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ON k-SPACES, k:-SPACES AND k(X)

E. MICHAEL

Two examples of kj-spaces which are not k-spaces are
constructed; one of them is a s-compact cosmic space, and the
other is an YR -space. On the positive side, a theorem is
proved which implies that every c-compact ¥R ,-space which is
a kp-space must be a k-space.

1. Introduction. In this paper, we prove and extend some
results which were announced in [8].

Recall that a topological space X is called a k-space if every
subset of X, whose intersection with every compact K < X is relatively
open in K, is open in X. (For example, locally compact spaces and
first-countable spaces are k-spaces.) Analogously, a space X is a kp-
space if it is completely regular and if every f: X— R, whose re-
striction to every compact K< X is continuous, is continuous on X.
Clearly every completely regular k-space is a kr-space. The converse
is false, as was first shown by an example of M. Katétov which
appeared in a paper by V. Ptak [15, p. 8357]. That example, however,
was not normal”, and our first purpose in this note is to construct
two examples which are normal,—in fact, regular Lindelof and thus
paracompact. Both our examples are modifications of Katétov’s
example, which had, in turn, been previously introduced (for a different
purpose) by J. Novak in [12].

Before giving more details, let us review some definitions. A
covering . of a space X is a metwork (resp. pseudobase) for X if,
wherever CC U with C a singleton (resp. compact) and U open in
X, then Cc Ac U for some Aec.% A regular space with a count-
able network (resp. pseudobase) is called cosmic (resp. an Y,-space).
It is shown in [7, Proposition 10.2 and Corollary 11.5] that a regular
space is a continuous (resp. quotient) image of a separable metric
space if and only if it is cosmic (resp. an W,-space and a k-space).
We clearly have

separable metric — Y, — cosmic — regular Lindelof,

and none of these implications is reversible.
We can now describe the principal features of our examples, as
follows.

ExAMPLE 1.1. There exists a o-compact, cosmic k.-space which

1 It has a countable dense subset and a closed, discrete subset of cardinality ¢, and
is thus not normal by a result of F. B. Jones [4].
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is not a k-space.

ExAMPLE 1.2. There exists an W-space which is a k;-space but
not a k-space.

By Corollary 1.4 below, it is not possible to combine Examples
1.1 and 1.2 by constructing a o-compact W,-space which is a k,-space
but not a k-space.

Let us now take a slightly different point of view. Recall that,
if X is a topological space with topology .7, then k(X) is the set
X with the finest topology k(Z) which agrees with .7~ on every
Z-compact subset of X. Thus a set Uc X is k(7 )-open if and
only if UN K is relatively .Z-open in K for every .7-compact sub-
set K of X. Clearly k(X) is always a k-space, and X is a k-space
if and only if X = k(X). Moreover, if X is a kg-space, than X is
a k-space if and only if %(X) is completely regular.

We will prove that X is not a k-space in Examples 1.1 and 1.2
by showing that %k(X) is not regular. In contrast to this, we have
the following positive result.

THEOREM 1.3. Suppose X is an W-space which is the union of
countably many closed subsets which are k-spaces. Then k(X) is
regular, and thus also an W,-space.”

As we shall see in §5, Theorem 1.3 can be extended to Y-spaces,
an interesting generalization of ,-spaces which was recently intro-
duced by P. O’Meara [13] [14].

Since every ,-space is completely regular, Theorem 1.8 and the
preceding discussion imply the following result.

COROLLARY 1.4. If X satisfies the hypotheses of Theorem 1.3,
and if X is a ky-space, then X is a k-space.

We conclude this introduction with a brief discussion of products.
It is known that the product of two k-spaces need not be a k-space
(see [9] for more details). In fact, N. Noble has shown [11, p. 189-
190] that there exist two normal Fk-spaces X and Y such that
E(X x Y) is not completely regular. I do not know whether there is
such an example with X and Y both paracompact or even R,-spaces.
One can, however, conclude from Theorem 1.3 (and known results)
that, if X and Y are k-spaces and Y.-spaces, then k(X x Y) is also
an Y,-space —and thus completely regular — under either of the

2 Tt follows from [7, Proposition 8.2] that, if X is an YRe-space and k(X) is regular,
then k(X) is also an YRo-space.
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following two (possibly superfluous) assumptions.

1.5(a). X and Y are both unions of countably many closed,
metrizable subsets.

1.5(b). X or Y is o-compact.
It should be remarked that there exist k-and-¥,-spaces (in fact, con-
tinuous, closed images of separable metric spaces) which do not satisfy
condition 1.5(a); see B. Fitzpatrick, Jr. [3, Example 2].

Section 2 contains some preliminary material needed in §§ 3 and 4.
Sections 3 and 4 are devoted to the proofs of Examples 1.1 and 1.2,
while our extension of Theorem 1.3 is formulated and proved in § 5.

2. Notation and a lemma. Examples 1.1 and 1.2 are both
defined by retopologizing a subset of the plane R:. If zc R? then
x, %, will, as usual, denote the coordinates of x. We thus cannot
use subscripts to denote the terms of a sequence, and will therefore
denote sequences by functional notation, such as x(n). The ith coor-
dinate of x(n) will thus be denoted by x;(n).

Let R be the real line with its usual topology, and let .7,
denote the usual topology on R%. If XC R* and 2 ¢ X, then a func-
tion f: X — R is called separately continuous at x provided f|(LN X)
is 7 -continuous at « if L is either the horizontal or the vertical line
through « in R-2

LeMMA 2.1. Let X (R? 7,), and let © and x(n) (n = 1,2, «-+)
be elements of X. Suppose f(x(n)) — f(x) for every f: X— R which
18 separately continuwous at x and conttnuous at every other point
of X. Then there is an n such that x,(n) = x, or x,(n) = ..

Proof. Suppose not. Let Y= X — {a}, and let
A = {x(n): ne N},
B={yeY:y =2 or y,=a}.

Our assumption implies that x(n) — x, so A and B are disjoint closed
subsets of Y and hence there is a continuous g: Y — R such that
9(4) = 1 and g(B) = 0. Extend ¢ to a function f: X — R by letting
f(®) = 0. Then clearly f is separately continuous at « and con-
tinuous elsewhere. But f(xz(n)) =1 for all =, while f(z) =0, so
f(x(n)) - f(x). This contradiction completes the proof.

3. Proof of Example 1.1. Let X be the plane, and 7, its
usual topology. Let Ac X be the z-axis. Let F be the set of all
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f: X— R which are 7;-continuous on X — A and separately con-
tinuous at every xc A, and let .7~ be the coarsest topology making
every fe F continuous. Clearly (X, 77) is completely regular. Let
us now show (in Lemmas 3.1, 3.2, and 3.8) that (X, .77) is a o-com-
pact, cosmic k-space which is not a k-space.

Observe that, on every horizontal and every vertical line in X,
.7 agrees with .7, and hence (being metrizable) with k(.77).

Lemma 3.1. (X, 97) vs o-compact and cosmic.

Proof. Let M be the disjoint union of A and X — 4 (on both
of which 75 and .7~ agree), and let g: M — X be the obvious map.
Then M is a o-compact metric space, and ¢ is .Z-continuous. Since
(X, 97) is completely regular, this implies that it is a o-compact
cosmic space.

LemMA 8.2. (X, .97) ts a kg-space.

Proof. We have already observed that (X, ") is completely
regular. Suppose f: X— R and f|K is .7-continuous for every .7-
compact K X, and let us prove that f is .F-continuous by showing
that fe F.

Since .7, and .7~ agree on X — A, it is clear that f is .7,-con-
tinuous on X — A. To prove that f is separately continuous at
every x € A, it will surely suffice to show that, if L is a horizontal
or vertical line in X, then f|L is .Z-continuous. But &, and 9~
coincide on L, so f|L is Z,continuous by our assumption on f
and the fact that (L, 7,) is metrizable and therefore a k-space.

LEMMA 8.3. Let z(n) —2x in (X, 9), with x€ A. Then there
exists an n such that x,(n) = x, or x,(n) = ,.

Proof. Immediate from Lemma 2.1.

LeEMMA 3.4. If Cc X is F-compact, then there exists an € > 0
and a finite A’ C A such that, if yeC and 0 < |y,| <&, then y, = ,
Jor some xe A’.

Proof. Let K= CnNA. We begin by showing that, if z¢ K,
then z has a Z,neighborhood U(x) in X such that y, = «, for every
ye(C — A) N U(x). Suppose there were no such U(x). Then there
exists a sequence x(n) in C — A such that xz(n) —2 for &, and
2, (n) = x, for all n. Since .7~ is finer than .7, they coincide on the
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7 -compact set C, so z(n) —x for .. By Lemma 3.3, that is impos-
sible.

Since .7~ is finer than .7, the set C is Z,-compact, and hence
so is K. Hence there is a finite A’ K such that {U(x): zc A}
covers K. Let U= U {U{): x€A’}. Then C— U is .7 ,compact
and disjoint from A, so there exists an ¢ > 0 such that |y,| > ¢
wherever y € C — U. This choice of A’ and ¢ satisfies our requirements.

The proof of the following lemma can be left to the reader.

LEMMA 3.5. There exists a BC X — A such that:

(@) If e> 0, then {xe€ B: |x,| > & 1s finite.

(b) B intersects each vertical line at most once.

(¢) If we A, each 7 -neighborhood of x imtersects B.

LEMMA 3.6. The set B of Lemma 3.5 is closed in (X, k(97)).

Proof. This follows from Lemma 3.4 and parts (a) and (b) of
Lemma 3.5.

LemMMA 3.7. If ye A, and if U is an open k(7 )-neighborhood
of y in X, then U, the k(Z )-closure of U in X, is a Fsneigh-
borhood in X of some we A.

Proof. Recall first that .7, agrees with k(.7") on each horizontal
and each vertical line L, so UNL is ,open in L and UN L is
7 -closed.

Let V={seR: (s,0)eU}. Then V is open in R, and V= @
since ye V. For each n, let

E, = {seR: (s,t)e U whenever |t| <1/n}.

Then U3-. E, =V. Since V is open in R, the Baire category theorem
implies that there is an m such that E,, has an interior point s, in R.
Let 2 =(s,, 0), and let W=E, x (—1/m, 1/m). Then W is a Z,-neigh-
borhood of x in X, and to complete the proof we will show W< U.

Let |t|<1/m. Then E, x {t4fcU. Let L= R x {t}. Since
UNL is Z.closed in X, it follows that E, x { c UN L. This
implies that W< U, and that completes the proof.

LEMMA 3.8. (X, k(.97)) is not regular, and thus (X, 77) is not
a k-space.

Proof. This follows from Lemmas 3.6, 3.7, and 3.5(c).
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4. Proof of Example 1.2. Let R? be the plane, and 7, its
usual topology. Let A (resp. B) be the set of all xze R* both of
whose coordinates are rational (resp. irrational), and let X = A U B.
Let F be the set of all f: X— R which are separately continuous
at every x€ A and .7,-continuous at every x € B, and let .7~ be the
coarsest topology on X making every feF continuous. Clearly
(X, .97) is completely regular. Let us now show (in Lemmas 4.2, 4.6,
and 4.9) that (X, 77) is an W.-space which is a kz-space but not a
k-space.

Observe that, on the intersection of X with every horizontal and
every vertical line, .7~ coincides with .7, and hence (being metrizable)
with k(97).

LEMMA 4.1. If x€ B, then every .7-neighborhood of % in X 1is
also a 7 -neighborhood, and conversely.

Proof. Immediate from the definition.
LemMmA 4.2. (X, 97) is a kgp-space.

Proof. We have already observed that (X, .77) is completely
regular. Suppose now that f: X— R and f|K is .7-continuous for
every . 7-compact KC X, and let us prove that f is .Z-continuous
by showing that fe F.

First, let us show that f is .7,-continuous at every x€ B. Let
x(n) — 2 in (X, 7). Then x(n) — 2 for .~ by Lemma 4.1. Hence
the set S consisting of # and all the x(n) is .7-compact, so f|S is
7 -continuous. Hence f(x(n)) — f(x), which is what we had to show.

To prove that f is separately continuous at every ze€ A, it suf-
fices to prove that f|M is 7,-continuous whenever M is the inter-
section with X of a horizontal or vertical line in R’ But .7, and
7 coincide on M, and (M,.7,) is a k-space (being metrizable), so
our assumptions imply that f|M is indeed .7;-continuous.

LemMMA 4.3. Let z(n) —2 in (X, 9), with x€ A. Then there
exists an n such that x(n) = x, or x,(n) = x,.

Proof. Immediate from Lemma 2.1.

LemmA 4.4, If Cc X is F-compact, then BN C is F-closed in
C (and hence in X).

Proof. Since 7 is finer than .75, they coincide on the .7-com-
pact set C, so C is F-metrizable. If BN C were not .Z-closed in
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C, there would exist a sequence x(n) in BN C which Z-converges to
some x€ A. This is impossible by Lemma 4.3.

We now introduce the following notation. For each rational
re R and for 7 =1, 2, let

A, ={wed: x =1}.
Note that &~ and 7, agree on each A4,,.

LEMMA 4.5. If KC A is F-compact, then K is contained in the
union of finitely many A, .

Proof. Suppose not. Then one can choose a sequence z(n)e€ K
such that »,(m) = x,(n) and =,(m) # x.(n) whenever m = n. Since 7~
and the coarser topology .7, coincide on the .7-compact set K,
some subsequence of 2x(n) must .Z-converge to some xzc K. Since
Kc A, that contradicts Lemma 4.3.

LEMMA 4.6. X is an NWe-space.

Proof. As already observed, X is completely regular. Let us
construct a countable pseudobase & for X.

Let & be a countable base for (X, 75), and let .27 ; be a
countable base for A,;. Let

& = U {,;: r rational, ¢ =1, 2},

and let & be the collection of finite unions of elements of & U &7

To show that & is a pseudobase for X, let Cc U, with C com-
pact and U open in (X, 7). Since BN C is compact (for .7~ and
hence for .7;,) by Lemma 4.4, and since U is a .Z,-neighborhood of
BN C by Lemma 4.1, we have

BNC)cDcCU,

where D is a finite union of elements of 2. Now C — D is a 7~
compact subset of A, and hence, by Lemma 4.5, is contained in the
union of finitely many A,,. Hence

(C—DycEcCU,

where E is the union of finitely many elements of .oz But now
Cc(DUE)CU,

and Dy Ee &, which completes the proof.
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LemMMA 4.7. B is k(7 )-closed in X.
Proof. Immediate from Lemma 4.4.

LEMMA 4.8. Let x(n)—2x for 7, in X, with x€B. Then
x(n) —x for 7 and k().

Proof. That x(n) — 2 for .7~ follows from Lemma 4.1. Hence
the set S consisting of x and all x(n) is .Z-compact, so k(7" ) and
7 coincide on S, and thus x(n) — 2 also for k(o).

LEMMA 4.9. (X, k(97)) ts mot regular, so (X, 77) is mot a k-
space.

Proof. Let ye A, and U be any k(7 )-open set in X containing
y. We will construct a sequence x(n) in U which converges to some
x e B for 7, and hence also (by Lemma 4.8) for £(.27). This implies
that the k(7 )-closure of U intersects B. By Lemma 4.7, it follows
that (X, k(.27)) is not regular.

Before choosing the x(n), recall that .7, and k(7 ) agree on
every A,;, so UNA,; is Zopen in A,,;. Now let r(n) be an enu-
meration of the rationals in R. Let xz(1) = y, and choose xz(n) e UN A
inductively so that, for all » and for ¢ = 1, 2,

(a) w(n + 1) > w(n) = r(n), or wm(n+ 1) <x(n) <rn),
(b) lzi(n + 2) — @(n + 1) | <1/2|@:(n + 1) — x:(n) | .

Then (b) implies that, for 7 = 1, 2, the sequence x;(n) (n = 1,2, +-+)
is Cauchy, and thus converges to some real number x;. By (a) and
(b), x; # r(n) for all n, so x; is irrational. Thus = = (x, 2,) is in B,
and z(n) — x for .75, which completes the proof.

5. A positive result., In this section we prove Theorem 1.3 in
a generalized form. Following P. O’Meara [13] [14], a cover & of a
space X is a k-network for X if, whenever Cc U with C compact
and U open in X, then Cc |y # cU for some finite subcollection
& of & (Note that this is a weaker concept than that of a pseudo-
base, but a space has a countable k-network if and only if it has a
countable pseudobase.)? An YW-space, according to O’Meara, is a

3) The term “k-network” has been used by A. V. Arhangel’skii and some other
authors to mean what we have called a pseudobase. Since O’Meara’s concept seems to
be the more basic one (being useful even in the uncountable case), it seems to me that
the elegant term “k-network” should be a reserved for it. Perhaps “pseudobase”, which
is not a good term, should then be replaced by something like “special k-network”.
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regular space with a o-locally finite k-network. Clearly every metri-
zable space is an \-space, and O’Meara showed [14, Theorem 2.3]
that X is an Y.-space if and only if it is a Lindelof W-space. Un-
like Y,-spaces, an }}-space need not be paracompact or even normal
[14, Example 8.4].

We now have the following generalization of Theorem 1.3.

THEOREM 5.1. Suppose X is a paracompact Y-space which s
the union of countably many closed subsets which are k-spaces. Then
k(X) is also a paracompact YR-space.

The proof of Theorem 5.1 is based on the following four lemmas.
(Only the first two are needed to show that k(X) is an Y-space.)
The first lemma, due to O’Meara [14, Theorem 6.1], generalizes an
analogous result for Y,-spaces [7, Proposition 8.2].

LEMMA 5.2 (P. O’ Meara). If &7 is a o-locally finite k-network,
closed under finite intersections, for a space (X, 77), and if F ' is
any topology on X which is finer than 7~ and agrees with .7~ on
all F-compact subsets of X, them .o s also a k-network for
X, 97).%

LEMMA 5.3. Let Y be a k-space. Let (P,) be an increasing
sequence of subsets of Y such that every compact CCY is a subset
of some P,. Suppose that V,D P, and that V, is open in Y for all
n. Then N3, V. s open in Y.

Proof. Let V=3, V.. We need only show that, if CC Y is
compact, then VN C is open in C. Pick n so that Cc P,. Then
CcP,cV, for all 1 = n, so

vonc=(Nv)nc.
Hence VN C is open in C, and that completes the proof.

REMARK. The assumption in Lemma 5.3 that Y be a k-space is
essential. This is easily seen by considering a nondiscrete, countable
space Y, all of whose compact subsets are finite. (For example,
take Y = N U {y}, where ye 8N — N.)

The next lemma should be compared to Lemma 5.2.

4 O’Meara states this result for Hausdorff spaces, but it is true without that as-
sumption.
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LeEmMA 5.4. If .7 is a point-countable network for a space (X,
7") which is closed under finite intersections, and if .7 ' is a topology
on X which agrees with 7~ on every 7 -compact subset of X, then &7
18 also a metwork for (X, 7).

Proof. Let xe U, where U is .7 '-open in X. Let {4,: ne N}
be the elements of .©~ containing x, and let A} = A, N --- N A4, for
all n. Then A}e .o for all n, and it suffices to show that Ayc U
for some mn.

Suppose not. Then there is an 2,€ A — U for all n. Since &7
is a network for (X, .97) and since %, € A} for all n, we have 2, — =z
for . Let K= {g}U{x,: ne N}. Then K is .7-compact, so 7~
and .77’ agree on K. Hence UN K is relatively .-open in K, so
AN Kc U for some m. But then z,e U, a contradiction.

For our next lemma, recall that a space X is a o-space in the
sense of A. Okuyama if it has a o-locally finite network. Thus every
N -space is a o-space.

Lemma 5.5. If (X, .9) is a paracompact o-space, and if 7 ' is
a regular topology on X which is finer than 7 and agrees with 7~
on every .7 -compact subset of X, then (X,.7') ts also a paracompact
g-space.

Proof. That (X, 9’) is a o-space follows from Lemma 5.4, so
let us prove that it is paracompact. Since .77’ is regular, it suffices,
by [6, Theorem 1], to show that every open cover of (X, . 7’) has a
o-locally finite open refinement.

Let .o = Uz, %7, be a network for (X, .77), with each .o, local-
ly finite in (X, .77). Since .7~ is regular, we may suppose that the
elements of .o are F-closed. We may also suppose that .o is closed
under finite intersections.

Since (X, .77) is paracompact, every locally finite covering can be
expanded to a locally finite open covering.” Hence for each n there
is a locally finite open cover {V,(4): Ae.o,} of (X, 9) such that
AcC V.(A) for all Ae.o7,.

Now let % be an open cover of (X,.7), and let us find a o-
locally finite open refinement in (X, 7). Let

* ={Ae.v: AcC U for some Ue %},
and for each Aec.or* pick some U(A) € Z such that Ac U(4). Let

3 This is easily verified, as in the proof of [6, Lemma 1]. A more precise result
was obtained by C. H. Dowker in [2, (2, 3)], and subsequently by M. Katétov in [5].
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75 = 7, N .o7%, and for each Ac.o7*, let
W.(4) = V(A NUA) .

Let o7, = {W.(A): Ac.v,*}. Then each %7, is a collection of open
subsets of (X, .77") which is locally finite in (X, .97) and thus surely
in (X, 97). Let %7 = U3, #,. Clearly each We % is a subset of
some Ue Z/. It remains to show that %7~ covers X. Butif 2 ¢ X, then
xe U for some Ue %/, so xe AC U for some Ae.~” by Lemma 5.4,
hence Aec.o7* for some n, so

xe W, (A)ew .
That completes the proof.

Proof of Theerem 5.1. We must establish (a), (b), and (¢) below.

(a) k(X) has a o-locally finite k-network: This follows from
Lemma 5.2.

(b) k(X) is regular: Let 9~ and k(9 ) be the topologies of X
and k(X), respectively.

Let .7 = U, .7, be a k-network for X, with each .o/, locally
finite in X. Since X is regular, we may suppose that each Ae .o
is elosed in X, and we may also assume that .o is closed under
finite intersections. By Lemma 5.2, .o~ is also a k-network for
k(X).

Let xe U, with U open in k(X). We must find a k(9 )-neigh-
borhood V of % whose k(9 )-closure is a subset of U.

By assumption, X = U, X,, with each X, closed in X and a
k-space. Hence & and k(9) agree on every X,. Let

B,=X,—U.

Then B, is k(o )-closed in X,, and hence .7-closed in X, and thus
in X. For each n, let

P, = U{Ac U: Aegb%}u{x}.

Then P, and B, are disjeint closed subsets of the normal space X,
so there is a Z-open W, X whose .9=closure W, does not meet
B,. Let V,= W,NU, and let V= N, V,. We must check that
this works.

Clearly @c V, and the .Z-closure — and thus surely the k(o)-
closure — of V meets no B, and is therefore a subset of U. To see,
finally, that V is k(9 )-open, we can apply Lemma 5.3 to the space

Y = (U, k(7)) .

In fact, since Y is an open subset of the Hausdorff k-space k(X), it
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is a k-space by [10, Proposition 6.E.2]. Also (P,) is increasing, and
each compact CC Y is a subset of some P, because .o~ is a k-net-
work for Y. Thus Lemma 5.3 is applicable, and we conclude that
V is open in Y and hence in k(X). Thus k(X) is regular.

(¢) Kk(X) is paracompact: This follows immediately from (b) and
Lemma 5.5.

That completes the proof of Theorem 5.1.

REMARK. Theorem 5.1 remains true if “paracompact” is replaced
(both times) by “normal”, or by “monotonically normal” in the sense
of P. Zenor [16], or by “stratifiable” in the sense of C. J. R. Borges
[1]. For normal spaces, this is proved (without Lemmas 5.4 and 5.5)
by applying Lemma 5.3 twice; essentially the same proof works for
monotonically normal spaces, and the validity for stratifiable spaces
then follows from [16, Theorem B]. Since these results seem less
interesting than Theorem 5.1, we omit the details.
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