T}}$.

Proof. Notice that $\{r_{<}(\dot{x}): < \varepsilon\mathscr{P}\}$ is a base for $\tau_{\mathscr{P}}(x)$. Thus if $\mathscr{F} \in \tau_{\mathscr{P}}(x)$ then for some $< \varepsilon\mathscr{P}$ we have $r_{<}(\dot{x}) \subseteq \mathscr{F}$. Let $\mathscr{\Psi} \in \mathscr{F}$ with $<_{\mathscr{V}} \subseteq <$. Now, $\mathscr{\Psi} \subseteq \dot{x} \times \mathscr{\Psi}(\dot{x})$, so $\mathscr{\Psi}(\dot{x}) \in \tau_{\mathscr{F}}(x)$. But $\mathscr{\Psi}(\dot{x}) \subseteq r_{<}(\dot{x})$, since for $H \in \mathscr{\Psi}$ we have $\{x\} <_{\mathscr{V}} H(x)$.

Now suppose $\mathscr{F} \in \tau_{\mathscr{F}}(x)$. Let $\mathscr{G} = \mathscr{F} \cap \dot{x}$ and let $\Phi = \mathscr{G} \times \mathscr{G} \cap [\Delta]$. Then $\Phi \in \mathscr{F}$ and so $<_{\phi} \in \mathscr{F}$. Set $<=<_{\phi}=<_{\mathscr{F}}$. Then $r_{<}(\dot{x}) \subseteq \mathscr{F}$.

REMARK 32. We can also describe $\tau_{\mathscr{P}}$ as follows: $\mathscr{F} \in \tau_{\mathscr{P}}(x)$ iff for some $\mathscr{G} \in \mathscr{F} \cap \dot{x}$ we have $<_{\mathscr{P}} \in \mathscr{P}$.

Next we will describe the construction of the Σ -extension of a p.c.s.

DEFINITION 33. Let $\mathscr C$ be a Cauchy structure on X. Two filters in $\mathscr C$ are equivalent iff their intersection is in $\mathscr C$. We denote the associated partition by $X^*(\mathscr C)$, or just X^* . The map which assigns to a point x in X the equivalence class of $\dot x$ is denoted by j. If $(X,\mathscr C)$ is T_2 then j is an injection of X into X^* .

We define Σ to be the set of all maps σ which assign to each equivalence class p in X^* a filter in p; we further require for $x \in X$ and $\sigma \in \Sigma$ that $\sigma(j(x)) = \dot{x}$.

For each σ in Σ w e obtain a map from $\mathscr{P}(X)$ to $\mathscr{P}(X^*)$; namely,

$$A^{\sigma} = \{ p \in X^* : A \in \sigma(p) \}$$
.

This allows us to define a map from $\mathcal{O}(X)$ to the set of relations on X^* . For $c \in \mathcal{O}(X)$ we define $A < {}^{\sigma}B$ iff there are subsets C and D of X with $A \subseteq C^{\sigma}$, $D^{\sigma} \subseteq B$, and C < D.

Now suppose \mathscr{C} is totally bounded, and let \mathscr{S} be a compatible p.c.s. We define $\mathscr{S}_{\Sigma} = \{ \langle ' \in \mathscr{O}(X^*) | \text{ for } \sigma \in \Sigma, \exists < \in \mathscr{S} \text{ with } \langle ' \subseteq \langle ' \rangle \}$. It is easy to check that \mathscr{S}_{Σ} is a p.c.s. on X. We will call $(j, (X^*, \mathscr{S}_{\Sigma}))$ the Σ -extension of (X, \mathscr{S}) . It is closely related to the Kowalsky completion of (X, \mathscr{C}) , described in [5] and in [7].

DEFINITION 34. Let $k: (X, \mathscr{T}) \to (Y, \mathscr{Q})$. For $\langle \in \mathscr{O}(X) \rangle$ we define $k(\langle) \in \mathscr{O}(Y)$ by $A \ k(\langle) B \ \text{iff} \ A \subseteq B \ \text{and} \ k^{-1}(A) < k^{-1}(B)$. We say k is a dense embedding of (X, \mathscr{T}) into (Y, \mathscr{Q}) , provided k is one-to-one and for $\langle \in \mathscr{O}(X) \rangle$ we have $\langle \in \mathscr{T} \rangle$ iff $k(\langle) \in \mathscr{Q}$.

Next we will establish that j is a dense embedding of (X, \mathscr{S}) into (X^*, \mathscr{S}_2) .

Lemma 35. Let (X, \mathcal{S}) be T_2 and let τ' denote the convergence structure induced by \mathcal{S}_{Σ} .

- (i) If $p \in X^*$ and $\mathscr{F} \in p$ then $j(\mathscr{F}) \in \tau'(p)$.
- (ii) If $\mathscr{G} \in \tau'(p)$ and $\sigma \in \Sigma$ then the filter $\mathscr{G}_{\sigma} = \{A: A^{\sigma} \in \mathscr{G}\}$ is in p.

Proof. Suppose $\mathscr{F} \in p$ and define $\mathscr{G} = j(\mathscr{F}) \cap \dot{p}$. To show $j(\mathscr{F}) \to p$ it is sufficient to establish $<_{\mathscr{F}}$ is in $\mathscr{P}_{\mathscr{I}}$.

Pick $\sigma \in \Sigma$ and set $\mathscr{H} = \mathscr{F} \cap \sigma(p)$. Now \mathscr{H} is Cauchy, and so $<_{\mathscr{H}} \in \mathscr{F}$. Observe that $\mathscr{H} \subseteq \mathscr{G}_{\sigma}$, so that $<_{\mathscr{H}}^{\sigma} \subseteq <_{\mathscr{F}}$.

Now assume $\mathscr{U} \in \tau'(p)$, and let $\sigma \in \Sigma$. Pick $\langle \in \mathscr{T}_{\Sigma} \text{ with } r_{\langle i} \dot{p} \rangle \subseteq \mathscr{U}$, and choose $\langle _{1} \in \mathscr{T} \text{ so that } \langle _{1}^{\sigma} \subseteq \langle . \text{ Then } r_{\langle _{1}}(\sigma(p)) \subseteq \mathscr{U}_{\sigma}.$ For if $A \in \sigma(p)$ and $A <_{1} B$ then $A^{\sigma} <_{1}^{\sigma} B^{\sigma}$ and hence $A^{\sigma} < B^{\sigma}$. Since $p \in A^{\sigma}$ we have $B^{\sigma} \in r_{\langle i} \dot{p} \rangle \subseteq \mathscr{U}$.

Now $\sigma(p)\in p$ and $<_{_1}\in\mathscr{T}$. Therefore $r_{<_1}(\sigma(p))\in p$. (Use Theorem 25 and (C 3)).

THEOREM 36. Let (X, \mathcal{S}) be T_2 . Then (X^*, \mathcal{S}_2) is T_2 and j is a dense embedding of (X, \mathcal{S}) into (X^*, \mathcal{S}_2) .

Proof. Suppose \mathscr{G} converges to both p and q. Let $\sigma \in \Sigma$. By the preceding lemma $\mathscr{G}_{\sigma} \in p \cap q$. Thus p = q, and \mathscr{G}_{Σ} is T_2 .

Notice that for $\sigma \in \Sigma$ and $A \subseteq X$ we have $j^{-1}(A^{\sigma}) = A$. Here strong use is made of the fact that $\sigma(j(x)) = \dot{x}$ for $x \in X$. From this it is easy to see that for $c \in \mathscr{S}$ and $c \in \Sigma$ we have $c \in J$. Thus $c \in J$.

Now suppose $\langle \in \mathcal{O}(X) \rangle$ and $j(\langle) \in \mathcal{O}_{\Sigma}$. Let $\sigma \in \Sigma$ and choose $\langle _1 \in \mathcal{O} \rangle$ with $\langle _1^{\sigma} \subseteq j(\langle) \rangle$. Using the same fact as before, we see that $\langle _1 \subseteq \langle . \rangle$. This establishes that j is an embedding.

It is easy to check that j(X) is dense in X^* , since for $\mathscr{F} \in p$ we have $j(\mathscr{F}) \to p$. (Lemma 35).

Next we will give conditions under which the Σ -extension is actually a compactification.

DEFINITION 37. Let (X, \mathcal{S}) be a p.c.s. For $\sigma \in \Sigma$ we define

$$<_{\sigma} = \bigcap \{<_{\mathscr{T}} : \mathscr{F} = \sigma(p) \text{ for some } p \in X^*\}$$
.

Then $\mathscr T$ is relatively round iff each $<_{\sigma}$ is in $\mathscr T$.

Notice that every proximity structure is relatively round. In fact if $\subset \subset$ is a proximity on X then $\subset \subset = \bigcap \{<_{\mathscr{F}} : \mathscr{F} \in \mathscr{C}(\subset \subset)\}$.

THEOREM 38. If (X, \mathcal{P}) is relatively round and T_2 then $(j, (X^*, \mathcal{P}_2))$ is a compactification of (X, \mathcal{P}) .

Proof. In view of Theorem 36, we need only establish that \mathscr{P}_{Σ} is compact. Let \mathscr{U} be an ultrafilter on X^* .

Notice that for $\sigma \in \Sigma$, if $A <_{\sigma} B$ then $(X^* \backslash B^{\sigma}) \subseteq (X \backslash A)^{\sigma}$; thus either B^{σ} or $(X \backslash A)^{\sigma}$ is in \mathscr{U} . This yields $<_{\sigma} \subseteq <_{\mathscr{U}_{\sigma}}$. Since \mathscr{T} is relatively round, we conclude \mathscr{U}_{σ} is Cauchy for $\sigma \in \Sigma$.

Moreover, the \mathcal{U}_{σ} 's are all in the same equivalence class. To see

this, suppose σ and μ are in Σ and let $\eta(p) = \sigma(p) \cap \mu(p)$ for $p \in X^*$. Then $\eta \in \Sigma$, and also $\mathcal{U}_{\eta} \subseteq \mathcal{U}_{\sigma} \cap \mathcal{U}_{\mu}$. Thus \mathcal{U}_{σ} and \mathcal{U}_{μ} are equivalent.

Let q be the equivalence class of the \mathscr{U}_{σ} 's. We claim $\mathscr{U} \to q$. Let $\sigma \in \Sigma$ and define $\mathscr{F} = \mathscr{U}_{\sigma} \cap \sigma(q)$. Then $\mathscr{F} \in q$, so $<_{\mathscr{F}} \in \mathscr{F}$. Let $\mathscr{V} = \mathscr{U} \cap \dot{q}$. Then it is simple to check that $<_{\mathscr{F}}^{\sigma} \subseteq <_{\mathscr{F}}$.

Next we wish to characterize the Σ -compactification of (X, \mathcal{S}) as its unique relatively round T_2 compactification. This will be done by using the corresponding fact for uniform convergence spaces, established in [7].

DEFINITION 39. Let $f:(X, \mathscr{S}) \to (Y, \mathscr{Q})$. Then f is p-continuous iff $f(<) \in \mathscr{Q}$ whenever $< \in \mathscr{S}$.

LEMMA 40. Let $f:(X, \mathscr{S}) \to (Y, \mathscr{Q})$

- (i) f is p-continuous iff it is uniformly continuous with respect to $\mathcal{J}_{\varnothing}$ and $\mathcal{J}_{\varnothing}$.
- (ii) f is an embedding of (X, \mathcal{F}) into (Y, \mathcal{Q}) iff it embeds (X, \mathcal{F}) in $(Y, \mathcal{F}_{\mathcal{Q}})$.

Proof. Notice that if Φ is a standard filter on $X \times X$ and $\Psi = (f \times f)(\Phi) \cap [\Delta]$ then $<_{\mathbb{F}} = f(<_{\Phi})$. Clearly then (i) holds. Also if $\Psi \in \mathscr{J}_{\Phi}$ and f is a p-embedding then $\Phi \in \mathscr{J}_{\Phi}$. Therefore every p-embedding is a uniform embedding.

Now assume f is a uniform embedding. Suppose $\langle \in \mathcal{O}(X) \rangle$ with $f(\langle) \in \mathcal{O}$. Pick $\theta \in \mathcal{J}_{\mathcal{O}} \rangle$ with $f(\langle) \in \mathcal{O} \rangle$. Set $f(\langle) \in \mathcal{O} \rangle$ with $f(\langle) \in \mathcal{O} \rangle$ with

Since $<_{\theta}$ is defined, θ is standard; therefore θ_1 is standard, and in particular it is proper. Note $\theta \subseteq (f \times f)(\theta_1)$, so that $\theta_1 \in \mathscr{J}_{\mathscr{P}}$. Now if $A <_{\theta_1} B$ then $f(A) <_{\theta} Y \setminus f(X \setminus B)$. Since $<_{\theta} \subseteq f(<)$ we conclude A < B.

DEFINITION 41. Let $f:(X,\mathscr{S})\to (Y,\mathscr{Q})$. By $\Sigma(f)$ we mean the set of all maps σ which assign to each point y in Y a filter converging to y. We further require that for $y\in f(X)$ and $\sigma\in \Sigma(f)$ we have $\sigma(y)=\dot{y}$.

We define $(f, (Y, \mathcal{Q}))$ to be relatively round provided $<_{\sigma} \in \mathcal{Q}$ for each σ in $\Sigma(f)$. We say $(f, (Y, \mathcal{J}_{\sigma}))$ is relatively round iff for $\sigma \in \Sigma(f)$ the filter $\bigcap \{\sigma(y) \times \sigma(y) : y \in Y\}$ is in \mathcal{J}_{σ} .

LEMMA 42. If $(k, (Y, \varnothing))$ is a relatively round compactification of (X, \mathscr{S}) then $(k, (Y, \mathscr{J}_{\varepsilon}))$ is a relatively round completion of $(X, \mathscr{J}_{\varepsilon})$.

Proof. From the preceding lemma we know that k is an embedding of $(X, \mathcal{J}_{\mathscr{D}})$ into $(Y, \mathcal{J}_{\mathscr{D}})$. Since $\mathcal{J}_{\mathscr{D}}$ and \mathscr{Q} induce the same

convergence structure τ' , clearly this embedding is dense. Since τ' is compact, f_{σ} is complete.

Now let $\sigma \in \Sigma(f)$. Then $<_{\sigma} \in \mathscr{Q}$. Set $\theta = \bigcap \{\sigma(y) \times \sigma(y) \colon y \in Y\}$. We claim $<_{\theta} = <_{\sigma}$, so that $\theta \in \mathscr{J}_{\mathscr{Q}}$. To see that $<_{\sigma} \subseteq <_{\theta}$ notice that if $A <_{\sigma} B$ then $(B \times B) \cap (X \backslash A \times X \backslash A) \in \theta$.

THEOREM 43. If (X, \mathcal{S}) is relatively round and T_2 then $(j, (X^*, \mathcal{S}_{\Sigma}))$ is the unique relatively round T_2 compactification of (X, \mathcal{S}) .

Proof. In [7], Theorem 19, it was shown that any two relatively round T_2 completions of a u.c.s. are equivalent. From this, and from the two preceding lemmas, it follows that (X, \mathcal{S}) can have at most one relatively round T_2 compactification.

By Theorem 38 we know $(j, (X^*, \mathscr{T}_{\Sigma}))$ is a compactification of (X, \mathscr{T}) . To see that it is relatively round pick $\sigma \in \Sigma(j)$ and let $\mu \in \Sigma$. Set $\eta(p) = \sigma(p)_{\mu}$ for $p \in X^*$. By Lemma 35, $\eta(p) \in p$ for $p \in X^*$. It is easy to check that if p = j(x) then $(\dot{p})_{\mu} = \dot{x}$. Thus $\eta \in \Sigma$, and $<_{\eta} \in \mathscr{T}$. Notice that $<_{\eta}^{\mu} \subseteq <_{\sigma}$, so that $<_{\sigma} \in \mathscr{T}_{\Sigma}$.

THEOREM 44. If (X, \mathcal{I}) is a relatively round saturated T_2 p.c.s. then (X^*, \mathcal{I}_z) is saturated.

Proof. Suppose $<' \in \mathcal{O}(X^*)$, and $r_{<'}(\mathscr{F})$ is Cauchy whenever \mathscr{F} is. Let $\sigma \in \Sigma$ and define

$$A < B \text{ iff } X^* \setminus (X \setminus A)^{\sigma} <' B^{\sigma}$$
.

Then $\langle \in \mathcal{O}(X) \text{ and } \langle \sigma \subseteq \langle' \text{.} \text{ We claim } \langle \in \mathcal{P} \text{.}$

Let $\mathscr{F}\in\mathscr{C}_{\mathscr{F}}$, and let p be its equivalence class. Then $j(\mathscr{F})\to p$ (Lemma 35). Define $\mu\in \Sigma(j)$ by $q\to j(\sigma(q))\cap \dot{q}$. Since \mathscr{F} is relatively round, so is $(j,(X^*,\mathscr{F}_{\varepsilon}))$ (Theorem 43). Thus $<_{\mu}\in\mathscr{F}_{\Sigma}$, and $\mathscr{G}_{1}=r_{<\mu}(j(\mathscr{F}))$ converges to p. Let $\mathscr{G}=r'_{<}(\mathscr{G}_{1})$. Then $\mathscr{G}\to p$, and so $\mathscr{G}_{g}\in p$.

It is not difficult to check that $\mathscr{G}_{\sigma} \subseteq r_{<}(\mathscr{F})$ so that $r_{<}(\mathscr{F})$ is Cauchy. Since \mathscr{T} is saturated we conclude $< \in \mathscr{T}$, and $<' \in \mathscr{T}_{2}$.

REMARK 45. There is a one-to-one correspondence between certain T_2 compactifications of a given T_2 convergence space (X, τ) and certain of its compatible p.c.s.'s. If $\mathscr P$ is relatively round then $(j, (X^*, \tau(\mathscr P_z)))$ is a T_2 compactification of $(X, \tau_{\mathscr P})$. It is also a relatively round compactification meaning that if $\mathscr F \to p$ and $\sigma \in \Sigma(j)$ then $r_{<_{\sigma}}(\mathscr F) \to p$. Thus the map $\mathscr P \to (j, (X^*, \tau(\mathscr P_z)))$ takes relatively round p.c.s.'s on (X, τ) to relatively round T_2 compactifications of (X, τ) .

This map is one-to-one, provided we limit ourselves to saturated structures. This follows from the preceding theorem and from the

fact that a homeomorphism is p-continuous with respect to the largest compatible saturated structures.

The above map is also a surjection. Given a relatively round T_2 compactification $(k, (Y, \tau'))$ we define \mathscr{S}' to be the (unique) compatible saturated p.c.s. Set $\mathscr{S} = \{\langle : k(<) \in \mathscr{S}' \}$. Then \mathscr{S} is relatively round, saturated and compatible with τ . Moreover, $(k, (Y, \mathscr{S}'))$ is a compactification of (X, \mathscr{S}) . Using Theorem 43, we can establish that the given compactification is equivalent to $(j, (X^*, \tau(\mathscr{S}_2)))$.

If $\mathscr{T}_1 \geq \mathscr{T}_2$ then $\kappa_1 \geq \kappa_2$. (κ_i is the compactification associated with \mathscr{T}_i .) However it is not clear the converse holds.

In the final part of this section we will show that a certain class of p-continuous functions on (X, \mathcal{S}) extend to its Σ -compactification.

DEFINITION 46. For any convergence space (X, τ) we define an order $<^{\circ}$ on X by $A <^{\circ} B$ iff $\overline{A} \subseteq B^{i}$. A compatible p.c.s. $\mathscr T$ is c-regular iff $<^{\circ} \in \mathscr T$. A compatible u.c.s. $\mathscr J$ is c-regular iff it is regular in the sense of Pervin and Biesterfeldt [6]. In their notation, this means if $\Phi \in \mathscr J$ then $\Phi^{\circ} \in \mathscr J$.

REMARK 47. Both these definitions of regularity seem too strong. If \mathscr{T} is c-regular then $\tau_{\mathscr{T}}$ is a regular topological structure. The same is true if \mathscr{J} is c-regular and strongly bounded. Finding a better definition of regularity has proved unexpectedly difficult.

THEOREM 48. Let J be the strongly bounded u.c.s. in the proximity class of S. Then S is c-regular iff J is c-regular.

Proof. Let Φ be a standard, strongly bounded member of \mathcal{J} , and set $\Psi = \Phi^{\circ} \cap (\Phi^{\circ})^{-1}$. We will establish that $<^{\circ} \in \mathcal{F}$ iff $\Psi \in \mathcal{J}$. Since the standard strongly bounded members of \mathcal{J} are a base for \mathcal{J} this is sufficient to establish the desired equivalence.

 $(1) \quad (<^{\circ} \cap <_{\varphi})^{2} \subseteq <_{\mathscr{V}}.$

This is established by the following observations.

- (i) If $H \subseteq X \times X$ then $H^{c}(A) \subseteq H(A)^{-}$ for $A \subseteq X$.
- If $(a, x) \in H^c$ with $a \in A$ then $x \in H(a)^- \subseteq H(A)^-$.
- (ii) If $H = H^{-1}$ then $(H^{\circ})^{-1}(A^{i}) \subseteq H(A)$. Let $a \in A^{i}$ with $(x, a) \in H^{\circ}$. Then $a \in H(x)^{-}$ and so $A \cap H(x) \neq \emptyset$. For $z \in A \cap H(x)$ we have $x \in H(z) \subseteq H(A)$.
 - (2) $<_{v}^{2} \subseteq <^{c}$.

We will show first that if K is strongly bounded then $A^- \subseteq K^c(A)$ for $A \subseteq X$. Let $\mathscr C$ be a finite cover of X such that $H_{\mathscr C} \subseteq K$. Pick $x \in A^-$. Then there is a set C in $\mathscr C$ with $x \in C^-$ and $C \cap A \neq \emptyset$. To see this, let $\mathscr F \to x$ such that $A \in \mathscr F$, and let $\mathscr U$ be an ultrafilter

containing \mathscr{F} . Then $\mathscr{U} \cap \mathscr{C} \neq \emptyset$, and for C in $\mathscr{U} \cap \mathscr{C}$ the desired conditions hold.

Now pick $u \in C \cap A$. Then $C \subseteq K(u)$ and so $x \in K(u)^-$. This means $(u, x) \in K^c$ and thus $x \in K^c(A)$.

From this it follows that if $A <_{\tau} B$ then $A^- \subseteq B$. Moreover, $A \subseteq B^i$; note $X \setminus B <_{\tau} X \setminus A$, so that $(X \setminus B)^- \subseteq X \setminus A$. Therefore if $A <_{\tau}^2 B$ then $A^- \subseteq B^i$.

THEOREM 49. Let (X, \mathscr{S}) be T_2 . Every p-continuous function from (X, \mathscr{S}) to a c-regular compact T_2 p.c.s. has a unique extension to $(X^*, \mathscr{S}_{\Sigma})$.

Proof. Let f be a p-continuous function from (X, \mathscr{P}) to a c-regular compact T_2 space (Y, \mathscr{Q}) . It is easy to check that f is Cauchy-continuous. Since Y is compact and T_2 , the image of a filter in $\mathscr{C}_{\mathscr{P}}$ has a unique limit in Y. Moreover, the images of equivalent filters have the same limit. This defines a map $h: X^* \to Y$; namely, h(p) is the limit of the f-image of any filter in p. Notice hj = f. We need to establish that h is p-continuous. This is where c-regularity is used.

Let $\langle \in \mathscr{P}_{\Sigma}$ and select $\sigma \in \Sigma$. Choose $\langle \subseteq \mathscr{P} \rangle$ so $\langle \subseteq \mathscr{P} \rangle$ and set $\langle \subseteq \mathscr{P} \rangle = f(\langle \subseteq \mathscr{P} \rangle) \cap \langle \subseteq \mathscr{P} \rangle$. We claim $\langle \subseteq \mathscr{P} \rangle = h(\langle \subseteq \mathscr{P} \rangle)$. This is based on the following observations.

- (i) If $A \subseteq B^i$ then $h^{-1}(A) \subseteq f^{-1}(B)^{\sigma}$.
- (ii) If $C^- \subseteq D$ then $f^{-1}(C)^{\sigma} \subseteq h^{-1}(D)$.
- (iii) If $B f(<_1) C$ then $f^{-1}(B)^{\sigma} < f^{-1}(C)^{\sigma}$.

Note h is unique, since every continuous extension of f must agree with h on the dense subset j(X).

REFERENCES

- 1. C. H. Cook and H. R. Fischer, *Uniform convergence structures*, Math. Ann., 173 (1967), 290-306.
- 2. Á. Császár, Foundations of General Topology, New York: Macmillan, 1963.
- 3. H. R. Fischer, Limesräume, Math. Ann., 137 (1959), 269-303.
- 4. H. H. Keller, Die Limes-Uniformisierbarkeit der Limesräume, Math. Ann., 176 (1968), 334-341.
- 5. H. J. Kowalsky, Limesräume und Komplettierung, Math. Nachr., 12 (1954), 301-340.
- 6. W.J. Pervin and H.J. Biesterfeldt, Uniformization of convergence spaces II, Math. Ann., 177 (1968), 43-48.
- 7. Ellen E. Reed, Completions of uniform convergence spaces, Math. Ann., 194 (1971), 83-108.
- 8. Wolfgang J. Thron, *Topological Structures*, New York: Holt, Rinehart and Winston, 1966.

Received February 24, 1972.

University of Massachusetts