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PROXIMITY CONVERGENCE STRUCTURES

ELLEN E. REED

In this paper the notion of proximity convergence
structures is introduced. These constitute a layer between
Cauchy structures and uniform convergence structures (in
the sense of Cook and Fischer [1]). They are a natural gen-
eralization of proximity structures. A study of the relations
among these various structures constitutes §§2 and 3. 1In §4,
compact extensions for a special class of proximity conver-
gence spaces are constructed, and a characterization of these
is obtained. They satisfy a mapping property with respect
to compact T, proximity convergence spaces which satisfy a
strong regularity condition. One problem left open is the
obtaining of a more reasonable definition of regularity for
these spaces.

1. Proximity convergence structures. A proximity convergence
structure is the natural analogue, in the context of convergence
spaces, of a proximity structure. Here convergence space is used in
the sense of Fischer [3], and proximity in the sense of Efremovié
and Smirnov. A proximity convergence structure is a filter of pro-
ximity-like orders on a set X, and satisfies a composition property. If
the filter is principal then it corresponds to an ordinary proximity.

The notation used is largely that in Cook and Fischer [1]. By
2(X) is meant the set of all symmetric topogenous orders on X.

So a relation < on the subsets of X is in #7(X) iff it satisfies
the following:

(ST1) o< A< X for AS X,

(ST2) A< B=A&EB;

(ST3) if /= A< BS B then 4’ < B;

(8T4) if A<Cand B<C then AUB<C; also if C< A and
C < B then C< AN B;

(8T5) A < B then X\B < X\A.

DEFINITION 1. A proximity convergence structure on a set X is
a family & S ~(X) satisfying

P1l) if <, <, then <, N <, €.

(P2) if <eZ then <o <eF

P3) if <eF and < € <'e 2(X) then <'e &£,

We will call (X, &) a proximity convergence space. Both concepts
will be abbreviated by p.c.s.

REMARK AND DEFINITION 2. We say one p.c.s. on X is less than
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another if it comtains it. Under this ordering the set of all p.c.s.’s
on X is a complete lattice. The largest member is {&} and corres-
ponds to the discrete topology on X. The smallest is #(X), which
yields the indiscrete topology. (See Definition 30.) The intersection
of any family of p.c.s.’s on X is also a p.c.s., so that suprema are
easily described.

DEFINITION 3. If & is a nonempty subset of #(X) then clearly
there is a smallest p.c.s. [Z] containing G. We will call & a base,
provided [Z] consists of refinements of orders in &. In case [Z]
congsists of refinements of finite intersections of orders in &, we call
< a subbase for [Z].

As in the uniform case, ordinary proximity relations on X cor-
respond to “principal” p.c.s’s.; i.e., those which have a single element
as base.

THEOREM 4. Let €« € 2(X). Then £ is a proximity on X if
{<} 1s a base for a p.c.s. on X.

Proof. Let & denote the set of refinements (in #(X)) of K.
If € is a proximity relation then € = < o € and hence .&” satisfies
(P 2). The other properties are clearly satisfied. Conversely, if &
is a p.c.s. then € o € €. and so « is dense. Clearly then « is
a proximity relation.

DEFINITION 5. If < c is a proximity on X we will call [c C] a
proximity structure.

2. Relation with uniform convergence structure. As with
ordinary proximities, each uniform convergence structure (abbreviated
u.c.s.) gives rise to a p.c.s. This allows us to divide the uniform
convergence structures into proximity classes. Each class contains a
smallest member, which is strongly bounded. This last is a condition
stronger than total boundedness, and more satisfying in that every
proximity class contains a unique strongly bounded member. (A class
can contain more than one totally bounded member.) Moreover if the
p.c.s. is a proximity structure than the strongly bounded member in
its class is a uniform structure; the other totally bounded uniform
convergence structures in the class will not be uniform structures.

DEFINITION 6. A standard filter on X x X is a symmetric filter
@ < [4], the filter generated by the diagonal on X. For @ a standard
filter we define
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A <, B iff H(A) =< B for some He .

This imitates the usual way a proximity is obtained from a uniformity.
Notice that if @ is standard, <,e 2(X).

If # is a uniform convergence structure (abbreviated u.c.s.) we
define

Z, ={<, @ is a standard filter in _#£}.
It turns out that <, is a base for a p.c.s. & on X.

LEMMA 7. Let @ and ¥ be standard filters on X x X.
(1) If0=0NT then <, = <,N <y
(ll) If%::@o@then Lo =<p0o<g.

Proof. Straightforward.

THEOREM 8. If _# is a u.c.s. on X then <&, is a base for a
p.c.s. F, on X. If _Z is generated by a uniformity 2 then &,
18 a proximity structure gemerated by < ..

Proof. From the preceding lemma it is clear that <z, is a base
for a p.c.s. on X. Suppose 2" is a uniformity which generates A~
Then for < e &, we have <,Z <. Hence {<.} is a base for &..

DEFINITION 9. If & is a cover of X we define H,. = J{C x C:
Cew}. If & is finite then any entourage which contains H. is said
to be strongly bounded. A filter @ on X x X is strongly bounded iff
it consists of strongly bounded entourages. A u.c.s. is strongly
bounded iff it has a base of strongly bounded filters.

REMARK 10. Notice that for uniform structures strongly bounded
is equivalent to totally bounded. However, in the case of a u.c.s.
total-boundedness is a weaker condition.

THEOREM 11. Ewery strongly bounded u.c.s. is totally bounded.

Proof. Let _# be a strongly bounded u.c.s. on X, and let Z
be an ultrafilter on X. Let @ be any strongly bounded filter in _A
We claim that 0 & Z x Z.

Let He @, and let & be a finite cover of X such that H, & H.
Since Z7 is an ultrafilter, Z N ¥ # @. But if Ce Z N & then
HoCx Cez X %.

THEOREM 12. Let _# be a u.c.s. on X. The following conditions
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are equivalent:
(i) _Z 1s strongly bounded;
(ii) _Z has at least one strongly bounded member;
(iii) The filter [4]* of all strongly bounded entourages is in _Z.

Proof. Since _# # @, clearly (i) = (ii). Now suppose (ii) holds.
Note [4]* is a filter. If @ is any strongly bounded filter in _# then
@ < [4]*.

Finally, assume [4]*¢ #Z. If @€ _# then @ N [4]* is a strongly
bounded filter in _#, and is contained in ®.

LeMMA 13. A strongly bounded u.c.s. is the smallest member of
its proximity class.

Proof. Let _# and 9%  be u.c.s.’s on X and suppose _Z is
strongly bounded, with &7, = &7,. We wish to show 22" &_Z. Let
Oc 2 and let ¥ =0 N0'N[4]. Then <, F, = F,, so we can
choose fe _# so that <, & <,. Let 6* =60 N[4]*. We claim that
0* o 0* = .

Let He 6%, and let & be a finite cover of X with H, & H. Then
for Ce & we have C <, H(C). Let K,e¥ such that K,(C) < H(C),
and define K to be the intersection of the K,’s. Then Ke®. We
claim K < H o H.

Let (z,y)e K. Choose Ce% so e C. Then ye K, (C) < H(C).
Set ce C with (¢, y) € H. Then (z,¢) € C x C< H. Hence (2, y) € Ho H.

THEOREM 14. Let & be a p.c.s. on X, and define
B = {0: @ is standard and <,e F}.

Then 7. is a base for a strongly bounded u.c.s. _Z. im the proximity
class of A

Proof. If @ =[4] then <, = &, so [4]e .. From Lemma 7 it
is clear that <Z. is a base for a u.c.s. _Z..

(1) _#, is strongly bounded.

Let 6 = [4]*. We will show <, = &, so that /e ... Let A&
B, and define ¥ = {B, X\A}. Then H. € [4]* and H.(A) & B. Thus
A<, B.

(2) _#. is in the proximity class of .

Clearly the p.c.s. determined by 2. is contained in &2 Now let
< e P We define

={HS X x X: A< H(A) if AS X}
# ={H.:3A, BS X with A <*B and & = {B, X\4}.
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Notice <& < [4], so &Z is a subbase for a proper filter @ on X x
X. Since each member of <Z is symmetric, clearly @ is symmetric;
hence @ is standard. We will show <*S <, & <. If this holds,
then @€ _#. and hence < is in the p.c.s. induced by _Z.

If A<*B we define & = {B, X\A}. Then H_€®, and H.(4) &
B. Thus <*< <,. To show that <, & < it is sufficient to establish
that @ = A.

Let H;e «# for 1 <1 < n and suppose (); H; & H. For each 1,
let A; <*B; such that H; = H.,, where &; = {B;, X\A;}. Choose D;
so A; < D; < B;, and define o; = {D,, X\D,}. Set .27 = II; &;, and
for ke 27 let C, = N); k(7). Note the C,’s cover X.

Now let E & X. We must show E < H(E). This holds, provided
ENnC, < H(E) for ke 27 we will actually show thatif ENC, %= O
then C, < H(E).

Let ke 27, with ENC, + @. Define h(i) to be B; if k(i) = D,
and X\A; otherwise. Then k(1) < (i) for 1 <7< m, and so C, <
N: 2(2). We claim N 4(7) & H(E).

Let zeN; ~(t), and pick x,€ EN C,. We will show (x, x)e H.
Choose %, and suppose k(i) = D;. Then k(i) = B;, and so (2, ) € D; x
B; < H,. Similarly if k() = X\D, then 2, and 2 are both in X\A4,,
and hence (x,, x) € H.

THEOREM 15. If &7 is a proximity structure them Z.. is a uni-
form structure.

Proof. Suppose & generates . Let @e 7. so <, =& < and @
is strongly bounded. We claim @* generates #..

Let ¥¢_Z. and assume ¥ is standard. Then <,€.&7 so <, &
<yg. Let He ®@. Then we can choose & a finite cover of X such that
H,. < H. For Ce% we have C <, H(C). Pick Ke¥ so K(C) & H(C)
for all C in & Then K< H? so H*c¥. This establishes that
(/R

ExaAmpPLE 16. We conclude this section with an example to show
that a totally bounded u.c.s. need not be strongly bounded. Let =
be a compact T, convergence structure on a set X, and suppose that
every finite intersection of convergent filters has a member with an
infinite complement. For example, we would let z be the usual
topology on the closed unit interval. Let _Z be the u.c.s. generated
by {F x F:.F is convergent}. Clearly _# is totally bounded. We
claim it is not strongly bounded.

Let #¢_Z We will exhibit a member of @ which is not strongly
bounded. Let &, --., &, be convergent filters with (N; .&; X F;) N
[41 < @. Pick Fe);%; so that X. Fisinfinite. Define H = (F' x
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F)U 4. Note He @.

Now let € be any cover X with H,. & H. Forxze X\Flet C,e
& such that ve C,. Since C, x C, & H, clearly C, = {x} for z¢F.
Thus & is infinite, and H is not strongly bounded.

3. Relation with Cauchy structures. In contrast to the classical
case, a totally bounded Cauchy structure & can be induced by several
different p.c.s.’s. However there always exist a smallest and a largest
p.c.s. which induce &. If & is uniform, the smallest p.c.s. associated
with it is a proximity structure, but the largest need not be. We call
the smallest p.c.s. yielding & a saturated p.c.s.

DEFINITION 17. A Cauchy structure on X is a family & of proper
filters on X such that

(Cl) if ze X then de%;

(C2) if & is a proper filter which contains a member of &
then & €&

(C3) if #7,Zze% with & V& #[0] then F NZTez.

Keller [4] has shown that & is a Cauchy structure on X iff it
is the set of Cauchy filters for some u.c.s. on X. If ¥ is induced
by a uniformity we call & a uniform Cauchy structure. We say &
is totally bounded iff every ultrafilter on X is in &.

DEerFiNITION 18. For & a filter on X we define a relation < .-
on X by A< -Biff A Band B or X\A is in &#.

REMARK 19. Notice that <.~ is in ~(X). Also if @ = (& x
F ) N1[4] then <, = <.

THEOREM 20. Let &, = {F: <. € .}, where & is a p.c.s. on
X. If _Z is any totally bounded u.c.s. in the prowimity class of
F then %, is the set of #-Cauchy filters.

Proof. Let & be a filter on X and define @ = (& x )N
[4]. If & is_s-Cauchy then @€ #, and so <. = <,€ " Hence
F € E.

Conversely, suppose % € ... Then <,=<.,€. =&, and
so we can choose ¥ e _S with <, & <,. Let Z be an ultrafilter
containing .&. Then % is _#-Cauchy, and therefore ¥(%’) is also
#-Cauchy. (By ¥(Z’) is meant the filter generated by all sets of
the form H(U), where He¥ and Ue %. It is easy to check that
[TN(Z x2S V(%) x T(%).)

We claimthat ¥(Z) £ .. Let He ¥ and Ue %. Then U <,H(U),
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and since <, & <, we can choose Ke@ with K(U) & H(U). Now
pick Fe & so F x F< K. Then since % & % we have FNU #
@, and so FF < K(U). This establishes that H(U)<c &, as desired.

REMARK 21. This theorem tells us that the totally bounded u.c.s.’s
in the same proximity class all induce the same Cauchy structure.

DEFINITION 22. A p.c.s. & is compatible with a totally bounded
Cauchy structure & iff & = &%.

NoOTATION 23. Let .# be a filter on X and let < e2”(X). Then
r(F ) ={A: F < A for some Fe 7}.
Notice r.(& ) is a filter contained in #.

DEFINITION 24. Let & be a totally bounded Cauchy structure
on C.

(1) FuUZ) =[{<~F eZ}];

(2) FA@)={<eogX): F €& —r(F )T}

THEOREM 25. If & tis a totally bounded Cauchy structure on X
then P,(Z) is the largest p.c.s on X compatible with &, and Fy(Z)
18 the smallest. Moreover, &¥ = {< 1 F € &'} 1is a subbase for F(E).

Proof.
(1) .%¥ is a subbase for & (%).

Let <#Z be the set of refinements of finite intersections of orders in
S We need &#Z = (%), It is sufficient to show that ZZ is a p.c.s.
Clearly <# satisfies (P1) and (P 3).

Let 7, «++, #,€ % with <, = <. Suppose N); <; S < € 2(X).
We wish to show < o <€ We may assume the &’s are pairwise
disjoint; i.e., F; Vv F; =[] for i 4. This follows by induction
from (C3), since if & V F; # [@] we replace <; N <; by <_-, where
& = ;N ;. Choose F;e &, so that the F;’s are pairwise disjoint.

Suppose now that 4 <; B for 1 <1< n. We will show 4 <*B.
For each 7, define

_ (FiN B if Be.7;
" |F\A if Be 7.

Note D;e & for all i. Let H= (U;D; x D;)U 4. We claim A <
H(A) < B.

Clearly A & H(A). To see that H(A) & B, let ae A with (a, 2) €
H. If x = a then e B. If x +# a then for some <, a and « are both
in D;,. Since a¢ F;\A4, clearly D, = F; N B, and so z€ B.

D,
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Now fix 7. We wish to show A <; H(A) <; B. It is sufficient to
show that either H(A) or X\H(A) or B\A is in &;. If D,=F)\A it
is not difficult to prove that D,N H(A) = @, so that X\H(A)e ..
(Recall the D;’s are pairwise disjoint.) If D, =F;,NBand D;N A =
@ then clearly B\Ae ;. If DN A+ ¢ then D, < H(A) and so
H(A)e 7

(2) F(0) is a p.c.s.

If <=<,N<, and & €% then r (F) = r(F)Nr,(F).
Using this and (C 8), we conclude Z7,(%") is closed under finite inter-
sections. Similarly r.(F) = r(r(F)), so F(%) is closed under
“squaring”. Since r.(F ) S r..(F ) whenever < & <’ clearly (P3) holds.

(3) FuZ) & FH(Z).

It is sufficient to show that <. € F(¥) for & € & Let < =
<+ and let ze& If Vv .& =][0] then r(¥)=%; and if
TV F #|0]thenr(¥) 2 # NZ. Thus in either case r(¥)c &.

(4) F(Z) and F(Z) are both compatible with &. Let &%
denote the Cauchy structure induced by .F%(%¥); and similarly for
&,. Suppose # € &. Then by definition of 7,(Z") we have < ¢
F (%) and hence & € &,. Therefore & & €, S %%

Now suppose & € &% Then <.e F(¥). Let < = <. and let
Z be an ultrafilter containing ¥. Then Z € &, and so by definition
of F(¥) we have r(%)e &. But r(%) S &, and so & & &

(5) If & is a p.c.s. compatible with & then F(%¥) < F <
FUE)-

For & e & = &. we have <,¢.Z”. Thus Z#(¥) < . Now
let <€ and choose & e€&. Let & =r. (% ). We must show
cew; e, <.e. It is straightforward to check that (<. N
P S <o

REMARK 26. This theorem tells us that each totally bounded
Cauchy structure has a largest and smallest p.c.s. compatible with
it. Since an intersection of proximity convergence structures is also
a p.c.s., we see that the set of proximity convergence structures
compatible with a given totally bounded Cauchy structure is a complete
lattice.

THEOREM 27. If & 1is a totally bounded Cauchy structure and
P 1s a proximity structure compatible with & then F = F(E).

Proof. Let & be a p.c.s. compatible with & and suppose {K}
is a base for &2 We will show .F(%) & .

Let < e (%) and suppose A <« B. We wish to show 4 </< B.
For this it is sufficient to produce a filter & in & with A < - B.
(Recall if & e % then <.e€ and s0 € & <)
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Set & ={D: A< D}U{X\E: E < B}. Then since A < B, .~ has
the finite intersection property. Let Z be an ultrafilter containing
. Then Z e€%. Since < eF(%) we have r.(%)ec % . Clearly
neither B nor X\A4 is in ».(%).

REMARK AND DEFINITION 28. From this theorem it follows easily
that if & is uniform (and totally bounded) then .7%(%”) is the unique
proximity structure compatible with . We will call F(%¥) a
saturated p.c.s. (whether or nor & is uniform). Obviously then every
proximity structure is saturated.

ExaMPLE 29. Even if & is uniform, &7,(%) need not be a
proximity structure. For example let 2 be a totally bounded uni-
formity with Cauchy family 2. Assume that no finite intersection
of Cauchy filters equals {X}. This is the case as long as 2~ = {X X X},
but the proof is somewhat involved and will not be given. Certainly
it is true for the usual uniformity on the closed unit interval. Assume
also thatif A <, A then A = @ or X. This is true if the associated
topology is connected, for example.

Suppose <, € .F(%). By Theorem 25, there are Cauchy filters
G, *+*, F, such that N; <, S <,. Therefore if Fe); #; then
F <, F, and so F=X. Hence N; %; = {X}, which is impossible.
Therefore <. ¢ . 7%(%), and so FU(F) # F(Z). By Theorem 27,
G () is not a proximity structure.

4, The X-compactification. A p.c.s. is compact, provided the
associated convergence structure is compact. A compactification of
p.c.s. is a compact p.c.s. in which the given space can be densely
embedded. In general a p.c.s has many compactifications. We will
confine ourselves to one, called the X-compactification. This works
at least for relatively round spaces, and has a nice characterization.
Using it we can obtain a generalization of the classical one-to-one
correspondence between proximity structures and 7T, compactifications
of a given topological space.

Continuous maps to compact 7, spaces can be extended to this
compactification, provided the range spaces satisfy a strong regularity
condition. We leave open the problem of obtaining the “right” defini-
tion of regularity for a p.c.s.

DEFINITION 30. Let & be a p.c.s. on X. For € X we define
7»(x) to be the intersection ideal generated by the filters of the form
r.(&), where < e 2.

THEOREM 31. If _Z isin the prowimity class of & then 7 ,=7..
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Proof. Notice that {r.(&): < e<?} is a base for 7.(x). Thus if
& et-(x) then for some < e we have r (i) & .. Let ¥e _gZF
with <, S <. Now, F< i x (), so ¥(i)e7 (x). But ¥(x)=r (i),
since for He ¥ we have {z} <, H().

Now suppose & €7 (x). Let € = F Ndandlet @ = & x &N
[4]. Then®e £ andso <, P Set < = <, = <,. Thenr (¥) & #.

REMARK 32. We can also describe 7. as follows: & e€r7.(x) iff
for some €€ & N4 we have <.€ 2.

Next we will describe the construction of the X-extension of a
p.c.s.

DEFINITION 33. Let & be a Cauchy structure on X. Two filters
in & are equivalent iff their intersection is in &. We denote the
associated partition by X*(%"), or just X*. The map which assigns
to a point  in X the equivalence class of % is denoted by j. If (X,
&) is T, then j is an injection of X into X*.

We define ¥ to be the set of all maps ¢ which assign to each
equivalence class p in X* a filter in p; we further require for xe X
and o€ X that o(j(x)) = 2.

For each ¢ in Jw e obtain a map from Z°(X) to Z?(X*); namely,

A ={peX*:Aeco(p)}.

This allows us to define a map from ~°(X) to the set of rela-
tions on X*. For < e 7(X) we define A <° B iff there are subsets
Cand D of X with A= C°,D°S B, and C < D.

Now suppose % is totally bounded, and let &° be a compatible
p.c.s. Wedefine & = {<'e 2(X*): foroe 2,3 < e & with <° < <’}
It is easy to check that &7 is a p.c.s. on X. We will call (5, (X*,
F)) the Z-extension of (X, &#). It is closely related to the Kowalsky
completion of (X, &), described in [5] and in [7].

DErFINITION 34. Let k: (X, &) — (Y, ). For < € £7(X) we define
k(<)e(Y) by A k(<) Biff A< B and k'(4) < k'(B). We say k
is a demse embedding of (X, &) into (Y, &), provided k is one-to-one
and for < e (X) we have <e & iff k(<)e &

Next we will establish that j is a dense embedding of (X, &)
into (X*, ).

LEMMA 35. Let (X, .Z7) be T, and let ¢’ denote the convergence
structure induced by F.

(i) If pe X* and F € p then j(F )e (D).

(i) If et (p) and o € 3 then the filter &, = {A: A’€ £} is in p.
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Proof. Suppose &% € and define & =j(F)NH. To show
Jj(&F ) — p it is sufficient to establish <. is in .

Pick €Y and set & = & No(p). Now £ is Cauchy, and so
<»€Z. Observe that & & &,, so that <% & <..

Now assume Z € 7'(p), and let c€ 3. Pick <€ & withr.(p) &
7, and choose <,e & so that <{ <& <. Then r (c(p)) & %,. For
if Aeo(p) and A <, B then A° <¢ B° and hence A° < B°. Since pe€
A’ we have B’er_(p) & % .

Now o(p)e p and <,€ .Z. Therefore r (c¢(p)) € p. (Use Theorem
25 and (C 3)).

THEOREM 36. Let (X, ) be T,. Then (X*, %) is T, and j s
a dense embedding of (X, F) into (X*, 7).

Proof. Suppose Z converges to both p and ¢g. Let oe€2X. By
the preceding lemma £, pNgq. Thus p =¢q, and F is T..

Notice that for 03 and A< X we have j7'(4°) = A. Here
strong use is made of the fact that o(j(x)) = ¢ for x€ X. From this
it is easy to see that for < € &7 and 0 € 3 we have <° & j(<). Thus
(<) e F.

Now suppose < e 2(X) and j(<)e .. Let ge€X and choose
<, & with <! < j(<). Using the same fact as before, we see that
<, & <. This establishes that 7 is an embedding.

It is easy to check that j(X) is dense in X*, since for F ep
we have j(&# ) — p. (Lemma 35).

Next we will give conditions under which the X-extension is
actually a compactification.

DerFINITION 87. Let (X, .&?) be a p.c.s. For o€ we define
<, =N{<+F = o(p) for some pe X*}.

Then & is relatively round iff each <, is in 7.
Notice that every proximity structure is relatively round. In fact
if ¢ ¢ is a proximity on X then cc = N{<: F e&E(CcO)}.

THEOREM 38. If (X, &) is relatively round and T, then (5, (X*,
F)) 1s a compactification of (X, F).

Proof. In view of Theorem 36, we need only establish that .7
is compact. Let % be an ultrafilter on X*.

Notice that for ce ¥, if A <,B then (X*\B°) < (X\A)°; thus
either B° or (X\A)° is in /. This yields <,< <.,. Since & is
relatively round, we conclude %/, is Cauchy for gc X.

Moreover, the Z/,’s are all in the same equivalence class. To see
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this, suppose ¢ and ¢ are in X and let 7(p) = o(p) N (p) for pe X*.
Then ne %, and also %, & %, N .. Thus Z/, and %/, are equivalent.

Let g be the equivalence class of the Z/’s. We claim % —q.
Let 02X and define & = %Z,No(@). Then & €q, so <.e€ .
Let 7 = 22 N ¢. Then it is simple to check that <% & <,.

Next we wish to characterize the X-compactification of (X, . &%)
as its unique relatively round T, compactification. This will be done
by using the corresponding fact for uniform convergence spaces,
established in [7].

DEFINITION 39. Let f: (X, &) — (Y, ). Then f is p-continuous
iff f(<)e & whenever < e A

LemMMA 40. Let f: (X, ) — (Y, )

(i) f is p-continuous if it is uniformly continuous with respect
to > and _Z..

(i) f is an embedding of (X, &) into (Y, &) iff it embeds (X,
£ in (Y, 7).

Proof. Notice that if @ is a standard filter on X X X and ¥ =
(f X @ N[4] then <, = f(<,). Clearly then (i) holds. Also if
Ve s, and f is a p-embedding then @e _Z.. Therefore every p-
embedding is a uniform embedding.

Now assume f is a uniform embedding. Suppose < € 22(X) with
f(K)ee. Pick 0e_z, with <, E f(<). Set b, = (f X f)7(0). We
claim 6, ¢ £, and <, & <.

Since <, is defined, 4 is standard; therefore 6, is standard, and in
particular it is proper. Note 6 & (f X f)(f), so that 6,€_Z.. Now
if A<,B then f(4) <,Y\f(X\B). 8ince <, < f(<) we conclude
A < B.

DEFINITION 41. Let f: (X, &) — (Y, &). By 2(f) we mean the
set of all maps ¢ which assign to each point v in ¥ a filter converging
to y. We further require that for ye f(X) and o€ X(f) we have
a(y) = Y.

We define (f, (Y, &)) to be relatively round provided <, & for
each ¢ in 3(f). We say (f, (Y, _#)) is relatively round iff for oe
3(f) the filter N{o(y) X o(y):ye Y} is in _Z.

LEMMA 42. If (k, (Y, &)) is a relatively round compactification
of (X, ) then (k, (Y, _Z.)) is a relatively round completion of (X, £.).

Proof. From the preceding lemma we know that & is an embedd-
ing of (X, _/) into (Y, _#.). Since _Z. and « induce the same
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convergence structure 7/, clearly this embedding is dense. Since 7’
is compact, 2. is complete.

Now let o€ 2(f). Then <,e . Set 6 = N{o@w) X o():ye Y}.
We claim <, = <,, so that 0e_Z.. To see that <, & <, notice
that if A <, B then (Bx B)N (X\4 x X\4)e 6.

THEOREM 43. If (X, &) is relatively round and T, then (5, (X*,
%)) s the unique relatively round T, compactification of (X, F).

Proof. In [7], Theorem 19, it was shown that any two relatively
round 7, completions of a u.c.s. are equivalent. From this, and from
the two preceding lemmas, it follows that (X, &°) can have at most
one relatively round 7, compactification.

By Theorem 38 we know (7, (X*, &7)) is a compactification of (X,
). To see that it is relatively round pick o€ 3(j) and let pe 3.
Set n(p) = o(p), for pe X*. By Lemma 35, n(p)ep for pe X*. It
. is easy to check that if p = j(x) then (p), = #. Thus e 3, and <, €
. Notice that <4 & <,, so that <,e F.

THEOREM 44. If (X, .Z?) is a relatively round saturated T, p.c.s.
then (X*, &) 1s saturated.

Proof. Suppose <’'€ (X*), and r.(% ) is Cauchy whenever
& is. Let o€ 2 and define

A < B iff X*\(X\A4)° <’ B°.

Then <€ 2Z(X) and <° S <’. We claim <e¢ .Z.

Let & e &, and let p be its equivalence class. Then j(&F ) —
p (Lemma 35). Define e 3(j) by ¢ —j(0o(g)) N ¢g. Since & is rela-
tively round, so is (4, (X*, %)) (Theorem 43). Thus <,.€ %, and
@, = mﬁ(j(ﬁ‘ )) converges to p. Let & = r.(%,). Then & — p, and
s0 &,€ p.

It is not difficult to check that =, S r.(&% ) so that r.(&) is
Cauchy. Since &7 is saturated we conclude < € 7, and <’¢€ &;.

REMARK 45. There is a one-to-one correspondence between
certain T, compactifications of a given T, convergence space (X, 7) and
certain of its compatible p.c.s.’s. If &7 is relatively round then
@, (X*, t(F%))) is a T, compactification of (X, 7). It is also a rela-
tively round compactification meaning that if &% —p and o€ 2X(j)
then 7. (%) —p. Thus the map & — (j, (X*, ©(F%))) takes relatively
round p.c.s.’son (X, 7) to relatively round T, compactifications of (X, 7).

This map is one-to-one, provided we limit ourselves to saturated
structures. This follows from the preceding theorem and from the
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fact that a homeomorphism is p-continuous with respect to the largest
compatible saturated structures.

The above map is also a surjection. Given a relatively round T,
compactification (k, (Y, z’)) we define &’ to be the (unique) compatible
saturated p.c.s. Set & = {<: k(<) e F”’'}. Then &7 is relatively round,
saturated and compatible with z. Moreover, (k, (Y, &) is a compactifi-
cation of (X, &”). Using Theorem 43, we can establish that the given
compactification is equivalent to (5, (X*, 7(F%))).

If &# = .25 then k, = k,. (k; is the compactification associated
with &7.) However it is not clear the converse holds.

In the final part of this section we will show that a certain class
of p-continuous functions on (X, .Z?) extend to its X-compactification.

DEFINITION 46. For any convergence space (X, 7) we define an
order <° on X by A<°B iff A< B'. A compatible p.c.s. . is
c-regular iff <°e . A compatible u.c.s. _Z is c-regular iff it is
regular in the sense of Pervin and Biesterfeldt [6]. In their notation,
this means if @€ _~# then @°c ~Z.

REMARK 47. Both these definitions of regularity seem too strong.
If & is c-regular then 7. is a regular topological structure. The
same is true if _Z is c-regular and strongly bounded. Finding a
better definition of regularity has proved unexpectedly difficult.

THEOREM 48. Let _Z be the strongly bounded u.c.s. in the prox-
imity class of . Then & is c-regular iff _Z is c-regular.

Proof. Let @ be a standard, strongly bounded member of _Z,
and set ¥ = 0°N (@°)~". We will establish that <°e. & iff e 7.
Since the standard strongly bounded members of _Z are a base for
_# this is sufficient to establish the desired equivalence.

(1) (K°N<)E <o

This is established by the following observations.

(i) If HE X x X then H(A) & H(A)” for A< X.

If (a, x)e H® with a€ A then x¢€ H(a)” & H(A)".

(ii) If H= H™ then (H°) (4" & H(A). Let ac A’ with (z, a)c
H°. Then ae H(x)” and so ANH(x) # @. For ze AN H(x) we have
xe H(z) = H(A).

(2) <is <~

We will show first that if K is strongly bounded then A~ = K°(A)
for A= X. Let & be a finite cover of X such that H,. & K. Pick
x€ A-. Then there is a set C in & withzeC and CN A= @. To
see this, let . # — x such that Ae &, and let 2 be an ultrafilter
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containing &#. Then ¥ N & # @, and for C in Z N & the desired
conditions hold.

Now pick we CNA. Then C & K(u) and so « € K(uw)~. This means
(u, x) € K° and thus x€ K°(4).

From this it follows that if A <, B then A~ < B. Moreover,
A < BY; note X\B <, X\A4, so that (X\B)"< X\A. Therefore if A <}B
then A~ & B

THEOREM 49. Let (X, .<”) be T,. Ewvery p-continuous function
from (X, &) to a c-regular compact T, p.c.s. has a unique extension
to (X*, F%).

Proof. Let f be a p-continuous function from (X, .&?) to a
c-regular compact 7, space (Y, ). It is easy to check that f is
Cauchy-continuous. Since Y is compact and T,, the image of a
filter in & has a unique limit in Y. Moreover, the images of equi-
valent filters have the same limit. This defines a map i X* —Y;
namely, h(p) is the limit of the f-image of any filter in p. Notice
hj = f. We need to establish that & is p-continuous. This is where
c-regularity is used.

Let < e. 7 and select e X. Choose <,€ . so <5< < and set
<, = f(<y)N <. We claim <}Z h(<). This is based on the
following observations.

(i) If A< B’ then 2'(4) & f~(B)°.

(ii) If C- < D then f'(C)° < (D).

(iii) If B f(<) C then f~'(B)’ < f(C)°.

Note & is unique, since every continuous extension of f must
agree with & on the dense subset j(X).
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