A NOTE ON PRIMARY DECOMPOSITIONS OF A PSEUDOVALUATION

C. P. L. RHODES

Some connections are established between a primary decomposition of a pseudovaluation v on a commutative ring and a primary decomposition of the zero ideal of the associated graded ring of v. The primary decomposition of a certain pseudovaluation v_q on a one-dimensional local ring Q is described in terms of the extensions of v_q to monoidal transforms of Q.

1. Primary decompositions and the associated graded ring. Let R be a commutative ring with an identity. We consider a pseudovaluation v on R. By this we mean that v is a mapping from R to P, the set of all real numbers together with ∞ , such that

$$v(0) = \infty , \quad v(1) = 0 ,$$

and, for $x, y \in R$,

$$v(xy) \ge v(x) + v(y)$$
,

and

$$v(x-y) \ge \min \{v(x), v(y)\}.$$

For each $a \in P$, write $v_a = \{x \in R \mid v(x) \geq a\}$ and $v_{\overline{a}} = \{x \in R \mid v(x) > a\}$. The associated graded ring of v, introduced by Szpiro in [11], is $G = \bigoplus_{a \in R} v_a/v_{\overline{a}}$. We shall use — to denote the natural mapping from R into G.

Let u be a pseudovaluation such that $u \ge v$ (this means that $u(x) \ge v(x)$ for all x). We denote by T(u) the set of all x, not in u_{∞} , such that $u(x^n) = nu(x)$ for all positive integers n, and by S(u) the set of all x, not in u_{∞} , such that u(xy) = u(x) + u(y) for all $y \in R$. As in [10], we call u primary if T(u) = S(u). We denote by F(u, v) the set of all x such that either u(x) > v(x) or $u(x) = \infty$, and we put $T(u, v) = T(u) \setminus F(u, v)$.

Let I(u, v) be the ideal generated in G by $\overline{F(u, v)}$.

LEMMA 1. $\overline{F(u,v)}$ is the set of all homogeneous elements of I(u,v), and $\overline{T(u,v)}$ is the set of all homogeneous elements of $G \mid I(u,v)$. If the pseudovaluation u is primary then the ideal I(u,v) is primary.

Proof. Let $r \in R$ and $s \in F(u, v)$. Either $\overline{r}\overline{s} = \overline{0}$ or $\overline{r}\overline{s} = \overline{r}s$. In the latter case either $v(s) = \infty$ or

$$v(rs) = v(r) + v(s) < u(r) + u(s) \le u(rs)$$
.

Thus, in each case, $\overline{r}\overline{s} \in \overline{F(u,v)}$. If we suppose, also, that $r \in F(u,v)$ and that \overline{r} and \overline{s} have the same degree, then either $\overline{r} - \overline{s} = \overline{0}$ or $\overline{r} - \overline{s} = \overline{r - s}$. In the latter case either $v(r) = \infty$ or

$$v(r-s) = v(r) = v(s) < \min \{u(r), u(s)\} \le u(r-s)$$
.

Hence, in each case, $\overline{r} - \overline{s} \in \overline{F(u, v)}$. It is now clear that $\overline{F(u, v)}$ is the set of homogeneous elements of I(u, v).

Let $r \in T(u, v)$ and let n be a positive integer. Then it is easy to see that $u(r^n) = v(r^n) = nv(r) \neq \infty$; i.e., $r^n \notin F(u, v)$. Therefore, $\overline{r}^n = \overline{r^n} \notin I(u, v)$. Now suppose that $r \notin T(u, v)$. If $r \notin T(v)$ then there exists m such that $\overline{r}^m = \overline{0}$. Suppose that $r \in T(v)$. Then, by 4.1 of [10], there exists n such that $r^n \in F(u, v)$. Hence $\overline{r}^n = \overline{r^n} \in I(u, v)$.

Finally let u be primary, and suppose that r, s are elements of R such that $r \in T(u, v)$, $\overline{s} \neq \overline{0}$, and $\overline{r} \overline{s} \in I(u, v)$. Either $\overline{r} \overline{s} = \overline{0}$ and so $v(r) + v(s) < v(rs) \leq u(rs) = u(r) + u(s) = v(r) + u(s)$, or $\overline{r} \overline{s} = \overline{rs}$ and so v(r) + v(s) = v(rs) < u(rs) = u(r) + u(s) = v(r) + u(s). In each case v(s) < u(s) and, hence, $\overline{s} \in I(u, v)$. Therefore, I(u, v) is primary.

REMARK. The set $S(u)\backslash F(u,v)$ is contained in the set $S_0(u,v)$ of all $x \notin F(u,v)$ such that u(xy) = u(x) + u(y) for all $y \notin F(u,v)$. These sets and their images in G are multiplicatively closed, and $\overline{S_0(u,v)}$ is the set of all homogeneous elements of G which are relatively prime to I(u,v).

If W is a collection of pseudovaluations the lower envelope $w_0 = \bigwedge W$ is defined by $w_0(x) = \inf \{w(x) \mid w \in W\}$. From Lemma 1 we deduce

THEOREM 1. If $u_1 \wedge u_2 \wedge \cdots \wedge u_n$ is a primary decomposition of v then $I(u_1, v) \cap I(u_2, v) \cap \cdots \cap I(u_n, v)$ is a primary decomposition of 0_G .

COROLLARY. Let $u_1 \wedge u_2 \wedge \cdots \wedge u_n$ be an irredundant primary decomposition of v, and suppose that G is Noetherian. Then, for each i, there exists $r_i \in R$ such that $T(u_i, v)$ is the set of x, not in v_{∞} , for which $v(xr_i) = v(x) + v(r_i)$.

Proof. The decomposition $0_G = I(u_1, v) \cap \cdots \cap I(u_n, v)$ is clearly irredundant. It follows that the homogeneous elements of G not in $\overline{T(u_i, v)}$ generate a prime ideal which belongs to 0_G and which, therefore, takes the form 0_G : $(G\overline{r}_i)$ for some homogeneous element \overline{r}_i in G.

REMARK. For each positive $b \in P$, denote by F(u, v, b) the set of all $r \in R$ such that either $u(r) = \infty$ or $u(r) - v(r) \geq b$. The proof of Lemma 1 shows that $\overline{F(u, v, b)}$ is the set of homogeneous elements of the ideal I(u, v, b) which it generates in G, and that $\overline{T(u, v)}$ is the set of homogeneous elements of $G \setminus I(u, v, b)$. It is easy to verify that, for a (possibly infinite) collection of pseudovaluations $v_i \geq v$, $v = \bigwedge_i v_i$ if and only if, for every b > 0, $0_G = \bigcap_i I(v_i, v, b)$. For all b > 0 and c > 0,

$$I(u, v, b) I(u, v, c) \subseteq I(u, v, b + c)$$
.

Hence each $u \ge v$ naturally induces a (nonnegative) pseudovaluation u' on G. Thus $v = \bigwedge_i v_i$ if and only if $\bigwedge_i v_i'$ is the trivial pseudovaluation on G.

When v is homogeneous the following result may be regarded as a special case of [11, Théorème 1]. Recall that v is said to be discrete if $v(R \mid v_{\infty})$ generates a discrete subgroup of R.

Theorem 2. Suppose that v is a discrete pseudovaluation. If $\mathbf{0}_{G}$ has a finite primary decomposition without embedded components then v has a primary decomposition.

Proof. Suppose that $H_1 \cap H_2 \cap \cdots \cap H_k$ is the primary decomposition of 0_G . For each i, write rad $H_i = P_i$ and denote by S_i the set of elements $r \in R$ such that $\overline{r} \notin P_i$; then v(ab) = v(a) + v(b) for all a and b in S_i , and S_i is multiplicatively closed. Mappings v_i are defined, for all $x \in R$, by

$$v_i(x) = \sup \left\{ v(xa) - v(a) \mid a \in S_i \right\}.$$

Observe that if $a, b \in S_i$ then

$$v_i(x) \ge v(xab) - v(ab) \ge v(xa) - v(a) \ge v(x)$$
 .

By 3.1 and 3.2 of [6], v_i is a pseudovaluation.

Let $x \in R \setminus v_{\infty}$. Then there exists i such that $\bar{x} \in H_i$. If $c \in S_i$ then $\bar{x}\bar{c} \neq \bar{0}$, and so v(xc) - v(c) = v(x). Thus $v_i(x) = v(x)$, and so $\bigwedge_i v_i = v$.

We shall now show that v_1 , being a typical v_i , is primary. Let $x \in S(v_1)$ and suppose that $v_1(x) \neq \infty$. Then there exists $y \in R$ such that $v_1(xy) > v_1(x) + v_1(y)$. Therefore, we may choose $a \in S_1$ such that

$$v_1(x) = v(xa) - v(a) ,$$

and

$$v_1(xy) \ge v(xya) - v(a) > v_1(x) + v_1(y)$$
.

Now write $\bigcap_{i>1} P_i = K$ and choose $c \in R$ such that $\overline{c} \in K \backslash P_1$. Then $\overline{a}\overline{c} \notin P_1$, and so $\overline{ac} = \overline{a}\overline{c} \in K \backslash P_1$. We may therefore assume (by replacing a by ac) that $\overline{a} \in K \backslash P_1$. This implies that $\overline{a^2} = \overline{a}\overline{a} \in K \backslash P_1$. Since $v_1(x) = v(xa^2) - v(a^2) = v(xa) - v(a)$, it follows that

$$v(xa^2) = v(xa) + v(a) .$$

Therefore, $\overline{xa^2} = \overline{xa}\overline{a} \in K$, and so (replacing a by a^2) we may also assume that $\overline{xa} \in K$. If $\overline{xa} \notin P_1$ then

$$v(xya) - v(a) = v(yxa) - v(xa) + v(xa) - v(a) \le v_1(y) + v_1(x)$$
 ,

which is false. Therefore, $\overline{xa} \in \bigcap_{i \ge 1} P_i$, and so, for some n, $(\overline{xa})^n = 0_G$. Since $v_1(x) \ne \infty$, we have $v(xa) \ne \infty$ and so $v((xa)^n) > nv(xa)$. Therefore, $v_1(x^n) \ge v(x^na^n) - v(a^n) > nv(xa) - v(a^n) = nv_1(x)$. Thus $x \notin T(v_1)$. Therefore, $S(v_1) = T(v_1)$; i.e., v_1 is primary.

2. Extensions of pseudovaluations. In this section we introduce some terminology for use in § 3, and we prove a result pertinent to [2].

We suppose the definition of a pseudovaluation u to be modified as follows:

- (i) $u \ge 0$.
- (ii) It is not required that u(1) = 0 (this facilitates the statement of Lemma 2; moreover, the rings in this section need not contain an identity).

We consider a homomorphism f from a commutative ring R to a commutative ring S. If I is an ideal of S(resp. R) then I^c (resp. I^c) will denote $f^{-1}I(\text{resp. }$ the ideal generated by f(I) in S). Suppose that v is a pseudovaluation on R. Define v^c to be the mapping from S to P such that, for all $x \in S$,

$$v^{e}(x) = \sup \{a \in P \mid x \in (v_{a})^{e}\}$$
.

LEMMA 2. The mapping v^e is a pseudovaluation on S.

Proof. It is clear that $v^{e}(0) = \infty$.

Let $x, y \in S$, and suppose that $x \in (v_a)^e$ and $y \in (v_b)^e$ where $a, b \in P$. Then $xy \in (v_a)^e (v_b)^e \subseteq (v_a v_b)^e \subseteq (v_{a+b})^e$. Thus

$$v^e(xy) \geq a + b$$
.

It follows that $v^{e}(xy) \geq v^{e}(x) + v^{e}(y)$.

Similarly, assuming that $a \ge b$, $x - y \in (v_a)^e + (v_b)^e = (v_a + v_b)^e = (v_b)^e$. Thus $v^e(x - y) \ge b$. It follows that

$$v^e(x-y) \ge \min \{v^e(x), v^e(y)\}$$
.

Let w be a pseudovaluation on S. We shall denote wf by w^c . It is easy to verify that w^c is a pseudovaluation on R which is primary if w is primary.

LEMMA 3. (i) The pseudovaluation v on R satisfies $v \leq v^{ec}$.

(ii) The pseudovaluation w on S satisfies $w \ge w^{ce}$.

Proof. (i) Let x be an element of R such that v(x) = a. Then $f(x) \in (v_a)^e$ and so $a \leq v^e(f(x)) = v^{ee}(x)$.

(ii) Let y be an element of S such that $y \in ((w^c)_a)^e$. Since $(w^c)_a \subseteq (w_a)^c$, $y \in (w_a)^{ce} \subseteq w_a$ and so $w(y) \ge a$. It follows that $w(y) \ge w^{ce}(y)$.

Theorem 3. $v = v^{ec}$ if and only if $v_a = (v_a)^{ec}$ for each $a \in R$.

Proof. If $v = v^{ec}$ then, for each $a \in P$,

$$(v_a)^{ec} \subseteq \{x \in R \mid v^e(f(x)) \ge a\} = (v^{ec})_a = v_a$$
,

and so $(v_a)^{ec} = v_a$. Conversely, suppose that $v_a = (v_a)^{ec}$ for each $a \in \mathbf{R}$. Let $x \in R$ and let $f(x) \in (v_a)^e$ where $a < \infty$. Then $x \in (v_a)^{ec} = v_a$, that is $v(x) \ge a$. It follows that $v \ge v^{ec}$, and hence that $v = v^{ec}$.

We refer to [2, p. 296, Definition 2] for the definition of a best filtration. If v has a best filtration $\{A_i\}_{i=0}^{\infty}$ then, by [2, p. 297, Lemma 1], the set of all distinct A_i 's is the same as the set of all distinct v_a 's where $a < \infty$. Thus, taking f to be an inclusion map, our theorem includes, in the case of nonnegative pseudovaluations, Theorem 2, p. 299, and Theorem 4, p. 301, of [2].

3. An example in a one-dimensional ring. Let Q, in be a one-dimensional local ring and let q be an in-primary ideal of Q. We shall consider the pseudovaluation $v=v_q$ determined by the powers of q according to the rule

$$v_{\mathfrak{q}}(x) = \sup \{n \mid x \in \mathfrak{q}^n\}$$
.

By considering the associated graded ring G of v and proceeding as in Theorem 2, we could show that v decomposes into primary pseudo-valuations corresponding to the isolated primary components of 0_G together with an "irrelevant" component. Apart from the irrelevant component this decomposition is unique (by [10]). We shall now show how the theory of monoidal transformations developed by Northcott and Kirby provides an alternative description of this

decomposition.

Let A denote the intersection of the primary components of 0_Q of rank nought, and write Q/A=Q' and qQ'=q'. Then not every element of mQ' is a zero divisor. Let \Re be the q'-resolute of Q', for the definition of which see p. 136 of [4]; let Q_1, \dots, Q_r be the monoidal transforms of Q' with respect to q', i.e., the rings of quotients of \Re with respect to the maximal ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_r$ of \Re ; and, for $i=1,\dots,r$, let f_i be the composition of the natural homomorphisms $Q \to Q' \to Q_i$. Using the symbols e_i and e_i to relate to e_i in the same way that e and e were related to e in § 2, we observe that e is the pseudovaluation on e0 determined the powers of the ideal e0. However, by [4, Theorems 1 and 8, and Lemma 3] e0 is a principal ideal of e0. Therefore, by an example in § 3 of [10], e0 is primary, and so e0.

Now, denoting by q_i the restriction to \Re of q^{e_i} , rad $q_i = p_i$ and $q_1 \cap q_2 \cap \cdots \cap q_r$ is the primary decomposition of $\Re q$ (by the corollary on p. 142 of [4] and since $\Re m \subseteq \operatorname{rad} \Re q$). Therefore, for all n,

$$\Re \mathfrak{q}^n = \mathfrak{q}^n \cap \mathfrak{q}^n \cap \cdots \cap \mathfrak{q}^n$$
.

By an argument on p. 88 of [8], $\Re q^n = q'^n$ for all sufficiently large n. Therefore, for $n \ge h$ say,

$$\mathfrak{q}^n + A = (v^{e_1 c_1} \wedge \cdots \wedge v^{e_r c_r})_n$$
.

However, we may choose h such that $A \cap q^h = 0_Q$ and, hence, for $n \ge h$, $q^h \cap (q^n + A) = q^n$. Therefore, using e_0 and e_0 to relate to the natural map f_0 from Q to Q/q^h , we have, for all n,

$$\mathfrak{q}^n = (v^{e_0 c_0})_n \cap (v^{e_1 c_1} \wedge \cdots \wedge v^{e_r c_r})_n.$$

Finally we show that v^{e_0} , = w say, is primary. If $x \in f_0(m)$ then, for some k, $w(x^k) = \infty$ and so $x \notin T(w)$. On the other hand, if x is a unit of Q/q^k then w(x) = 0 and, for any y,

$$w(xy) = w(y) = w(y) + w(x)$$
;

i.e., $x \in S(w)$. Thus T(w) = S(w).

It is now clear that

Theorem 4. In the notation developed above

$$v^{e_0c_0} \wedge v^{e_1c_1} \wedge \cdots \wedge v^{e_rc_r}$$

is a primary decomposition of v.

It is easy to extend this theorem and obtain a primary decomposition of the pseudovaluation v_I determined by an ideal I of rank 1

in a 1-dimensional Noetherian ring R. Let M_1, \dots, M_m be the associated prime ideals (necessarily maximal) of I, and, for $j = 1, \dots, m$, let g_j be the natural homomorphism from R to the ring R_j of quotients of R with respect to M_j . For each positive integer n,

$$I^n = \bigcap_i (I^n)^{e_j c_j}$$
,

where e_j , c_j relate to g_j , and so

$$v_I = \bigwedge_j v_I^{e_j c_j}$$
,

which yields a primary decomposition of v_I on application of Theorem 4 to each $v_I^{e_I}$.

We conclude by describing a result, in the same vein as the foregoing, which is implicit, as a special case, in [9]. Suppose that our ring R is a domain; let \bar{v}_I denote the least homogeneous pseudo-valuation $\geq v_I$; and let $\bar{R}_1, \dots, \bar{R}_h$ be the rings of quotients with respect to the maximal ideals of the integral closure of R which contain I. Then \bar{v}_I decomposes into valuations

$$\overline{v}_I = \bigwedge_i (\overline{v_I^{e_i}})^{c_i}$$

where, for each i, e_i , c_i refer to the natural mapping $R \to \bar{R}_i$.

REFERENCES

- G. M. Bergman, A weak nullstellensatz for valuations, Proc. Amer. Math. Soc., 28 (1971), 32-38.
- 2. J. A. Huckaba, Extensions of pseudo-valuations, Pacific J. Math., 29 (1969), 295-302.
- 3. ——, Some results on pseudo-valuations, Duke Math. J., 37 (1970), 1-9.
- D. Kirby, Monoidal transformations in a one-dimensional local ring, Mathematika, 9 (1962), 135-144.
- 5. K. Kiyek, Ein Struktursatz für Pseudobewertungen, Math. Z., 118 (1970), 139-156.
- 6. ———, Homogene Pseudobewertungen, Arch. Math., 22 (1971), 602-611.
- 7. D. G. Northcott, On the notion of a first neighbourhood ring with an application to the $AF + B\Phi$ theorem, Proc. Camb. Phil. Soc., **53** (1957), 43-56.
- 8. ———, The reduction number of a one-dimensional local ring, Mathematika, 6 (1959), 87-90.
- 9. D. Rees, Valuations associated with ideals (II), J. London Math. Soc., **31** (1956), 221–228.
- 10. C. P. L. Rhodes, The partial uniqueness of a primary decomposition of a pseudovaluation, J. London Math. Soc., (2), 6 (1973), 231-240.
- 11. L. Szpiro, Fonctions d'ordre et valuations, Bull. Soc. Math. France, 94 (1966), 301-311.

Received May 15, 1972.

UNIVERSITY COLLEGE, CARDIFF, WALES, U. K.