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THE BEHAVIOR OF THE NORM OF AN
AUTOMORPHISM OF THE UNIT DISK

D. M. GIRARD

For f(z) analytic on the closed unit disk,

f&) = Sz®,
let

A =2 1al.

In this paper the following result is obtained: Theorem. Let
f(z) be an automorphism of the unit disk:

&)=t F=2-,0 < |a| <1,C real.
Then
8v'2
(%)
as n — o where F' = ,F; is the hypergeometric function and

1—|a]
1+ al’

1 n 2\1/2 -1__3_.&. — 2
=171~ 1 —prer(g S 51— 7)

/3:

1. Introduction. In a more general context we denote by A
the class of all functions with absolutely convergent Fourier series
and define

Wflla= 2 [fR)].
—o <o

If f(z) is analytic on the closed unit disk, then f{(e"*)e A and
A =1 F 1l

The asymptotic behavior of || f"||, has been studied in several
recent papers. Kahane [5] has shown that if f is real, analytic,
periodic of period 27, and nonconstant, then there exist two positive
constants C, and C, such that C, v % < |le™], < C.1 n. More re-
cently in [3] the behavior of || f*||, has been studied in the case where
JeA, |f(t)| £1 and |f(t)| = 1 for at most a finite number of points in
[0, 27]. Further results and connections with summability methods,
the stability of difference schemes and the structure theory of A may

be found, respectively, in [3], [4] and the recent monograph by
Kahane [6].

2. Preliminary lemmas. In this section we give several results
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which will be needed in the proof of the theorem. The first is a
weak form of Laplace’s estimate for integrals (see, for instance [1]).

LEMMA 1. Let ¢(t) be real valued and twice differentiable on
[a, b] and suppose that c¢ is the wumique point in [a, b] satisfying
¢'(c) = 0,¢"(c) < 0. Then

[[eedt = o mlg @), n— oo .

A proof of the following lemma, due to van der Corput, may be
found in [8, p. 61].

LEMMA 2. Let h(t) be differentiable, h'(t) monotone and suppose
that h'(t) = m > 0 (or that K'(t) = — m < 0) in [a,b]. Then

Sbeih(t)dt‘ < i .
[ m

The next result is a modification of Exercise 173 in [7].

LEMMA 3. Let sp,ma =k = nb,0 < a < b, be such that
(i) 08 =1,
(i) for each k, na < k < nb, and any integer j # 0,

>, exp (271)8,,) = o(n) , n—- oo,
k

na<ms

Further, let (o,) be a positive increasing sequence such that o, M~ =
0(n™), n— o= where M = Xochsms Ao Then, if g(x) is a continuous
Jumnetion on [0, 1] with g(0) = g(1),

lim M- 3, bakg(sﬂk) = Sog(x)dOv-

n—ooo na<lksn

Proof. For any € > 0, there are trigonometric polynomials
p(2) = 3 ¢;exp (2nijz), P(x) = 3, d; exp (2nijx)
FIES |JISN
such that for ze[0, 1] »(x) < g(») < P(x) and
[[P@) - p@lde =< .

We now write

M= 3 ap(sa) = X e M™ 3 @, exp (2mi)s,,)
na<k=nb 7SN na b

<ksn

and by applying Abel’s summation formula and (ii) to these inner
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sums we get, for 57 = 0,

M= 3, «a,exp (2wij s,;)

na<ksnb
= o(@unM™) + o(nM™) <k§b—-1(ak — Q)
= o(anbnM—l)

:O(l)g n-——-> o .

Thus

im M~ S a,p(s,) = ¢ = Slp(w)dx
na<k=nb 0

n—co

and in a similar fashion,

lim M~ S, @,P(s,.) = d = S:P(x)dx .

n—c0 ne<ksn

Taking limits in the following inequality

M7 3w — | 9@

ne<lksn

M S ags) — [o@ds

na<k=nb

S M7 S PG — | g@)de

na<ks<n

we obtain the limit of the middle term bounded below by

S:Ip(w) - 9(@)]dw ,

which is greater than —e¢, and bounded above by

| [P@) — g@1da

which is less than ¢. The result follows.

445

LEMMA 4. Let s, and g(x) satisfy the conditions of Lemma 3.

Then, for any polynomial p(x),

lim 5 p(L)oen) = = | p@)de- | g@da

n— na<lks=nd

Proof. It is sufficient to establish the result in the case when

p(x) = 2™, m = 0 an integer.
In Lemma 3 we take a, = k™ and then
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<£> g(snk)—1~= M| pr- > k’"g(sm)
ne<k=nb \ 1, "

nmtt na<lk=n

where M = Yucizm k™. Taking limits yields the result since

M= 5 (YL s

LEMMA 5. Let s,, and g(x) satisfy the conditions of Lemma 3
and let f(z) be continuous on [a,bl. Then

lim 3, oG.0f(L)L = L@ | rads .

n—ow na<lk=nbd

The proof follows directly by approximating f(x) uniformly by a
polynomial p(x) on [a, b]. Our last lemma, also due to van der Corput,
is Theorem 5.9 in [8].

LEMMA 6. If ¢(t) is twice differentiable and real, and 0 <\ <
() < tn (or N < —4"(t) = pun) throughout the interval (c,d) and
dz=c+1, then

> exp (27i ¢(k)) = O[pe(d — )\ + O[A1] .
e<k=d
3. Proof of the theorem. We first show that it suffices to

prove the result when { = 0 and « is real and positive. Indeed, if
we let Arga = 0 and

/__z__'_|_‘ﬁ_>” = 3 g2

T —alz
then
(ea:; 2 —a\ = gin(h+0) — — || >
1— az. kl—— |a|ze?
— Za ke't'n(ﬂ-!-C —-7,]:9215
-
and so
leM(z—a z—[a:l )”“
1- az 1 — |lalz

Thus, we will assume that 0 < a < 1.
We want to determine the asymptotic behavior of

el = 2 law] .
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The essential ideas are these: using Cauchy’s theorem and Laplace’s
method for real integrals we will show that, depending on % and «,
there is only a small range of summation which is significant; then
over this range of summation we will apply a modification of the
method of stationary phase to further estimate the coefficients. For
convenience the proof is divided into three parts.

We shall omit the phrase “for » sufficiently large” finitely many
times in the course of the proof.

PArT 1
Since 0 < @ < 1, there is an R > 1 such that f(z) = (z — @)/(1 — az)
is analytic in the disk |2] < R and so for any »,0 <r =< R

171 = 5 awl = 3| 5| @

fzl=7r
In this section we show that

170 =, 3 aus] + 00/ T log m), 1 — <= ,

el(n)

where T(n) = {k: n[g + ¢,] = k < n[1/8 — ¢&,]}, for

I
p= 1+«
and
6:1——0‘%’2
Vv'n

For simplicity set =n[l/g — ¢,] = M. Then, if r > 1,

S lanl = 3 o= | frret)retyat
k= k= 27T | J)—=
= ir“"gx exp [n¥(t)]dt
k=M 27 —r
—M+1 T
<[ ]S v(t)dt
_[(r_ 5 1), exo o)
where
v(t) = | ] re’ — &
® o8 1 — are*
and by writing
V() = llog r* + a* — 2arcost
2 1+ a®* — 2arcost
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the following properties are easily verifiable:
U0)=¥'(n) =0"(—m) =0
and

T(0) = ar(l — )1 — a®)(r — @)1 — ra)=
() = —ar(l — (1 — &) (r + &)1 + ra) .

Thus, for r > 1,

7(0) < 0,¥"(m) > 0,¥"(—m) > 0;
for r < 1,

770) > 0,¥"(n) < 0,¥"(—7m) < 0.
Applying Lemma 1 in the case when » > 1 yields

S; exp [n¥(t)]dt = 0[(17':;:)"%“’2(1' —a)(1—ar).

lar(t = 7)1 — a7 ]

and so

— —1/2 (’r —_ a)nﬂ poH LR —1/2] I
3 O[n e U] e

we choose our path of integration so that » = 1 + (ne,)™ and then
this last expression is asymptotic to

1/—1——.2_ n~%(ne, )" exp [(nen)‘l[(%)n — M]] , N —— oo

and this finally yields
2. || = O[n'*(log n)*"]
k=M
= 0[n'"*/log n] , n— oo ,

By choosing a path of integration [z| = 1 — (ne,)™" we can, in a similar
way, show that

> || = 0[n'/*/log n] , n—> oo,
k<N
where N = n[B + ¢,].

PaArT 2

Unless otherwise noted all sums in this part will be for k e T(n).



THE BEHAVIOR OF THE NORM OF AN AUTOMORPHISM OF THE UNIT DISK 449

To estimate a,, for ke T(n) we integrate along the unit circle
so that

sl = || et

and by setting

b = | exp lik(®)1dt

where
. et — o
W(t) = ha(t) = —inlog (1__W) — kt
we have
(1) Sl = S| bu + b
7/

We will determine the behavior of b,, and show that

cos [h(tnk) — %]l

+ 0(n'?/log n) , % —— oo

( 2) Z Ibnk + 5nk| = 21/2—75 Z ih”(tnk) i—llz

where t,, is the root of #'(t) = 0.
We begin by listing some properties of k(t): k(f) is real valued
and from the derivatives

Wity =nl—a)(l+a®—2acost)y™ -k,
@) = — [2na(l — &) sin t}(1 + a® — 2a cos t)~*

we obtain that: A”(t) <0 for 0 <t <=z, h"”(0) = A"(x) = 0 and A/(t) is a
decreasing function on [0, 7]. For ke T(n), #'(t) has a unique zero in
(0, w), say t.., given by

(3) cost,, = [1+ a® — n(l — a®)/k]/2x

and there are two constants C,, C;, > 0 and independent of % and k&
such that —1 < —1 + C.e, < eost,, <1 — Cle, <1 which implies

0<Ce, <ty <m—Ceg, <.

A direct calculation, using the expression for cost,, above, shows
that

(4) B'(tw) = —k(k/n — B)'*(1/B — k/n)'"*
which yields, for ke T(n),
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A (tar) | = me. -

Finally, for x¢][0, x], |#"'(z)| £ K,» where K, is a constant depending
on « alone.

We set 8, = ce, where 0 < ¢ < min [C,, C,, 5/K,] and define the
intervals

Ink = (tnk - 3%9 tup + Bn) ’
';Lk = [0’ tnk - 6'»] ’
I = [tu, + 0u, 7] .

This choice of ¢ guarantees that ¢,, — 6, > 0 and ¢,, + 6, < 7. The
equality (2) will be established in two steps. First we replace

Z lbfnk + Efnkl
by

s H exp [iR(D)]dt + SI

Ink n

exp [—ih(t)]dtl .

To do this it suffices to show that

5 [1 bus + boil — Sw + S_,nk

] = 0(n'"?/log n) ,

as n— co. This expression is bounded above by

2% (b - |

<23

Ink

AR I
Tn'k I

the integrands in each of these cases being exp [4h(?)].
On the interval I, #'(f) is decreasing and A/(t) = h'(t,, — 6,) > 0
for fixed % and k. From Lemma 2 we then infer that

[ explin®1at| < 41wt — 015
nk
but for some value of ¢, ¢,, — 8, < & <

‘hl(tnk - Bn)l =

| ] = ()10,

nk—
Using the lower and upper bounds on |%"(t,,)| and |k (f)| respectively,
given above, we obtain

W/ ta) — RO (b | S Kendfne, 8

= ac/ﬁ
<1
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and so

QT = (1@ | L = [W(Ear) = RO/ R (i) |
= MW ()]

where M is a constant depending only upon «.
From this inequality we obtain

5|, explinlat] = 065 2 10t [
nk

as n— oo. On the interval I, h'(t) is again decreasing and in an
entirely similar fashion, now using the alternative hypothesis in van
der Corput’s lemma, we obtain the above estimate for this interval
of integration.

We now show that this last sum is 0(1). Equation (4) allows us
to rewrite it as

S (k) (kfn — BYE(1/B — k/n)~n !
and by recalling that k/n > g for ke T(n) we can majorize this by

B3 (kfn — B)T(A/B — k[n)™ P
The function (x — B)™'*(1/8 — x)™'/* takes its minimum value at

the point v = (8 + 1/8)/2 and by splitting the sum we have
>, (kjm — B)TE(1/B — kfm)" n

kjm<y
< (1= 0" 5] (kfn — g n
S
= 0(1)

and similarly the sum for k/n = v is 0(1) as #n — <. Thus, we may
write

) Dt Bl =53] el + |

+ 0(n'"*/log n) .

exp[—1ih(t)]dt

Expanding #(t) about the point ¢ = ¢,, we can write
exp [1h(t)] = A(t) + G*(t)
where

A(t) = exp [il(ty) + th"(Eu)(t — t,0)%/2] «
- [1 4 R ()t — ta0)'/6]
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and G*(t) = O[n(t — £,.)*], » — . Then

=\, explin@iat + |

— z,] gI”kA(t)dt + Sln:Z(t)dtH

is bounded above by

exp[— ih(t)]dtl

2 zi SI,,,, exp [ih(t)]dt — SI”kA(t)dt)
—23 g}nkG*(t)dtl

= 0(n*37) = o(1)
as n— o and so we may write, using (5),
(6)  Slbu+ bul = ZISM[A(t) + A@®)]dt| + 0(nflog n) .
We first note that
SlnkA(t)dt - 2S’ exp [(h(tn) + B (Ea)u/2]du
and a further change of variable, (1/2)|A”(t..)|u* = v, produces
SIMA(t)dt — V| W (b)) [ exp [ih(tm)]gjnke“”v””zdv

where w,, = |h"(t,;)]0%/2. Thus, the sum on the right hand side of
equation (6) may be written as

VE S W)

exp [th(t,.)] S T iy
0
+ exp [—ih(t,.)] gwﬂke"”v‘l’zdv ‘ .
0

As a last step in establishing equation (2), we replace the integrals
in the expression above by the integrals S e v %dy and S e vy
—_— 0 —_— - 0 . .
whose values are, respectively, V' wei™* and 1V we . To do this it

suffices to show that

SR (@) [T

S‘” e—iv,v—xlzdzvl = 0(n'?/log n) ;
Wk

but this follows rather easily. Integration by parts yields an estimate
for the absolute value of the integral of 2/ w,,. The above sum
is then



THE BEHAVIOR OF THE NORM OF AN AUTOMORPHISM OF THE UNIT DISK 453

O | 2" (b)) 7w ™)
= 0, O[3 [ (8ni) 7]
= 0,'0(1)
= 0(n'*/log n), n —— oo ,

as we have shown above. Equation (6) now becomes

S bar + bail = SV 2T | B () [T
- [ exp [i(A(t.) — w/4)] + exp [—i(h(tas) — m/4)]]
+ 0(n'?/log n)

and this reduces to equation (2).

PART 3

We now complete the proof of the theorem by applying Lemma
5. By setting

F(@) = o7 — ™(1/8 — =)™
we can write
W (t) [ = Flfm)n™
by using equation (4). Further, since 0 <t =< =,
—tlog [(¢" — a)/(1L — ae¥)] = Arg [(¢” — a)(1 — ae™)™]

_ cos“l[ 1+ a’)cost — Za]
1+ a®— 2xcost

and we then get, by (3),
—1ilog [(e" — a)/(1 — ae¥)] = cos™'[ — [1 + & — k(1 — a®)/n]/2a] .

We now define

6 = 15 (o - 155)

and
H(z) = cos'[G(x)] — x cos™[— G(1/x)]
and write
h(t,.) = nH(k/n) .

By combining (1) and (2) we then get
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1571 = /2 5 o8 [nH(k/n) — /4] Fim) 2 + 0(1/1og )

where this sum is for k€ T(n). The application of Lemma 5 to this
sum is delicate. For 0 < 7 < 1/8 we set

T'(n) = {k: n[B + 7] = k = n[1/8 — 7]}

and write
l]/ 2 5. |cos [nH(kn) — /4] | Fllimn= — (-%)alzgllﬁF(x)dxi
T keT(n) T 8
= i‘. K;
where
8+ 1/8
K, = Sﬁ Flo)ds K, = S/ﬁ Flo)ds ,
1/5=7
K= > Fknn, K= 3 Fk/nnt,
k<n(B+7) k>n(1/B—7)
keT(n) keT(n)
and

K, = ((E)"z 3, |cos [nH(k/n) — /4] | F(k/myn™

T keT'(n
_ (E)"'”S”‘"” F(x)dxj .
T B+7
Since the integral of F'(x) over the interval [g, 1/8] is convergent,
for € > 0 we can choose 7 sufficiently small so that both K, and K,

will be less than ¢/5. Likewise, if 7 < 1/8 — 5,
K, < g1 —p—n™" 3 (kin— g s
kE<n(g+n)

= O[Siﬂ(w - B)‘l"da:]
=ol), 7n—0.

A similar dominance argument applies to K, and thus, if we pick 7
sufficiently small, we have >}, K; < 4¢/5.

With 7 sufficiently small and fixed, we now show that K, < ¢/5
for » sufficiently large. In Lemma 5 we take g(x) = cos 2nx — 7/4)
and s,,=nH(k/n)/2r —[nH(k/n)/27]*. F(x) is continuous on the interval
[6 + 7n,1/8 — 7] and so we must show that for each integer j = 0 and
each k,na <k < nb

2. exp [27ijs,,] = o(n) , m—— oo
na<msk

* Here [ » ] denotes the greatest integer function.
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where a = 8+ 7,b = 1/8 — 7. For each n we apply Lemma 6 with
¢c=mna,d=Fk and 27¢(x) = jH,(x) = nj H(z/n).

First, d —c = n(1/8 — 1) — n(B + 1) < 4an/(1l — a?. Next, with
the aid of the identity

1 — G x) = 2*(1 — G*(L/x))
we compute
H))(x) = n~*H"(x/n)
= [1 — a®)/2a)[xv' T — G*(x/n) |
from which it follows that

H(x) z [1 — a)/2a]/(n/B)
= (1 — a)*/2an
and
H(r) < [(1 — &)/2a][min o]~
«[minV 1 — G¥z/n) |
<[ = a’)/2a][n(B + ]
-[1 - G(/8 — I
= K, ,1 — a)*/2an
where K, , depends only on a and 7. Thus
1 — @)*2an < H(2) < K, ,(1 — a)*/2an
and for j =1
(1 — a)*/2an < jH, (1) = jK.,,(1 — @)*/2an

so that if we put 27\ = (1 — @)*/2an and ¢ = jK,,,, then, since j is
bounded in magnitude, by Lemma 6

Y, exp [27ijs,a] = OljKa,[dan/(1 — a)](1 — a)/V 2am ]

na<mg
+ 0[n*"]
= 0(n'?) , n—> oo,

If § < 0 we apply the alternate form of van der Corput’s estimate to

obtain the same result.
We now need only to calculate the integral. If we let

t=(1/8—n)/(x—pB),
then
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S;/ﬂF(x)dx =(1- Bz>1lz§°°t—1/4(t + D)7l + th)—x/zdt .

However, this is an integral representation of the hypergeometric
function. From equation (5) in [2] we have, for Rec > Red > 0 and
larg z| <,

. pe _— — F(C) = b—1 a—c —a
Flo, b ;1= 2) = s S £ (1 + 8L + 2t)~dt

and taking ¢ = 1/2, b = 8/4, and ¢ = 3/2 gives

’

S;/ﬁp(x)dx = [F@/MAPIIB/2)] (1 — ,6’2)”217(

DO |

3
;— 1 — 2>.
5 g

N

Using the relations 7"(z)I"(1 — 2) = z/sin 7z,
I'z +1)=2I'(z) and I'(1/2) =V 7 gives
[Z@/DY/I(3/2) = 4n /[T (1[4)]*

and so

(2/7':)3’2S:ﬁF(x)dx
= s zruae - e r(3, 31— ).

This completes the proof of the theorem.
The author would like to thank Professor Bogdan Baishanski for
originally suggesting this problem.
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