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STRUCTURE HYPERGROUPS FOR MEASURE ALGEBRAS
CHARLES F. DUNKL

An abstract measure algebra A is a Banach algebra of
measures on a locally compact Hausdorff space X such that
the set of probability measures in A is mapped into itself
under multiplication, and if y is a finite regular Borel measure
on X and # <<veA then pc A. If A is commutative then
the spectrum of A4, 4,4, is a subset of the dual of A, A*, which
is a commutative W*-algebra. In this paper conditions are
given which insure that the weak-* closed convex hull of 4,,
or of some subset of 4,, is a subsemigroup of the unit ball
of A*. This statement implies the existence of certain byper-
group structures. An example is given for which the condi-
tions fail.

The theory is then applied to the measure algebra of a
compact P*-hypergroup, for example, the algebra of central
measures on a compact group, or the algebra of measures on
certain homogeneous spaces. A further hypothesis, which is
satisfied by the algebra of measures given by ultraspherical
series, is given and it is used to give a complete description
of the spectrum and the idempotents in this case.

A hypergroup is a locally compact space on which the space of
finite regular Borel measures has a commutative convolution structure
preserving the probability measures. The spectrum of the measure
algebra of a locally compact abelian group is the semigroup of all
continuous semicharacters of a commutative compact topological semi-
group (Taylor [7], or see [2, Ch. 1]). In this paper we consider the
spectrum of an abstract measure algebra and investigate the question
of whether the spectrum or some subset of it has a hypergroup
structure.

Section 1 of the paper contains a general theorem on the existence of
hypergroup structures on the spectrum of an abstract measure algebra.
The fact that the dual space of an appropriate space of measures is
a commutative W*-algebra is of basic importance in the proof of this
theorem. This section also contains an example of a compact hyper-
group whose measure algebra does not satisfy the hypotheses of the
theorem.

In §2 we recall the definition of a compact P*-hypergroup from
a previous paper [1] and apply the main theorem of §1 to this situa-
tion. The result is that the closure of the set of characters of the
hypergroup in the spectrum is a compact semitopological hypergroup
and is a set of characters on another compact semitopological hyper-
group.
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Section 3 defines a class of P*-hypergroups of which ultraspherical
series form a particular example. A complete description of the
spectrum and the idempotents of the measure algebra is given. The
results are much like those which Ragozin [6] obtained for the algebra
of central measures on a compact simple Lie group.

1. The general situation. We will use the following notation;
for a locally compact Hausdorff space X, C*(X) is the space of bounded
continuous functions on X, C,(X) is the space {fe C*(X):f tends to
0 at =}, M(X) is the space of finite regular Borel measures on X, M,(X)
is the set {¢#te M(X): ¢ = 0, #X = 1} (the probability measures), 9, is
the unit point mass at xe€ X, and M(X)* is the dual space of M(X).
If X is compact we write C(X) for C3(X). We let w* denote either
of the topologies o(M(X), Ci(X)) or o(M(X)*, M(X)).

Note that M(X)* may be interpreted as the space of generalized
functions on X, (the projective limit of the spaces {L=(X, t): pt € M,(X)}
ordered by absolute continuity) and is thus seen as a commutative
W*-algebra (see [2, p. 9]). We will write f — f(f € M(X)*) for the
involution, f-p¢ for the action of M(X)* on M(X), and (g, f) for
the pairing of M(X) and M(X)*, (1t M(X), fe M(X)*). Note{f -, g>=
e, fo> for £, ge M(X)*, e M(X), and (¢, 1> = SXdy. The unit ball

B (the set {f: || fll =1}) of M(X)* is w*-compact and is a commuta-

tive semitopological semigroup under multiplication and the w*-topology.

We will be concerned with compact convex subsemigroups of B.
Suppose there is given for each x, y € X a measure Mz, y) € M (X)

such that for each fe Cy(X) the map (z, ) — | fd\(z, y) is separately
X
continuous. Then for each p, ve M(X) the function

R SXSX fdn@, y)d(y)

is continuous and

[ de@)| av@)| rine, ) = | )| dee| fane, o) .

This fact was proved by Glicksberg [3]. We will use this to define
semitopological hypergroups.

DEFINITION 1.1. A locally compact space H is called a semi-
topological hypergroup if there is a map M H X H— M,(H) with the
following properties:

(1) M=, 9) = My, 2), (v, y€ H), (commutativity);

(2) for each feCy,(H) the map (x,y)— S fdn(x, y) is separately

H
continuous, (z,ye€ H);
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(8) the convolution on M(H) defined implicitly by

[, fae) = | du@| )| sone, v, (e M@, fe )

is associative, (note d,xd0, = Mz, ¥), (%, ¥ € H)).
If there is a point e€ H such that Me, x) = d,, (x€ H), then e is
called the identity of H. A bounded continuous function ¢ on H such

that quSd?V(m, Y) = é(x)6(y), (x, y € H), is called a character of H.

If H is a compact semitopological hypergroup then it is easily
shown that convolution on M(H) is separately w*-continuous, and
that M,(H) is a compact commutative semitopological affine semigroup
(“affine” means Zx (s, + s;v;) = s,(*y,) + s,(¢xy;) for s,s =>0,s +
s, =1, p¢,v,v,e M,(H)). The converse to the latter holds (Pym [4]
proved a form of this statement; we will give a proof of it in the
present context).

PRrOPOSITION 1.2. Let H be o compact space and suppose M,(H)
is a commutative semitopological affine semigroup (in the w*-topology),
then H can be given the structure of a compact semitopological hyper-
group, so that convolution restricted to M,(H) gives the original semi-
group structure.

Proof. Let x denote the semigroup operation on M,(H). This
operation extends uniquely to M(H), and M(H) becomes a commuta-
tive Banach algebra. For each z,yc H let M, y) = d,+0, € M,(H).
Now we must show that )\ satisfies Definition 1.1, and the convolution
induced by X\ is the same as the given. By hypothesis, the function

Tf(x,y) = SH fax(x, y) = SH fd(0,%0,) is separately continuous (x, y € H).
Glicksberg’s result [3] shows that 2+ g Tf(x, y)du(y) is continuous
H

for each e M(H). Let u,v be finitely supported (discrete) measures
in M,(H), then by an easy computation we have

1,77 vap@ae) = | sapv,  (fecan).
HJH H

For fixed v the set of ¢ for which this identity holds is w*-closed.
Thus the identity holds for all ge M, (H), all finitely supported ve
M,(H). Repeat the argument to show the identity holds for all
yve M,(H).

It is convenient to isolate the following situation as a lemma.
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LemMA 1.3. Suppose X is a locally compact space, S is a com-
pletely regular Hausdorff space, and there is a bounded linear map
J: M(X) — C5(S) with the following properties (we will write ||p¢||s
Sor sup {|je(s)|: se S}:

(1) Jl7ll=1;

(2) there exists c€ M, (X) such that j¢ = 1 (the constant function);

(3) lgs-pells = [ tllsy where jise M(X)* is defined by {t, j.s) =
jtu(s), (s € S, e M(X)).

Then the w*-closed convex hull of j7,S, denoted by w* co (4,S), is
a compact (semitopological) subsemigroup of B, the unit ball in M(X)*.
Each map f 1+ {d,, [, (x€ H), s an affine semicharacter on w* co (5,S).
Further, if S is compact and jM(X) is sup-norm dense in C(S), then
S has a semitopological hypergroup structure, and the functions
{§0.: xe X} are characters of S.

Proof. Let S, be a compactification of S such that jM(X) < C(S),
and let j* denote the adjoint map: M(S,) — M(X)*,

(given by <{#,j*\) = Ssj#dk, re M(X), NeM(&)) .

Denote w*co (5,S) by S,. We claim j*M,(S) = S,. The map j* is
w*-continuous M(S,) — M(X)* thus j* maps w* co {d,: s€ S.} (in M(S))
into S,. That is, j*M,(S)c S,. Conversely let feS,, then there
exists a net {f.} C co (4,S), (the convex hull of 5,S) so that f, — f(w*).
But for each a there exists a finitely supported , € M, (S, so that
J*Ne = fae By the w*-compactness of M,(S,) there exists ) e M,(S)
so that j*» = f. Thus j*M,(S) = S..

We observe for ge M(X)* that geS, if and only if |[{¢, )| =
Neellsy (e M(X)) and (¢, 9> = 1. The latter condition and the Hahn-
Banach and Riesz theorems imply that there exists e M,(S,) so that
J*» = g. We now show for se S, \ e M, (S, that (5,5)(G*\) € S,. Indeed
for pe M(X), |

(GG = [Gis - 11,73 |
= || 3G | < llgse el < el

Also (e, (7:.8)I*N)> = s+ ¢, "Ny = L, 7*A) = 1, (note j,s-¢ = ¢, since
g:sll £ 1,4¢,5.:8) = je(s) = 1 and ce M,(X)). Thus (5,)(j*}) €S, and
we conclude from the separate w*-continuity of multiplication that
S.S.c 8S,; so S, is a subsemigroup of B.

For each v e X, fe M(X)* we have that f.4, = <d,, f)0, so the
maps f+ {d,, f» are affine semicharacters of S..
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Now suppose that S is a compact and jM(X) is norm dense in
C(S). Then j* maps M,(S) one-to-one, w*-continuous, and onto S,.
Thus M,(S) with the w*-topology is homeomorphic to S,. We define
a semigroup structure on M,(S) by using this isomorphism (that is,
for n, ve M,(S) define a+xv = (5*)7((G*NM(*Y))). Thus M,(S) is a com-
mutative affine w*-semitopological semigroup. By Proposition 1.2 S
is a compact semitopological hypergroup. Further for z e X, » € M(S),

S (G6.)dn = <6., )y, which shows that jo, is a character of S.
N

Note that in the lemma M(X) may be replaced by an L-subspace
A of M(X), (that is, A is a closed subspace of M(X) and (e M(X)
and ¢ <<veA implies e A). The dual of A is a w*-closed ideal
in M(X)* and so is itself a commutative W*-algebra. However, the
point masses d, may not be in A.

DEFINITION 1.4. Suppose X is a locally compact Hausdorff space
and A is an L-subspace of M(X). Say A is an abstract measure
algebra if it is a Banach algebra in the measure norm, and A,4,C 4,
(where A, = AN M,(X)). We say A has an identity if there exists
an algebra identity ce 4,. If A is commutative we let 4, denote the
spectrum (maximal ideal space) of A, considered as a subset of the
unit ball of the dual A* of A. Further ff denotes the Gelfand trans-
form of e A, so fieCyd).

THEOREM 1.5. Suppose A is a commutative abstract measure
algebra with identity ¢, and E is a w*-closed subset of 4, with the
Sollowing properties: (1) 1e E; (2) fe E implies fecE; 8)ge E, e A
wmply |[(g- )7z = [|Z|ley (where ||f]lz = sup{|g(f)|: fe E}). Then
the norm-closed linear span of w* co E is isomorphic to C(Y), where
Y is a compact semitopological hypergroup with an identity, and the
natural map o: A— M(Y) is a homomorphism with w*-dense range.
Further ot = 0,, where e is the identity in Y. If A contains a point
mass 0,, then 00, is a point mass in Y. The set E considered as o
subset of C(Y) consists of characters of Y.

Proof. The Gelfand transform maps A — C(E). By Lemma 1.3
w* co (&) is closed under multiplication. Thus the norm closure of
sp (w* co (F)) is a self-adjoint closed subalgebra of A*, hence is iso-
morphiec to C(Y), (Y is its spectrum). We define the natural map
j: M(E) — C(Y) so that (g, j\) = g gdn, (e A, \ e M(E)); note je
C(Y)c A*. Observe 5§, = 1, and leEL,(E) = w* co (K). We show that
4 satisfies the hypotheses of Lemma 1.3. Note that ||j\]|y is given
by
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30l = sup (<, Al e 4, [zl < 1
= sup{HEﬁdxl tped, llul <1}

Let ye Y and define j: Y— M(E)* by {\, 5.4 = iMy), (M€ M(E)).
For e A, ne M(E) we have

<t iGNy = | faGy-N) = CEn, G = ENG) -
Thus

17y My S sup {||l7(Z- Ml e A, (el =1} .
Now
NG Ml = sup {Kv, 5@ - M) |:ve 4, vl = 1}
sup{lLiﬁd)»l: ved, |yl = 1}

= sup {[[v[[ Il £l llan]ls v e A, fIv][ = 1}
et flanlly

(since 57 = (uz)™ and [[vefl < Iv] [l&l). Thus 7z -nllr < [N
Further jM(E) = sp (w* co E) is dense in C(Y), so by Lemma 1.3 Y
is a compact semitopological hypergroup. Note that Ec C(Y) con-
sists of characters of Y.

Let o be the natural map A — M(Y). Clearly oA is w*-dense in
M(Y). Further the convolution on M(Y) is defined in terms of multi-
plication in M(E)*, but the map A— C(E) C M(E)* is a homomorphism,
so ¢ is a homomorphism.

Since ¢ =1 on E we have {, f> =1 for all few*coE. For
f,ogew*co(E), &, fod>=1=/<, >, 9> (since fgew*coFE) thus
f—<¢, f> is multiplicative and norm bounded on sp (w* co(E)), so
there exists a unique point ec Y so that <, f) = fle), (f € C(Y)).
Thus o¢ = §, and e is the identity of Y. If there is a point mass
0,€ A then f— {d,, f> is multiplicative on A*, so ¢9, is a point mass
in Y.

It would be interesting to know whether Y has any characters
other than the elements of E, but the answer is presently unknown
to the author. If 4, has the properties specified for E, then the set
characters of Y is 4,, since ¢4 is w* dense in M(Y) and characters
of Y give multiplicative linear functionals on M(Y).

This line of investigation was motivated partly by Taylor’s work
[7] on structure semigroups of convolution measure algebras. Pym
[5] has a result similar to Theorem 1.5 for the spectrum of a com-
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mutative Banach measure algebra M(X) in which multiplication is
separately w*-continuous and the map g+ f-p is bounded in the
spectral norm (z+— || f|].), for each fe 4y .

A compact hypergroup H is defined by Definition 1.1 with “sep-
arately continuous” in condition (2) replaced by “jointly continuous”.
We write H for the set of characters of H, and 4, for the spectrum

of M(H). For pre M(H),é¢cH, let fi(g) = S édyp. In the sequel we
H
will refer to [1] for necessary details.

We will now construct a compact hypergroup H for which neither
4y nor the closure of H in 4 satisfy the hypotheses of Theorem 1.5.

EXAMPLE 1.6. There exists a compact hypergroup H and + € £H
(the closure of H in 4;) such that g+ . g, (€ M(H)), is bounded
in neither the ||~||, nor the ||*|.. norm.

Proof. Let H, be the finite hypergroup described in Example 4.6
of [1]. Briefly the points of H, correspond to rows of the matrix

6 b P
e[1 1 1
rl1 —1/2 0
r| 1 1/4 0

and multiplication is pointwise. That is, the columns correspond to
the characters of H,. Note that ¢ = (1/8)(¢, — 24, + 94,). Let v be
the measure o, + 4§, — 20,,on H,, then ¥(g,) = 0, ¥(¢,) = 0, and ¥(g,) = 1.

Let H be the Tikhonov product [[:-, H,, so H is a compact hyper-
group. For n=1,2, ..., let H, = [[*, H,. We identify M(H,) with
a subalgebra of M(H) under the map

g fda'#=g f(xly"‘yxmeyey"')d#(xu"',xn)’
H H,y,

(feC(H), ;te M(H,)). By a multi-index I we mean a sequence [ =
(¢;, %, +++) where 7, =0,1,2 and 7, = 0 for all but finitely many s.
For a multi-index I let ¢,(%) = ¢; (%,)¢:,(%;) < -+, then ¢, € H. Let v, =
Y X +++ X v (n times), an element of M(H,), and let p, = ov, € M(H).
The spectrum of M(H,) is isomorphic to S, = {¢,: I multi-index, %, = 0
for s > m}. Thus the spectral norm of a measure in M(H,) (or o M(H,))
is realized on S,. Let w7 e H be given by ™(2) = ¢.(x) *+* dn(®,)
(xeH,m=1,2). We claim ||Z,]l. = ||ft]l. = 1, in fact for ¢,¢€S,,
<ﬂ7n ¢I> = ?=1 <V, ¢is> =0 if ¢I + 'Ilb\fnz)’ a’nd <ﬂn’ "#LLZ)) = 1‘ Let m g n,

then (44 o, ¥ = /8% Indeed <y~ pra, i) = | yplids, =
H
Y, 68 = (9/8)". Let + be a w*-cluster point of {y"} in 4.
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Then (v« ft,, P> = (9/8)" and || fulle = [[Zall. = 1, but [[(v - )7l =
(- )" [l = (9/8)".

2. P*-hypergroups. See [1] for a reference for this section.

DEFINITION 2.1. A compact hypergroup H is called a P*-hyper-
group if:

(1) there exists an invariant measure m, e M,(H) and a con-
tinuous involution z+ &', (x € H) such that

| @ gam, = | fR@odn,,

and such that eesupport Mz, o), (f,9eC(H),xe H), (R(x): C(H) —
C(H) is defined by R(z)f(y) = S fdw, y), fe C(H), v e H):

(2) HHcC co H, that is, for each ¢, weH there exists a non-
negative function n(g,; -) on H with only finitely many nonzero
values such that g(x)y(x) = .4 #(8, ¥; W)@ (¥), (v H).

Recall from [1] that each subhypergroup K of H is, by definition,
closed and is normal (x € K implies «’' € K), if H is P*. Furthermore,
K is itself a P*-hypergroup with invariant measure mg.

DEFINITION 2.2. Let H be a compact P*-hypergroup and let
pre M(H). Define pu* e M(H) by

| s = (] (@) @), (7 e c) -

Then p— p* is an algebra involution and (£%)~(¢) = (Z(s))~, (¢ ¢ H)
(see Theorem 3.5 [1]).

DEFINITION 2.3. The set B(H) = {fi: re M(H)} c C*(H) is a self-
adjoint separating algebra of continuous functions on H and contains
the constants. Let #H be the compactification of H induced by this
algebra. Equivalently £H is the spectrum of the sup-norm eclosure
of B(H), and H is a dense open subset.

THEOREM 2.4. £H is a compact sem@topologwal hypergroup, and
H is a discrete subhypergroup. Further £H, as a subset of 4y (the
spectrum of M(H)), is w*-closed, contains 1, and is self-adjoint.

Proof. Let j be the bounded linear map: M(H) — C(kH) which
is determined by (ju)(¢) = fi(¢) = S Gdpe, (e M(H), ¢ H). Observe
H N
il = | 2]l.. Also jo, = 1. For ¢, eH,prc M(H) we have
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i@ = | Godp = 3 0, v50)| Gdp= 3 nig, i 0)fi@) -
we H weH
But [j(3- ()| £ Sueir M8, ¥ @) | fi(@)| = [[ 2]l = [[7#¢]l.. Thus we
can apply Lemma 1.3 and obtain that £H is a se:mitopological hyper-
group. Further M,,(/ff[ ) is isomorphic to w* co (H)c M(H)*, and the
functions {jo,: © € H} are characters of xH.

We now apply Theorem 1.5 to £H and obtain the following:

THEOREM 2.5. Suppose H is a compact P*-hypergroup, then there
exists a compact semitopological hypergroup Y such that kH is a set
of characters of 'Y, the norm-closed span of w* co (I:I ) 18 1somorphic to
C(Y), and there is a monomorphism o: M(H) — M(Y) with w*-dense
range.

3. Simple P*-hypergroups. In this section H will always denote
a compact P*-hypergroup. We will describe an additional hypothesis
which allows a complete description of 4. This hypothesis is realized
in the algebra of ultraspherical series (see Example 4.3 [1]). The
author suspects that the algebra of central measures on a compact
simple Lie group also satisfies the hypothesis.

Recall from [1] that the center of H, Z(H), is {x € H: y € H implies
that Mz, ¥) is a point mass}. Further Z(H) is a compact subgroup
of H and is the set {ze H: |¢(x)| = 1, (¢ e H)).

DEFINITION 3.1. Let n be a positive integer. Say H has property

S, if for each compact set K< H\Z(H) the sum >,z ¢(8)(supx |6])*" <
—1
co, <Where c(g) = <g igD’[zde) > (The letter “S” suggests “simple”
H

in the sense that if K is a subhypergroup of H such that K& Z(H)
then K is open; see 3.4.) Say H is an SP-* hypergroup if it has
property S, for some .

DErFINITION 3.2. Let M, (H) = {¢te M(H): |pt|Z(H) = 0}, an L-sub-
space of M(H). Note M(H) = M(Z(H)) ® M,(H). Let 7 be the norm-
bounded projection: M(H)— M(Z(H)). For pe M(H) we write ¢t =
T+, SO € M, (H).

We will show that if H is an SP-* hypergroup and my,(Z(H)) =0
then M,(H) is an ideal in M(H) and its annihilator in 4, is 4,\H.
Thus 4,\H is isomorphic to 4. The case my(Z(H)) > 0 will also
be discussed.

ProrosiTION 3.3. Suppose H is an SP-* hypergroup with property
S, for some positive integer n and pe M,(H), then p*e L'(H), (note
P o= prft e e e w0 (1 times)).
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Proof. First suppose pe€ M,(H) has compact support K with
ZH)NK = . Then for ge B, || = || ddu|s llnllsupclsl. We
claim p" e L(H) c L'(H); indeed 3,e#0(6) | (") (9) ' = Dse(g) | () " =
IS c(9) (supk [¢])™ < . The set of such g is norm-dense in
M,(H) and the map g~ " is norm-continuous taking a dense subset of
M,(H) into L'(H), a closed subspace of M(H).

For M,(H) to be a nontrivial ideal it is necessary that L'(H)C
M,(H). We present a lemma which gives several equivalent charac-
terizations of this.

LEMMA 3.4. Let K be a subhypergroupn of a compact P*-hyper-
group H. The following statements are equivalent:
(Recall K+ = {pe H: 9| K = 1))

(1) K is open;

(2) mu(K)>0;

(8) each hypercoset of K* is finite;

(4) some hypercoset of K* is finite;

(5) mgx is a nonzero multiple of my| K.

Proof. We first observe that each of (8) and (4) is equivalent to
K* being finite. It K* is finite then each hypercoset ¢« K+, (¢ € H), is
finite, since ¢y has finite support in H, (¢ H). Further K* is con-
tained in the support of ¢- (¢ K*) for each ¢e H, so if some hyper-
coset is finite then K* is finite (for more details see 3.16 [1]).

(1) implies (2): Note that the support of my is H, (3.2 [1]).

(2) implies (8): The characteristic function yxe L*(H) and
WY @) = | Fdmy = ma(K) > 0 for pe K*. But Soei ozl (4) ) <
o, thus K* is finite, (since ¢(¢) = 1).

(8) implies (1) and (5): Recall (mg)” is 1 on K* and 0 off
K*' (8.14 [1]). Since K* is finite we have my = f.my where fe C(H);
in fact fesp H. Since the support of my is H we see that f=0
and f= 0 off K. We will show that f is constant on K, which im-
plies that K is open and my is a nonzero multiple of my|K. Since
f + my is the invariant measure on K, the identity (f:my)xtt = f+my
holds for each pe M,(K), (1.12 [1]). By Proposition 8.4 [1] this im-
plies that

f@) = | B@f@)dpw),  @eK).

Thus f(z) = R(x)f(y’") for each z,ye K. Let a = supgxf and let K, =
{veK:f@) = af. Forwek,yek,a=f@)= R@f@)=| firmv),
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but this implies that f is constant with value a on the support of
Mz, ¥'). Thus K, is a nonempty (closed) ideal in K, but K is normal
so K, = K and f is constant on K.

(5) implies (2): Clear.

Note if H is an SP-* hypergroup and z e H\Z(H) then
{peH: |p(x)] = 1}

is finite, so if K is a subhypergroup of H with K& Z(H) then K* is
finite implying K is open (by 3.4).

The following will be needed for the case where Z(H) is open
in H.

LemMmA 3.5. Suppgse K is an open subhypergroup of a compact
P*-hypergroup H, € K and pe M(H) with |p|K = 0, then

S {e(@)A(g):$c H, | K = 4} =0,

(note this is a sum over a (finite) hypercoset of K*).

Proof. We will show that >z c¢(¢)¢ is equal to a multiple of
v on K and is zero off K. By Lemma 3.4 there exists d =1 such
that myx = dmy|K. Let feC(H) be defined by f=+on Kand f=0
off K. Then fig) = | dvdm, = (1a)] fvdms, s0 fig) = (dety) for
6| K = + and f(¢) = 0 otherwise, (note c(p) = (SKWIzde> , see 3.17
[11)-
Thus fespH and is given by the series (de(v))™ Sy xov ¢($)d. Now

0= | Far = @etr) 3 cs)| s
H K=Y H

= (dc(«lf))"lwéqk e($)f(9) -

For the following H will be an SP-* hypergroup, and for nota-
tional convenience we will write G for Z(H).

ProrosITION 3.6. If mu;G = 0 then the projection w: M(H) — M(G)
18 a homomorphism and is bounded in the H-sup-norm (||i]]..).

Proof. For pe M(H) we set pt = rmp + p,. By 3.3 there exists
an integer n so that y;e L*(H). Thus f, — 0at « on H. Let 76@,
then E, = {se H: $|G = 7} is a hypercoset of G* and is infinite (see
8.17 [1]). Let v ekH\H (kH is the closure of H in 4,) be the limit
of an infinite convergent net {¢.}C E,. Then g(v) = lim, fi(4,) =
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lim, ()~ () + () ($a)) = (wp)"(v). Note also [f(y)| = [|Z]l.. Thus
ll(nﬂ)AHmA_ llZll. and the functional g+ (7ge)”(v) is multiplicative for
each veG. Hence 7 is a homomorphism.

The following is now evident, (note for g, e M,(H) that fZ, =0
off H).

THEOREM 3.7. If m,;G = 0 then each element of AH\ﬁ s of the
Jorm pri— (wp)™(y) for some € 4. This correspondence is an isomor-
phism (of compact semitopological sem@groups) of AH\H with Adq. The
hyperg’r'oup kH s isomorphic to H U kG (where kG is the closure of
G in 4,), and H is attached to kG so that an unbounded net (6 c H
clusters at a point a/fehG if {9 G} c G clusters at e

In this particular situation, co 4, is already a semigroup. Let
S be the spectrum of the norm-closed span of 4, in M(G)*, then S is
a compact semitopological semigroup (Taylor [7], or see [2, Ch. 1]).
Let o, be the canonical homomorphism: M(G) — M(S). Let Y be the
spectrum of the norm-closed span of co(4,) in M(H)*. Then Y is
the disjoint union of H and S. The homomorphism ¢: M(H) — M(Y)
is given by op = o,(my) + f,; recall wpe M{(G) so o(wpe) € M(S) and
U, € M(H). Since o has w*-dense range we see that H is an ideal
in Y.

THEOREM 3.8. Suppose m;G =0 and p is an idempotent in
M(H ), then et is an idempotent in M(G) and [, has ﬁmte support
in H. Thus {¢eH H(¢) = 1} is in the hypercoset ring of H.

Proof Since 7 is a homomorphism, z¢ is idempotent in M(G).

Thus (¢, — (wp)” is integer-valued, but tends to zero at « on
H, so is zero for all but ﬁmtely many points in H. By Cohen’s
theorem [2, Ch. 5], S = {v e G: (z)" () =1} is in the coset ring of G.

The set {¢e H: (xp)(¢) = 1} = {¢ € H: |G e S}, which is in the hyper-
coset ring of H (see 3.18 [1]).

If G is open in H then each hypercoset of G+ is finite. In this case
M,(H) is not an ideal (unless H = G), but ¢t € M,(H) does imply f = 0
off H. Each element of 4,\H is of the form g i— ()~ (v), (¢ e M(H))
for some v € 4 G. (Note if 7pe LNG) C L'\(H) then (wg)™ is zero off
Gc 4, and is zero off Hc 4,.) Thus AH\H is 1somorph1c to AG\G It
can be shown that 4, is isomorphic to (4,\G) U H with A attached
to /cé\@ in the obvious way.

THEOREM 3.7. If G 1is open in H and ft is an zdempotent N
M(H) then {¢ € H: H(¢) = 1} is in the hypercoset ring of H.
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Proof. Set ¢ = zp + .. We will show f, is finitely supported
on H, thus zp differs from an _idempotent in M(G) by a trig poly-
nomial on G (an element of spG c C(G@)). Since f,—0 at o on H,
the set F = {ge H: | () (¢)| > 1/3} is finite. Let F, = U,cr oG+,
a finite union of hypercosets of G*, then F is finite since G* is finite
(see 3.4). We claim (¢,)" = 0 off F,. Indeed, let ¢ H\F, and sup-
pose ¢,€ H with ¢|G = |G, then ¢, ¢ F, and (m)" (¢) = (@) (4).
Thus |A(8) — A = [(4)6) — (1) @) | = 2/3. But f is integer
valued so Z(8,) = f(¢) and (2,)7(4) = () (¢). Thus /i, is constant on
¢+ G+ and by Lemma 3.5 we have (¢#,)" = 0 on ¢-G*.
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