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ON β-SPACES, ^-SPACES AND k(X)

E. MICHAEL

Two examples of Avspaces which are not A -spaces are
constructed; one of them is a σ-compact cosmic space, and the
other is an ^0-space. On the positive side, a theorem is
proved which implies that every σ-compact ^0-space which is
a &#-space must be a &-space.

1* Introduction* In this paper, we prove and extend some
results which were announced in [8].

Recall that a topological space X is called a k-space if every
subset of X, whose intersection with every compact K c X is relatively
open in K, is open in X. (For example, locally compact spaces and
first-countable spaces are Λ-spaces.) Analogously, a space X is a kB-
space if it is completely regular and if every / : X—+R, whose re-
striction to every compact KdX is continuous, is continuous on X.
Clearly every completely regular &-space is a Z^-space. The converse
is false, as was first shown by an example of M. Katetov which
appeared in a paper by V. Ptak [15, p. 357]. That example, however,
was not normal1^ and our first purpose in this note is to construct
two examples which are normal,—in fact, regular Lindelof and thus
paracompact. Both our examples are modifications of Katetov's
example, which had, in turn, been previously introduced (for a different
purpose) by J. Novak in [12].

Before giving more details, let us review some definitions, A
covering sf of a space X is a network (resp. pseudobase) for X if,
wherever Call with C a singleton (resp. compact) and U open in
X, then CczAcU for some A e s$f. A regular space with a count-
able network (resp. pseudobase) is called cosmic (resp. an ^Q-space).
It is shown in [7, Proposition 10.2 and Corollary 11.5] that a regular
space is a continuous (resp. quotient) image of a separable metric
space if and only if it is cosmic (resp. an ^0-space and a Λ-space).
We clearly have

separable metric —> y$0 -+ cosmic —> regular Lindelof,

and none of these implications is reversible.
We can now describe the principal features of our examples, as

follows.

EXAMPLE 1.1. There exists a σ-compact, cosmic fc^-space which
1} It has a countable dense subset and a closed, discrete subset of cardinality c, and

is thus not normal by a result of F. B. Jones [4].
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is not a A -space.

EXAMPLE 1.2. There exists an y$0-space which is a fc^-space but
not a ά-space.

By Corollary 1.4 below, it is not possible to combine Examples
1.1 and 1.2 by constructing a σ-compact ŷ o-space which is a A -̂space
but not a &-space.

Let us now take a slightly different point of view. Recall that,
if X is a topological space with topology ^ then k(X) is the set
X with the finest topology k{^~) which agrees with ^7~ on every
J^compact subset of X. Thus a set UdX is &(^")-open if and
only if U Π K is relatively ^^open in ϋΓ for every ^compact sub-
set if of X. Clearly &(X) is always a jfc-space, and X is a ά-space
if and only if X — k{X). Moreover, if X is a A^-space, than X is
a fc-space if and only if k(X) is completely regular.

We will prove that X is not a &-space in Examples 1.1 and 1.2
by showing that k(X) is not regular. In contrast to this, we have
the following positive result.

THEOREM 1.3. Suppose X is an #0-space which is the union of
countably many closed subsets which are k-spaces. Then k(X) is
regular, and thus also an )&Q-space.2)

As we shall see in § 5, Theorem 1.3 can be extended to ^-spaces,
an interesting generalization of fc^-spaces which was recently intro-
duced by P. O'Meara [13] [14].

Since every y$0-space is completely regular, Theorem 1.3 and the
preceding discussion imply the following result.

COROLLARY 1.4. If X satisfies the hypotheses of Theorem 1.3,
and if X is a kR-space9 then X is a k-space.

We conclude this introduction with a brief discussion of products.
It is known that the product of two Λ-spaces need not be a &-space
(see [9] for more details). In fact, N. Noble has shown [11, p. 189-
190] that there exist two normal ^-spaces X and Y such that
k(X x Y) is not completely regular. I do not know whether there is
such an example with X and Y both paracompact or even y^0-spaces.
One can, however, conclude from Theorem 1.3 (and known results)
that, if X and Y are fc-spaces and ^0-spaces, then k(X x Y) is also
an ^o-space — and thus completely regular — under either of the

2) It follows from [7, Proposition 8.2] that, if X is an ^o-space and k(X) is regular,
then k(X) is also an y^
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following two (possibly superfluous) assumptions.
1.5(a). X and Y are both unions of countably many closed,

metrizable subsets.
1.5(b). X or Y is σ-compact.

It should be remarked that there exist &-and-^0-spaees (in fact, con-
tinuous, closed images of separable metric spaces) which do not satisfy
condition 1.5(a); see B. Fitzpatrick, Jr. [3, Example 2J

Section 2 contains some preliminary material needed in §§ 3 and 4.
Sections 3 and 4 are devoted to the proofs of Examples 1.1 and 1.2,
while our extension of Theorem 1.3 is formulated and proved in § 5.

2* Notation and a lemma. Examples 1.1 and 1.2 are both
defined by retopologizing a subset of the plane R2. If x e R2, then
xιf x2 will, as usual, denote the coordinates of x. We thus cannot
use subscripts to denote the terms of a sequence, and will therefore
denote sequences by functional notation, such as x{n). The ίth coor-
dinate of x(n) will thus be denoted by #*(%).

Let R be the real line with its usual topology, and let J7~Q

denote the usual topology on R2. If XaR2 and xeX, then a func-
tion / : X—>R is called separately continuous at x provided f\(Lf]X)
is ^-continuous at x if L is either the horizontal or the vertical line
through x in R2.

LEMMA 2.1. Let I c (R2, ^ ) , and let x and x(n) (n — 1, 2, •)

be elements of X. Suppose f(x(n))—>f(x) for every f: X—+R which
is separately continuous at x and continuous at every other point
of X. Then there is an n such that x^ri) = xι or x2(n) = x2.

Proof. Suppose not. Let Y = X — {x}, and let

A = {x(n): neN} ,

B == {yeY: y, = xι or y2 = x2} .

Our assumption implies that x(n) —»• x, so A and B are disjoint closed
subsets of Y and hence there is a continuous g: Y-+R such that
g(A) — 1 and g(B) — 0. Extend g to a function / : X—+R by letting
f(x) = 0. Then clearly / is separately continuous at x and con-
tinuous elsewhere. But f(x(n)) = 1 for all n, while f(x) — 0, so
f(x(n)) -+* f{x). This contradiction completes the proof.

3* Proof of Example 1Λ* Let X be the plane, and ^ 0 its
usual topology. Let Ad X be the £-axis. Let F be the set of all
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/ : X—>JS which are ^-continuous on X — A and separately con-
tinuous at every xeA, and let J7~ be the coarsest topology making
every feF continuous. Clearly {X, ̂ ~) is completely regular. Let
us now show (in Lemmas 3.1, 3.2, and 3.8) that (X, J7~) is a σ-com-
pact, cosmic A -̂space which is not a &-space.

Observe that, on every horizontal and every vertical line in X,
agrees with J7\ and hence (being metrizable) with

LEMMA 3.1. (X, ̂ ~) is o-compact and cosmic.

Proof. Let M be the disjoint union of A and X — A (on both
of which ^~Ό and ̂ ~ agree), and let g: M~*X be the obvious map.
Then M is a cr-compact metric space, and g is .^continuous. Since
(X, j7~) is completely regular, this implies that it is a σ-compact
cosmic space.

LEMMA 3.2. (X, J7~) is a kR-space.

Proof. We have already observed that (X, J7~) is completely
regular. Suppose f:X—>R and / | K is ^continuous for every ^~-
compact KaX, and let us prove that / is ^continuous by showing
t h a t / e F .

Since ^l and ̂ ~ agree on X — A, it is clear that / is ^-con-
tinuous on X — A. To prove that / is separately continuous at
every xeA, it will surely suffice to show that, if L is a horizontal
or vertical line in X, then / 1 L is ^-continuous. But ̂  and ^"
coincide on L, so / 1 L is ^-continuous by our assumption on /
and the fact that (L, ̂ ~0) is metrizable and therefore a fc-space.

LEMMA 3.3. Let x(n)—*x in (X, ̂ " ) , with xeA. Then there
exists an n such that xx{n) — x1 or x2(ri) — x2.

Proof. Immediate from Lemma 2.1.

LEMMA 3.4. If CcX is ^-compact, then there exists an e> 0
and a finite A! a A such that, if y e C and 0 < | y21 < ε, then yι = xx

for some xeA'.

Proof. Let K = C f] A. We begin by showing that, if x e K,
then x has a ^^-neighborhood U(x) in X such that y1 = xx for every
ye (C — A) Π U(x). Suppose there were no such U(x). Then there
exists a sequence x{n) in C — A such that x(n) —> x for j7~Q and
x^n) Φ χ1 for all n. Since a?~ is finer than ^7, they coincide on the
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set C, so x(ri)~+x for ^ 7 By Lemma 3.3, that is impos-
sible.

Since J7~ is finer than ,^7, the set C is .^-compact, and hence
so is if. Hence there is a finite A'aK such that {Ϊ7(#): ceeA'}
covers K. Let Z7 = \J{U{x): αeA'}. Then C — U is ^-compact
and disjoint from A, so there exists an ε > 0 such that | y2 \ > ε
wherever yeC—U. This choice of A! and e satisfies our requirements.

The proof of the following lemma can be left to the reader.

LEMMA 3.5. There exists a BaX — A such that:
(a) If ε > 0, then {x e B: | x2 | > ε} is finite.
(b) B intersects each vertical line at most once.
(c) If x e A, each ̂ -neighborhood of x intersects B.

LEMMA 3.6. The set B of Lemma 3.5 is closed in (X, k(^~)).

Proof. This follows from Lemma 3.4 and parts (a) and (b) of
Lemma 3.5.

LEMMA 3.7. If y e A, and if U is an open k(j^~)-neighborhood
of y in X, then U, the k(^~)-closure of U in X, is a ^-neigh-
borhood in X of some x e A.

Proof. Recall first that J?o agrees with k{^~) on each horizontal
and each vertical line L, so U f] L is ^-open in L and Uf]L is
^-closed.

Let F = {seR: (s, 0) e U}. Then V is open in R, and V Φ 0
since yeV. For each n, let

En = {se R : (s, t)eU w h e n e v e r \t\ < 1/n}

Then U»=i ̂ » — "P Since V is open in R, the Baire category theorem
implies that there is an m such that Em has an interior point s0 in R.
Let α? = (so, 0), and let W=Emx (—1/m, 1/m). Then TF is a ^-neigh-
borhood of α? in X, and to complete the proof we will show We: ϋ.

Let i 11 < 1/m. Then Em x {£} c [7. Let L = E x {«}. Since
C/" Π 1/ is ^7-closed in X, it follows that Em x {ί} c £7 Π L. This
implies that Wa U9 and that completes the proof.

LEMMA 3.8. (X, k(j7~)) is not regular, and thus (X, J7~) is not
a k-space.

Proof. This follows from Lemmas 3.6, 3.7, and 3.5(c).
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4* Proof of Example 1*2 Let Rz be the plane, and ^l its
usual topology Let A (resp. B) be the set of all xeR2 both of
whose coordinates are rational (resp. irrational), and let X — A(jB.
Let F be the set of all f: X-+R which are separately continuous
at every xeA and ^-cont inuous at every xeB, and let ^~ be the
coarsest topology on X making every feF continuous. Clearly
(X, ^~) is completely regular. Let us now show (in Lemmas 4.2, 4.6,
and 4.9) that (X, ̂ ~) is an fc$0-space which is a ΛΛ-space but not a
&-space.

Observe that, on the intersection of X with every horizontal and
every vertical line, j?~ coincides with ^ and hence (being metrizable)
with

LEMMA 4.1. If xeB, then every ^^neighborhood of x in X is
also a ^^-neighborhood, and conversely.

Proof. Immediate from the definition.

LEMMA 4.2. (X, J^) is a kB-space.

Proof. We have already observed that (X, ̂ ~) is completely
regular. Suppose now that / : X—>R and f\K is ^ c o n t i n u o u s for
every ..^compact ϋ Γ c X , and let us prove that / is ^^continuous
by showing that feF.

First, let us show that / is ^-cont inuous at every xe B. Let
x(n) —• x in (X, ̂ Ό) Then x(n) —• x for J7~ by Lemma 4.1. Hence
the set S consisting of x and all the x(n) is .^compact, so f\S is
^ c o n t i n u o u s . Hence f(x(n)) —• f(x), which is what we had to show.

To prove that / is separately continuous at every xe A, it suf-
fices to prove that / 1 M is ^-cont inuous whenever M is the inter-
section with X of a horizontal or vertical line in R2. But ^ and
J7~ coincide on M, and (M, <^~0) is a ά-space (being metrizable), so
our assumptions imply that / 1 M is indeed ^-cont inuous.

LEMMA 4.3. Let x(ri)—>x in (X, _^~), with xeA. Then there
exists an n such that x^ri) = xι or x2(n) = x2.

Proof. Immediate from Lemma 2.1.

LEMMA 4.4. If C a X is jT^compact, then B Π C is jf-closed in
C (and hence in X).

Proof. Since ^7~ is finer than ^ , they coincide on the ^ c o m -
pact set C, so C is ^ m e t r i z a b l e . If B Π C were not ^ c l o s e d in
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C9 there would exist a sequence x{n) in B Π C which ^converges to
some xe A. This is impossible by Lemma 4.3.

We now introduce the following notation. For each rational
r e R and for i = 1, 2, let

ArΛ = {x e A: x{ = r} .

Note that _̂ ~ and ̂  agree on each Ar>i.

LEMMA 4.5. If Ka A is ^"-compact, then K is contained in the
union of finitely many Ar>i.

Proof. Suppose not. Then one can choose a sequence x(n) e K
such that x^m) Φ xx(n) and x2{m) Φ xz(n) whenever mφ n. Since ^
and the coarser topology ^l coincide on the ^^compact set K,
some subsequence of x{n) must jΓ^converge to some xe K. Since
KaA, that contradicts Lemma 4.3.

LEMMA 4.6. X is an #0-space.

Proof. As already observed, X is completely regular. Let us
construct a countable pseudobase & for X.

Let ^ be a countable base for (X, J7l), and let sfrΛ be a
countable base for ArA. Let

= U {-̂ ,ί r rational, i = 1, 2} ,

and let & be the collection of finite unions of elements of z& U
To show that & is a pseudobase for X, let Ca U, with C com-

pact and Z7 open in (X, ̂ " ) . Since S f l C is compact (for ^ " and
hence for ^ ) by Lemma 4.4, and since U is a .^-neighborhood of
J5 Π C by Lemma 4.1, we have

where D is a finite union of elements of 3ί. Now C — D is a
compact subset of A, and hence, by Lemma 4.5, is contained in the
union of finitely many ArΛ. Hence

( C - D)aEcz U,

where E is the union of finitely many elements of sf. But now

and D \J Ee^y which completes the proof.
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LEMMA 4.7. B is k(^~)-closed in X.

Proof. Immediate from Lemma 4.4.

LEMMA 4.8. Let x(n) —• x for ^ in X, with xe B. Then
x(n)-+x for ^~ and

Proof. That x{n) —• x for ^ follows from Lemma 4.1. Hence
the set S consisting of x and all x(n) is .^compact, so k(^~) and

coincide on S, and thus x(ri)-+x also for

LEMMA 4.9. (X, k{^~)) is not regular, so (X, ̂ ~) is not a k-
space.

Proof. Let y e A, and U be any Λ(^")-open set in X containing
y. We will construct a sequence x(n) in U which converges to some
xe B for ^l and hence also (by Lemma 4.8) for k{^~). This implies
that the &(,̂ ~)-closure of U intersects B. By Lemma 4.7, it follows
that (X, k{^~)) is not regular.

Before choosing the x(n), recall that ^ and k{^~) agree on
every ArΛ, so U Π ArΛ is ^-open in Arti. Now let r(n) be an enu-
meration of the rationale in R. Let x(l) = y, and choose x(n) e U Π A
inductively so that, for all n and for i = 1, 2,

(a) a?i(iίr + 1) > α?<(̂ ) ̂  r(n), or α?<(w + 1) < xt{n) ^ r(^) ,

(b) I Xt(n + 2) - Xi(n + 1) | < 1/2 | x^n + 1) - ^(^) | .

Then (b) implies that, for i = 1, 2, the sequence α?4(w) (^ = 1, 2, •)
is Cauchy, and thus converges to some real number x{. By (a) and
(b), χi Φ r(n) for all n, so xt is irrational. Thus x = (a?!, α?2) is in B,
and α?(tt) —> x for ^ , which completes the proof.

5* A positive result. In this section we prove Theorem 1.3 in
a generalized form. Following P. O'Meara [13] [14], a cover & of a
space X is a k-network for X if, whenever Cd U with C compact
and ί7 open in X, then C c | J ^ * c U for some finite subcollection
j ^ of ^ . (Note that this is a weaker concept than that of a pseudo-
base, but a space has a countable A -network if and only if it has a
countable pseudobase.)3) An #-space, according to O'Meara, is a

3) The term "β-network" has been used by A. V. ArhangePskiϊ and some other
authors to mean what we have called a pseudobase. Since O'Meara's concept seems to
be the more basic one (being useful even in the uncountable case), it seems to me that
the elegant term "A -network" should be a reserved for it. Perhaps "pseudobase", which
is not a good term, should then be replaced by something like "special A -network".
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regular space with a cr-locally finite ^-network. Clearly every metri-
zable space is an ^-space, and O'Meara showed [14, Theorem 2.3]
that X is an fc^-space if and only if it is a Lindelof ^-space. Un-
like Wspaces, an ^-space need not be paracompact or even normal
[14, Example 8.4].

We now have the following generalization of Theorem 1.3.

THEOREM 5.1. Suppose X is a paracompact #-space which is
the union of countably many closed subsets which are k-spaces. Then
k(X) is also a paracompact

The proof of Theorem 5.1 is based on the following four lemmas.
(Only the first two are needed to show that k(X) is an ^-space.)
The first lemma, due to O'Meara [14, Theorem 6.1], generalizes an
analogous result for ^0-spaces [7, Proposition 8.2].

LEMMA 5.2 (P. O'Meara). If jzf is a σ-locally finite k-network,
closed under finite intersections, for a space (X, J^), and if ^~r is
any topology on X which is finer than ^ and agrees with ^ on
all ^-compact subsets of X, then s^f is also a k-network for
(X,

LEMMA 5.3. Let Y be a k-space. Let (Pn) be an increasing
sequence of subsets of Y such that every compact CczY is a subset
of some Pn. Suppose that Vn D Pn and that Vn is open in Y for all
n. Then Π?=J Vn is open in Y.

Proof. Let V = f|ί=i Vn. We need only show that, if C c Γ i s
compact, then V f] C is open in C. Pick n so that CaPn. Then

iCzVi for all i^n, so

=: (n n c.

Hence V Π C is open in C, and that completes the proof.

REMARK. The assumption in Lemma 5.3 that Y be a &-space is
essential. This is easily seen by considering a nondiscrete, countable
space Y, all of whose compact subsets are finite. (For example,
take Y = N U {y}, where y e βN - N.)

The next lemma should be compared to Lemma 5.2.
4> O'Meara states this result for Hausdorff spaces, but it is true without that as-

sumption.
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LEMMA 5.4. // j%f is a point-countable network for a space (X,
which is closed under finite intersections, and if ^ T is a topology

on X which agrees with ^~ on every ^-compact subset of X, then
is also a network for (X,

Proof. Let xeU, where U is _^~'-open in X. Let {An: ne N}
be the elements of s^ containing x, and let At — Aι Π Π An for
all n. Then At e s$? for all n, and it suffices to show that A * c U
for some n.

Suppose not. Then there is an xn e At — U for all n. Since jzf
is a network for (X, J7~) and since xn e At for all n, we have xn —> x
for ^Z Let K = {x} U {xn- neN}. Then K is ^compact, so ^ ~
and j ^ " ; agree on K. Hence U Π K is relatively .^open in if, so
A* Π ̂ Γc ί7 for some m. But then xme U, a contradiction.

For our next lemma, recall that a space X is a σ-space in the
sense of A. Okuyama if it has a α-locally finite network. Thus every
ŷ  is a σ-space.

LEMMA 5.5. // (X, ^~) is a paracompact σ-space, and if ^~r is
a regular topology on X which is finer than J7~ and agrees with J7~
on every ^-compact subset of X, then (X, J7~f) is also a paracompact
σ-space.

Proof. That (X, J7~') is a σ-space follows from Lemma 5.4, so
let us prove that it is paracompact. Since J^~' is regular, it suffices,
by [6, Theorem 1], to show that every open cover of (X, J7~r) has a
σ-locally finite open refinement.

Let Ssf = U"=i £f« be a network for (X, ^), with each JK local-
ly finite in (X, ^). Since ^Γ is regular, we may suppose that the
elements of j ^ are ^^closed. We may also suppose that J ^ is closed
under finite intersections.

Since (X, JT') is paracompact, every locally finite covering can be
expanded to a locally finite open covering.5) Hence for each n there
is a locally finite open cover {Vn(A): Aes*fn} of (X, J^) such that
A c Vn(A) for all A e s*rn.

Now let ^ be an open cover of (X, ^'), and let us find a σ-
locally finite open refinement in (X, ^~') Let

j y * = {Ae s&\ A c U for some [7e

and for each A e j y * pick some U(A) e e2S such that .Ac U(A). Let
δ) This is easily verified, as in the proof of [6, Lemma 1]. A more precise result

was obtained by C. H. Dowker in [2, (2, 3)], and subsequently by M. Katetov in [5].
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* = Xί l J^*, and for each i e j / / , let

Wn(A) = Vn{A)

Let Ύ/Ί = {Wn(A): AeJK*}- Then each Ύ/^n is a collection of open
subsets of (X, ^~') which is locally finite in (X, J7~) and thus surely
in (X, j ^ ' ) . Let *W = U»=i ^ Clearly each We W~ is a subset of
some U e %'. It remains to show that Ύ/^ covers X. But if x e X, then
xeU for some Uef/, so xeAczU for some A e j / by Lemma 5.4,
hence A e J>fn* for some %, so

x 6 ^ ( A ) e 5^* .

That completes the proof.

Proof of Theorem 5.1. We must establish (a), (b), and (c) below.
(a) k(X) has a σ-locally finite ά-network: This follows from

Lemma 5.2.
(b) k(X) is regular: Let J7~ and k{J5Γ) be the topologies of X

and k(X)9 respectively.
Let ό>/ — Uw=i *~^ be a /c-network for X, with each sfn locally

finite in X. Since X is regular, we may suppose that each A e j^f
is closed in X, and we may also assume that S$f is closed under
finite intersections. By Lemma 5.2, j>/ is also a A -network for
k(X).

Let xeU, with U open in k(X). We must find a &(^7~)-neigh-
borhood F of x whose k{J?~)-closure is a subset of [7.

By assumption, X = Un=i -3Γ*> with each Xn closed in X and a
fe-space. Hence ^ and Jk(^") agree on every Xn. Let

J5n - Xn - U.

Then Bn is &(J^")-closed in Xw, and hence j/^closed in Xw and thus
in X. For each n, let

P = L

Then Pn and 5W are disjoint closed subsets of the normal space X,
so there is a .^open "PΓΛ c X whose .^closure ^ does not meet
Bn. Let FΛ = Wn Π Ϊ7, and let F - fl«=i ^ We must check that
this works.

Clearly xe F, and the ̂ closure — and thus surely the k{J7~)~
closure — of F meets no Bn and is therefore a subset of U. To see,
finally, that F is &(^)-open, we can apply Lemma 5.3 to the space

γ=(u,k(jr))

In fact, since Y is an open subset of the Hausdorίf fc-space k(X), it



498 E. MICHAEL

is a A -space by [10, Proposition 6 E.2] Also (Pn) is increasing, and
each compact C c 7 is a subset of some Pn because s$f is a &-net-
work for Y. Thus Lemma 5.3 is applicable, and we conclude that
V is open in Y and hence in k(X). Thus k(X) is regular.

(c) k{X) is paracompact: This follows immediately from (b) and
Lemma 5.5.

That completes the proof of Theorem 5.1.

REMARK. Theorem 5.1 remains true if "paracompact" is replaced
(both times) by "normal", or by "monotonically normal" in the sense
of P. Zenor [16], or by "stratifϊable" in the sense of C. J. R. Borges
[1]. For normal spaces, this is proved (without Lemmas 5.4 and 5.5)
by applying Lemma 5.3 twice; essentially the same proof works for
monotonically normal spaces, and the validity for stratifiable spaces
then follows from [16, Theorem B]. Since these results seem less
interesting than Theorem 5.1, we omit the details.
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